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1. Introduction

The general theory of homogeneous Kähler manifolds is well known, as is the relation
between homogeneous symplectic and homogeneous contact manifolds (see, for example,
[6,10,11]).

As is also widely known, a connected, simply connected and complete Riemannian man-
ifold is a symmetric space if and only if its curvature tensor field is parallel. Ambrose and
Singer [2] extended this result to obtain a characterization of homogeneous Riemannian
manifolds in terms of the existence of a tensor field S of type (1, 2) on the manifold, called
a homogeneous Riemannian structure (see [28], where a classification of such structures
is also given), satisfying certain properties (see (2.1); if S = 0, one has the symmetric
case). Moreover, Sekigawa [26] obtained the corresponding result for almost-Hermitian
manifolds, defining homogeneous almost-Hermitian structures (among them the homo-
geneous Kähler structures), which were classified in [1]. Its odd-dimensional version, the
almost-contact-metric case, has also been studied (see, for example, [8,12,15,21]).

In § 2, we give basic results about homogeneous Riemannian and homogeneous Kähler
structures. In particular, we consider these structures on Hermitian symmetric spaces
of non-compact type. Besides the trivial homogeneous structure S = 0 associated to
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the description of one such space as a symmetric space, other structures can be obtained
associated to other descriptions as a homogeneous space and, in particular, to its descrip-
tion as a solvable Lie group given by an Iwasawa decomposition (see § 2.2). We also give
a construction of homogeneous Sasakian structures on the bundle space of a principal
line bundle over a Hermitian symmetric space of non-compact type, endowed with a
connection 1-form that is the contact form of a Sasakian structure on the total space
(Proposition 2.5).

The complex hyperbolic space CH(n) = SU(n, 1)/ S(U(n) × U(1)) with the Bergman
metric is an irreducible Hermitian symmetric space of non-compact type, and, up to
homotheties, is the simply connected complete complex space form of negative curvature.
It has been characterized in [14] in terms of the existence of certain type of homogeneous
Kähler structure on it, and in [7] a Lie-theoretical description of its homogeneous struc-
ture of linear type is found. From an alternate point of view, in § 3 we study the homo-
geneous Kähler structures on CH(n), which, in particular, provide an infinite number of
descriptions of CH(n) as non-isomorphic solvable Lie groups. Moreover, we consider the
principal line bundle over CH(n), with its Sasakian structure given in a natural way from
a connection form on the bundle, and we obtain the families of homogeneous Sasakian
structures on its bundle space following our previous general construction. In summary,
we obtain the following.

(a) All the homogeneous Kähler structures on CH(n) ≡ AN : these are given in terms
of some 1-forms related by a system of differential equations on the solvable Lie
group AN (Theorem 3.1).

(b) The explicit description of a multi-parametric family of homogeneous Kähler struc-
tures on CH(n), given by using the generators of a + n (Proposition 3.6), and the
corresponding subgroups of the full isometry group SU(n, 1) of AN (Theorem 3.7).

(c) The explicit description of a one-parametric family of homogeneous Sasakian struc-
tures on the bundle space of the line bundle M̄ → CH(n), given in terms of the
horizontal lifts of the generators of a + n and the fundamental vector field ξ on M̄

(Proposition 3.9), and their associated reductive decompositions (Propositions 3.11
and 3.12). One of them describes M̄ as the complete simply connected ϕ-symmetric
Sasakian space S̃U(n, 1)/ SU(n), which is also a Sasakian space form.

On the other hand, complex hyperbolic space was the first target space-time where
Nishino’s [22] alternative (i.e. neither necessarily hyper-Kähler nor quaternion-Kähler)
N = (4, 0) superstring theory proved to work. This model has some interesting fea-
tures, among them not having the incompatibility (which is a trait common to heterotic
σ-models) between the torsion tensor and quaternion-Kähler manifolds found by de Wit
and van Nieuwenhuizen [9]. Another peculiarity is that, in this case, one of the two scalars
of the relevant global multiplet is promoted to coordinates on CH(n), while the other
plays the role of a tangent vector under the holonomy group S(U(n) × U(1)).
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2. Homogeneous Riemannian structures

Ambrose and Singer [2] proved that a connected, simply connected and complete Rie-
mannian manifold is homogeneous if and only if there exists a tensor field S of type (1, 2)
on M such that the connection ∇̃ = ∇ − S satisfies the following equations:

∇̃g = 0, ∇̃R = 0, ∇̃S = 0, (2.1)

where ∇ is the Levi-Cività connection of g and R is its curvature tensor field, for which
we adopt the conventions

RXY Z = ∇[X,Y ]Z − ∇X∇Y Z + ∇Y ∇XZ, RXY ZW = g(RXY Z, W ).

Such a tensor field S is called a homogeneous Riemannian structure [28]. We also denote
by S the associated tensor field of type (0, 3) on M defined by SXY Z = g(SXY, Z).

2.1. Homogeneous Kähler structures

An almost-Hermitian manifold (M, g, J) is said to be a homogeneous almost-Hermitian
manifold if there exists a Lie group of holomorphic isometries which acts transitively and
effectively on M . Sekigawa proved the following theorem.

Theorem 2.1 (Sekigawa [26]). A connected, simply connected and complete almost-
Hermitian manifold (M, g, J) is homogeneous if and only if there is a tensor field S of
type (1, 2) on M which satisfies Equations (2.1) and ∇̃J = 0.

A tensor S satisfying the Equations (2.1) and ∇̃J = 0 is called a homogeneous almost-
Hermitian structure. The almost-Hermitian manifold (M, g, J) is Kähler if and only if
J is integrable and the fundamental 2-form Ω on M , given by Ω(X, Y ) = g(X, JY ), is
closed, or equivalently ∇J = 0. In this case, a homogeneous almost-Hermitian structure
is also called a homogeneous Kähler structure, and we have the following proposition.

Proposition 2.2. A homogeneous Riemannian structure S on a Kähler manifold
(M, g, J) is a homogeneous Kähler structure if and only if S · J = 0 or, equivalently,
SXY Z = SXJY JZ for all the vector fields X, Y , Z on M .

Corollary 2.3. A connected, simply connected and complete Kähler manifold
(M, g, J) is a homogeneous Kähler manifold if and only if there exists a homogeneous
Kähler structure on M .

If (M = G/H, g) is a homogeneous Riemannian manifold, where G is a connected
Lie group acting transitively and effectively on M as a group of isometries and H is
the isotropy group at a point o ∈ M , then the Lie algebra g of G may be decomposed
into a vector-space direct sum g = h + m, where h is the Lie algebra of H and m is an
Ad(H)-invariant subspace of g. If G is connected and M is simply connected, then H is
connected, and the condition Ad(H) m ⊂ m is equivalent to [h,m] ⊂ m. The vector space
m is identified with To(M) by the isomorphism X ∈ m → X∗

o ∈ To(M), where X∗ is
the Killing vector field on M generated by the one-parameter subgroup {exp tX} of G
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acting on M . If X ∈ g = h + m, we write X = Xh + Xm, Xh ∈ h, Xm ∈ m. The canonical
connection ∇̃ of M = G/H (with regard to the reductive decomposition g = h + m) is
determined by

(∇̃X∗Y ∗)o = [X∗, Y ∗]o = −[X, Y ]∗o = −([X, Y ]m)∗
o, X, Y ∈ m. (2.2)

Then S = ∇−∇̃ satisfies the Ambrose–Singer Equations (2.1), and it is the homogeneous
Riemannian structure associated to the reductive decomposition g = h + m. If (M, g) is
endowed with a compatible almost-complex structure J invariant by G (so that (M =
G/H, g, J) is a homogeneous almost-Hermitian manifold), restricting J to To(M) ≡ m,
we obtain a linear endomorphism Jo of m such that J2

o = −1, and Jo adh = adh Jo.
Moreover, J is integrable if and only if

[JoX, JoY ]m − [X, Y ]m − Jo[X, JoY ]m − Jo[JoX, Y ]m = 0

for all X, Y ∈ m (see [20, Chapter 10, Proposition 6.5]).
Conversely, suppose that (M, g) is a connected, simply connected and complete Rie-

mannian manifold, and let S be a homogeneous Riemannian structure on (M, g). We set
m = To(M), where o ∈ M . If R̃ is the curvature tensor of the connection ∇̃ = ∇ − S,
the holonomy algebra h̃ of ∇̃ is the Lie subalgebra of the Lie algebra of antisymmetric
endomorphisms so(m) of (m, go) generated by the operators R̃XY , where X, Y ∈ m. A
Lie bracket is defined [23] in the vector-space direct sum g̃ = h̃ + m by

[U, V ] = UV − V U, U, V ∈ h̃,

[U, X] = U(X), U ∈ h̃, X ∈ m,

[X, Y ] = R̃XY + SXY − SY X, X, Y ∈ m,

⎫⎪⎪⎬⎪⎪⎭ (2.3)

and g̃ = h̃ + m is the reductive decomposition corresponding to the homogeneous Rie-
mannian structure S. Let G̃ be the connected, simply connected Lie group whose Lie
algebra is g̃ and let H̃ be the connected Lie subgroup of G̃ whose Lie algebra is h̃. Then
G̃ acts transitively on M as a group of isometries and M is diffeomorphic to G̃/H̃. If
Γ is the set of the elements of G̃ which act trivially on M , then Γ is a discrete normal
subgroup of G̃, and the Lie group G = G̃/Γ acts transitively and effectively on M as a
group of isometries, with isotropy group H = H̃/Γ . Then M is diffeomorphic to G/H.
Now, if J is a compatible almost-complex structure on (M, g) and S is a homogeneous
almost-Hermitian structure, then the holonomy algebra h̃ is a subalgebra of the Lie alge-
bra u(m) = {A ∈ so(m) : A · J = 0} of the unitary group, and M ≈ G̃/H̃ ≈ G/H is a
homogeneous almost-Hermitian manifold.

2.2. Hermitian symmetric spaces of non-compact type

Suppose that (M = G/K, g, J) is a connected Hermitian symmetric space of non-
compact type, where G = I0(M) is the identity component of the group of (holomorphic)
isometries and K is a maximal compact subgroup of G. Then M is simply connected
and the Hermitian structure is Kähler. We consider a Cartan decomposition g = k + p of
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the Lie algebra g of G, and the Iwasawa decomposition g = k + a + n, where k is the Lie
algebra of K, a ⊂ p is a maximal R-diagonalizable subalgebra of g and n is a nilpotent
subalgebra. Let A and N be the connected abelian and nilpotent Lie subgroups of G

whose Lie algebras are a and n, respectively. The solvable Lie group AN acts simply
transitively on M , so M is isometric to AN equipped with the left-invariant Riemannian
metric defined by the scalar product 〈· , ·〉, induced on a + n ∼= g / k ∼= p by a positive
multiple of B|p × p, where B is the Killing form of g.

Now, let Ĝ be a connected closed Lie subgroup of G which acts transitively on M . The
isotropy group of this action at o = K ∈ M is H = Ĝ ∩ K. Then M = G/K has also the
description M ≡ Ĝ/H, and o ≡ H ∈ Ĝ/H. Let ĝ = h + m be a reductive decomposition
of the Lie algebra ĝ of Ĝ corresponding to M ≡ Ĝ/H.

We have the isomorphisms of vector spaces

p ∼= g / k ∼= ĝ/ h ∼= m ∼= To(M) ∼= a + n,

with
ξ : p

∼=−→ m, µ : m
∼=−→ To(M), ζ : To(M)

∼=−→ a + n,

given by

ξ−1(Z) = Zp, µ(Z) = Z∗
o , ζ−1(X) = X∗

o , Z ∈ m, X ∈ a + n .

For each X ∈ g, we have (Xk)∗
o = 0 and (∇(Xp)∗)o = 0, and since the Levi-Cività

connection ∇ has no torsion, for each X, Y ∈ g, we have

(∇X∗Y ∗)o = (∇(Xp)∗(Yk)∗)o = [(Xp)∗, (Yk)∗]o = −[Xp, Yk]∗o. (2.4)

The reductive decomposition ĝ = h + m defines the homogeneous Riemannian structure
S = ∇−∇̃, where ∇̃ is the canonical connection of M ≡ Ĝ/H with respect to ĝ = h + m,
which is Ĝ-invariant and uniquely determined by (∇̃X∗Y ∗)o = −[X, Y ]∗o, for X, Y ∈ m

(see (2.2)). The tensor field S is also uniquely determined by its value at o because M ≡
Ĝ/H and S is Ĝ-invariant. Since J is Ĝ-invariant, from [20, Chapter 10, Proposition 2.7],
it follows that ∇̃J = 0 and, by Theorem 2.1, S is a homogeneous Kähler structure.

We have

(SX∗Y ∗)o = (∇X∗Y ∗)o + [X, Y ]∗o = ∇Y ∗
o
X∗, X, Y ∈ m . (2.5)

By (2.4) and (2.5), S is given by

SX∗
o
Y ∗

o = [Xk, Yp]∗o, X, Y ∈ m .

Then, for each X, Y ∈ a + n, we have

SX∗
o
Y ∗

o = Sξ(Xp)∗
o
ξ(Yp)∗

o = [(ξ(Xp))k, Yp]∗o.

The complex structure J on M = G/K is defined by an element EJ in the centre of
k, and it defines the complex structure J ∈ End(a + n) such that the following diagram
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is commutative, and (a + n, 〈· , ·〉, J) becomes a Hermitian vector space isomorphic to
(To(M), go, Jo):

p
ξ ��

adEJ

��

m
µ ��

Jo

��

To(M)
ζ ��

Jo

��

a + n

J

��
p

ξ �� m
µ �� To(M)

ζ �� a + n

Let A and N be the connected abelian and nilpotent Lie subgroups of G whose Lie
algebras are a and n, respectively. The solvable Lie group AN acts simply transitively
on M . Then M is isometric to AN equipped with the left-invariant Riemannian metric
defined by the scalar product induced on a + n ∼= g / k ∼= p by a positive multiple of
B|p × p, where B is the Killing form of g, so that AN equipped with the left-invariant
almost-complex structure defined by J is a Kähler manifold.

2.3. Homogeneous almost-contact Riemannian manifolds

An almost-contact structure on a (2n+1)-dimensional manifold M̄ is a triple (ϕ, ξ, η),
where ϕ is a tensor field of type (1, 1), ξ is a vector field (called the characteristic vector
field) and η is a differential 1-form on M̄ such that

ϕ2 = −id + η ⊗ ξ, η(ξ) = 1.

Then ϕξ = 0, η ◦ ϕ = 0 and ϕ has rank 2n. If ḡ is a Riemannian metric on M̄ such that
ḡ(ϕX̃, ϕỸ ) = ḡ(X̃, Ỹ )− η(X̃)η(Ỹ ) for all vector fields X̃ and Ỹ on M̄ , then (ϕ, ξ, η, ḡ) is
said to be an almost-contact-metric structure on M̄ . In this case, ḡ(X̃, ξ) = η(X̃). The
2-form Φ on M defined by Φ(X̃, Ỹ ) = ḡ(X̃, ϕỸ ) is called the fundamental 2-form of the
almost-contact-metric structure (ϕ, ξ, η, ḡ). If dη(X̃, Ỹ ) = X̃η(Ỹ )− Ỹ η(X̃)−η([X̃, Ỹ ]) =
2Φ(X̃Ỹ ), then (φ, ξ, η, ḡ) is called a contact metric (or contact Riemannian) structure;
in particular, η ∧ (dη)n �= 0, that is, η is a contact form on M̄ . If

(DX̃ϕ)Ỹ = ḡ(X̃, Ỹ )ξ − η(Ỹ )X̃, (2.6)

where D is the Levi-Cività connection of ḡ, then (ϕ, ξ, η, ḡ) is called a Sasakian structure,
and the manifold M̄ with such a structure is a Sasakian manifold. Sasakian manifolds
can also be characterized as normal contact metric manifolds and they are in some sense
odd-dimensional analogues of Kähler manifolds [3,4].

If (ϕ, ξ, η, ḡ) is an almost-contact-metric structure on M̄ and (M̄ = Ḡ/H, ḡ) is a homo-
geneous Riemannian manifold such that ϕ is invariant under the action of the connected
Lie group Ḡ (and hence so are ξ and η), then (M̄, ϕ, ξ, η, ḡ) is called a homogeneous
almost-contact Riemannian manifold [8,15,21]. Let R̄ be the curvature tensor field of
the Levi-Cività connection D of ḡ. Let S be a homogeneous Riemannian structure on
M̄ , that is D̃ḡ = 0, D̃R̄ = 0 and D̃S = 0, where D̃ = D − S. If S satisfies the additional
condition D̃ϕ = 0 (and hence D̃ξ = 0 and D̃η = 0), then S is called a homogeneous
almost-contact-metric structure on (M̄, ϕ, ξ, η, ḡ). From the results of Kiric̆enko [18] on
homogeneous Riemannian spaces with invariant tensor structure, we have the following.
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Theorem 2.4. A connected, simply connected and complete almost-contact-metric
manifold (M̄, ϕ, ξ, η, ḡ) is a homogeneous almost-contact Riemannian manifold if and
only if there exists a homogeneous almost-contact-metric structure on M̄ .

A homogeneous almost-contact-metric structure on a Sasakian manifold will also be
called a homogeneous Sasakian structure.

2.4. Principal 1-bundles over almost-Hermitian manifolds

Let (M, g, J) be an almost-Hermitian manifold and let M̄ be the bundle space of
a principal 1-bundle over M . Let η be a connection (form) on the principal bundle
π : M̄ → M , and let ξ be the fundamental vector field on M̄ defined by the element 1 of
the Lie algebra R of the structure group of the bundle. Then η(ξ) = 1. For each vector
field X on M , we denote by XH the horizontal lift of X with respect to η. If X̄ is a
vector field on M̄ , its vertical part is η(X̄)ξ. Then, for any vector fields X and Y on M ,
we have

[XH, Y H] = [X, Y ]H + η([XH, Y H])ξ.

Moreover, [XH, ξ] = 0, because XH is invariant under the action of the structural group.
We define a tensor field ϕ of type (1, 1) and a Riemannian metric ḡ on M̄ by

ϕXH = (JX)H, ϕξ = 0, ḡ = π∗g + η ⊗ η, (2.7)

where X and Y are vector fields on M . Clearly, (ϕ, ξ, η, ḡ) is an almost-contact-metric
structure on M̄ , and we have ḡ(XH, Y H) = g(X, Y ) ◦ π and ḡ(XH, ξ) = 0. Let Φ be its
2-fundamental form. If Ω is the fundamental 2-form of the almost-Hermitian manifold
(M, g, J), then π∗Ω = Φ.

If ∇ and D are the Levi-Cività connections of g and ḡ, respectively, then [24]

DXHY H = (∇XY )H + 1
2η([XH, Y H])ξ = (∇XY )H − 1

2dη(XH, Y H)ξ,

and DXHξ = DξX
H = −ϕXH. Now, if 2Φ = dη, Equation (2.6) is satisfied, as one can

easily see by replacing (X̃, Ỹ ) by (XH, Y H), (XH, ξ) and (ξ, Y H), respectively. Then, if
the almost-contact-metric structure (ϕ, ξ, η, ḡ) is a contact structure, it is also Sasakian.

Suppose now that the structural group of the principal 1-bundle π : M̄ → M is R

and that the base manifold is a 2n-dimensional connected Hermitian symmetric space of
non-compact type (M = G/K, g, J), so that M is isometric to the solvable Lie group AN

as in § 2.2. Then M is holomorphically diffeomorphic to a bounded symmetric domain,
i.e. to a simply connected open subset of C

n such that each point is an isolated fixed point
of an involutive holomorphic diffeomorphism of itself [16, Chapter VIII, Theorem 7.1].
Since π : M̄ → M is a principal line bundle over the paracompact manifold M , it
admits a global section [19, Chapter I, Theorem 5.7], so there exists a diffeomorphism
M̄ → M × R, and the bundle space M̄ may be identified with AN × R, with π being
the projection on AN . On the other hand, since the fundamental 2-form Ω associated to
the Kähler structure (g, J) is closed, Ω = dζ for some real analytic 1-form ζ on AN . We
consider the connection form η = 2π∗ζ + dt on M̄ , where t is the coordinate of R. The
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vertical vector field ξ with η(ξ) = 1 can be identified with d/dt, and we consider ϕ and
ḡ given by (2.7). Then 2Φ = 2π∗Ω = 2π∗dζ = dη, and hence (ϕ, ξ, η, ḡ) is a Sasakian
structure on M̄ .

If S̄ is a homogeneous almost-contact-metric structure on M̄ , and D̃ = D − S̄, then
D̃ξ = 0, and hence S̄XHξ = DXHξ = −ϕXH. We have the following proposition.

Proposition 2.5. Let (M = G/K, g, J) be a connected Hermitian symmetric space of
non-compact type. Let π : M̄ → M be a principal line bundle with connection form η such
that the almost-contact-metric structure (ϕ, ξ, η, ḡ) on M̄ defined by (2.7) is Sasakian.

(a) If S is a homogeneous Kähler structure on M , then the tensor field S̄ on M̄ defined
by

S̄XHY H = (SXY )H − ḡ(XH, ϕY H)ξ, S̄XHξ = −ϕXH = S̄ξX
H, S̄ξξ = 0,

for all vector fields X and Y on M , is a homogeneous Sasakian structure on M̄ .

(b) {St : t ∈ R}, defined by

St
XHY H = −ḡ(XH, ϕY H)ξ, St

XHξ = −ϕXH,

St
ξX

H = −tϕXH, St
ξξ = 0,

is a family of homogeneous Sasakian structures on M̄ .

Proof. (a) If D̃ = D − S̄, then since S̄XHY HZH = ḡ((SXY )H, ZH) = g(SXY, Z) ◦
π = −g(Y, SXZ) ◦ π = −ḡ(Y H, (SXZ)H) = −S̄XHZHY H and S̄XHY Hξ = −S̄XHξY H , the
condition D̃ḡ = 0 is satisfied. On the other hand, if ∇̃ = ∇ − S, we have

D̃XHY H = (∇̃XY )H, D̃XHξ = D̃ξX
H = 0. (2.8)

We can identify M = G/K with the solvable Lie group AN in an Iwasawa decomposition
G = KAN and consider the Lie algebra a + n of AN . If Ũ , Ṽ , X̃, Ỹ , Z̃ are horizontal
lifts of elements of a + n or some of them are the vertical vector field ξ, then

(D̃Ũ R̄)X̃Ỹ Z̃Ṽ = −R̄X̃Ỹ Z̃D̃Ũ Ṽ + R̄X̃Ỹ Ṽ D̃Ũ Z̃ − R̄Z̃Ṽ X̃D̃Ũ Ỹ + R̄Z̃Ṽ Ỹ D̃Ũ X̃ , (2.9)

since Ũ(R̄X̃Ỹ Z̃Ṽ ) = 0. Now, if X, Y, Z, V ∈ a + n, then

R̄XHY HZHV H = (RXY ZV − 2g(X, JY )g(Z, JV )

+ g(X, JV )g(Y, JZ) − g(X, JZ)g(Y, JV )) ◦ π,

R̄XHY HZHξ = −ḡ([X, Y ]H, ϕZH)

+ ḡ((∇XZ)H, ϕY H) − ḡ((∇Y Z)H, ϕXH),

R̄XHξZHξ = ḡ(DXHξ, DZHξ).

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(2.10)

By using (2.8) and (2.10), together with the conditions ∇̃R = 0 and ∇̃J = 0 for the
homogeneous Kähler structure S on M , and the formula

R̄X̃Ỹ ξ = η(X̃)Ỹ − η(Ỹ )X̃
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for the Sasakian manifold (M̄, ϕ, ξ, η, ḡ) [4, Proposition 7.3], one obtains from (2.9) that
D̃R̄ = 0. Now,

(D̃UH S̄)XHY H = ((∇̃US)XY )H, (D̃UH S̄)XHξ = −((∇̃UJ)X)H and D̃ξS = 0;

thus D̃S = 0. Moreover, (D̃XHϕ)Y H = ((∇̃XJ)Y )H and (D̃XHϕ)ξ = 0. Then D̃ϕ = 0,
and S̄ is a homogeneous Sasakian structure on M̄ .

(b) If t = 1, the corresponding tensor S1 coincides with S̄ in (a) for S = 0. For
arbitrary t, if D̃t = D − St we have D̃t

ξX
H = (t − 1)(JX)H, and we get D̃tḡ = 0, D̃tR̄ =

0, D̃tS̄t = 0, D̃tϕ = 0. �

3. The complex hyperbolic space CH(n)

3.1. CH(n) as a solvable Lie group

The complex hyperbolic space CH(n), which may be identified with the unit ball in C
n

endowed with the hyperbolic metric of constant holomorphic sectional curvature −4,
may also be viewed as the irreducible Hermitian symmetric space of non-compact type
SU(n, 1)/ S(U(n) × U(1)).

The Lie algebra su(n, 1) of SU(n, 1) can be described as the subalgebra of sl(n + 1, C)
of all matrices of the form

X =

(
Z PT

P̄ ic

)
, (3.1)

where Z ∈ u(n), c ∈ R and P = (p1, . . . , pn) ∈ C
n. The involution τ of su(n, 1) given by

τ(X) = −X̄T defines the Cartan decomposition su(n, 1) = k + p, where

k =

{(
Z 0
0 ic

)
: trZ + ic = 0

}
∼= s(u(n) ⊕ u(1)), p =

{(
0 PT

P̄ 0

)}
.

The element A0 of p defined by P = (0, . . . , 0, 1) generates a maximal R-diagonalizable
subalgebra a of su(n, 1). Let f0 be the linear functional on a given by f0(A0) = 1. If
n > 1, the set of roots of (su(n, 1), a) is Σ = {±f0,±2f0}, the set Π = {f0} is a system
of simple roots and the corresponding positive root system is Σ+ = {f0, 2f0}. If n = 1,
then Σ = {±2f0} and Π = Σ+ = {2f0}.

Let Eij be the matrix in gl(n, C) such that the entry at the ith row and the jth column
is 1 and the other entries are all 0. The root vector spaces are

gf0
= 〈Zj , Z

′
j : 1 � j � n − 1〉 (if n > 1), g2f0

= 〈U〉,
g−f0

= 〈Wj , W
′
j : 1 � j � n − 1〉 (if n > 1), g−2f0

= 〈V 〉,
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where

Zj = Ejn − Ej,n+1 − Enj − En+1,j ,

Z ′
j = i(Ejn − Ej,n+1 + Enj + En+1,j),

Wj = Ejn + Ej,n+1 − Enj + En+1,j ,

W ′
j = i(Ejn + Ej,n+1 + Enj − En+1,j),

U = i(Enn − En,n+1 + En+1,n − En+1,n+1),

V = i(Enn + En,n+1 − En+1,n − En+1,n+1).

If n > 2, the centralizer of a in k is Zk(a) = 〈Cr, Fjk, Hjk : r, j, k = 1, . . . , n − 1, j < k〉 ∼=
u(n − 1), where

Cr = 2iErr − iEnn − iEn+1,n+1, Fjk = Ejk − Ekj , Hjk = i(Ejk + Ekj)

and su(n, 1) = (Zk(a)+a)+
∑

f∈Σ gf is the restricted-root space decomposition. We also
have the Iwasawa decomposition su(n, 1) = k + a + n, where n = gf0

+ g2f0
= 〈U, Zj , Z

′
j :

1 � j � n − 1〉.
If n = 2, we set C = C1 = diag(2i,−i,−i), Z = Z1, Z ′ = Z ′

1, and in this case C

generates Zk(a), and a + n = 〈A0, U, Z, Z ′〉. If n = 1, Zk(a) = 0, we have the restricted-
root space decomposition su(1, 1) = a + (g2f0

+ g−2f0
) = 〈A0〉 + 〈U, V 〉, and the solvable

part in the Iwasawa decomposition is a + n = 〈A0, U〉.
By using the Cartan decomposition su(n, 1) = k + p, we express each element X ∈

su(n, 1) as the sum X = Xk + Xp (Xk ∈ k, Xp ∈ p). In particular, we have

Uk = i(Enn − En+1,n+1), Up = i(En+1,n − En,n+1),

(Zj)k = Ejn − Enj , (Zj)p = −(En+1,j + Ej,n+1),

(Z ′
j)k = i(Ejn + Enj), (Z ′

j)p = i(En+1,j − Ej,n+1).

From the basis {A0, U, Zj , Z
′
j : 1 � j � n−1} of a + n and the generators of Zk(a) above,

we get the basis {Cr, Fjk, Hjk, Uk, (Zr)k, (Z ′
r)k : r, j, k = 1, . . . , n − 1, j < k} of k, and

the basis {A0, Up, (Zj)p, (Z ′
j)p : 1 � j � n − 1} of p. Notice that if n = 1, k = 〈Uk〉

and p = 〈A0, Up〉, and if n = 2, we have k = 〈C, Uk, Zk, Z
′
k〉 and p = 〈A, Up, Zp, Z

′
p〉. We

also decompose k = k
′ + c, where k

′ = [k, k] = 〈Cr − Uk, Fjk, Hjk, (Zr)k, (Z ′
r)k : r, j, k =

1, . . . , n − 1, j < k〉 ∼= su(n), and c is the centre of k, which is generated by the element

EJ =
1

2n + 1
(C1 + · · · + Cn−1 + (n + 1)Uk)

such that adEJ
: p → p defines the complex structure on CH(n). By the isomorphisms

p ∼= su(n, 1)/ k ∼= a + n, we obtain the complex structure J acting on a + n as follows:

JA0 = −U, JU = A0, JZr = Z ′
r, JZ ′

r = −Zr. (3.2)

We consider the scalar product 〈· , ·〉 on a + n defined by the isomorphism a + n ∼= p and

1
4(n + 1)

B

∣∣∣∣
p × p

.
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Then (a + n, 〈· , ·〉, J) is a Hermitian vector space, and the basis {A0, U, Zr, Z
′
r : 1 � r �

n − 1} of a + n is orthonormal. We consider the solvable factor AN (with Lie algebra
a + n) of the Iwasawa decomposition of SU(n, 1) with the invariant metric g and almost-
complex structure J defined by 〈· , ·〉 and J , respectively.

The Lie brackets of the elements of the basis of a + n are given by

[A0, U ] = 2U, [A0, Zj ] = Zj , [A0, Z
′
j ] = Z ′

j , [Zj , Z
′
r] = −δjr2U,

[U, Zj ] = [U, Z ′
j ] = [Zj , Zr] = [Z ′

j , Z
′
r] = 0.

The Levi-Cività connection ∇ is given by 2g(∇XY, Z) = g([X, Y ], Z) − g([Y, Z], X) +
g([Z, X], Y ) for all X, Y, Z ∈ a + n. So, the covariant derivatives between generators of
a + n are given by

∇A0A0 = ∇A0U = ∇A0Zr = ∇A0Z
′
r = 0,

∇UA0 = −2U, ∇UU = 2A0, ∇UZr = Z ′
r, ∇UZ ′

r = −Zr,

∇Zj A0 = −Zj , ∇Zj U = Z ′
j , ∇Zj Zr = δjrA0, ∇Zj Z

′
r = −δjrU,

∇Z′
j
A0 = −Z ′

j , ∇Z′
j
U = −Zj , ∇Z′

j
Zr = δjrU, ∇Z′

j
Z ′

r = δjrA0.

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (3.3)

The components of the curvature tensor field R are given by

RA0UA0 = −4U, RA0UU = 4A0, RA0UZr = 2Z ′
r, RA0UZ ′

r = −2Zr,

RA0Zj
A0 = −Zj , RA0Zj

U = Z ′
j , RA0Zj

Zr = δjrA0, RA0Zj
Z ′

r = −δjrU,

RA0Z′
j
A0 = −Z ′

j , RA0Z′
j
U = −Zj , RA0Z′

j
Zr = δjrU, RA0Z′

j
Z ′

r = δjrA0,

RUZj A0 = −Z ′
j , RUZj A0 = −Zj , RUZj Zr = δjrU, RUZj Z

′
r = δjrA0,

RUZ′
j
A0 = Zj , RUZ′

j
U = −Z ′

j , RUZ′
j
Zr = −δjrA0, RUZ′

j
Z ′

r = δjrU,

RZkZj
A0 = RZkZj

U = 0, RZjZ′
r
A0 = 2δjrU, RZjZ′

r
U = −2δjrA0,

RZkZj Zr = δjrZk − δkrZj , RZkZj
Z ′

r = δjrZ
′
k − δkrZ

′
j , RZ′

kZ′
j

= RZkZj ,

RZjZ′
j
Zr = −2(1 + δjrZ

′
r), RZjZ′

j
Z ′

r = 2(1 + δjr)Zr,

and

RZkZ′
j
Zr = −δjrZ

′
k − δkrZ

′
j , RZkZ′

j
Zr = δjrZk − δkrZj , where k �= j.

In particular, we see that the invariant metric on AN has constant holomorphic sectional
curvature −4.

3.2. Homogeneous Kähler structures on CH(n) ≡ AN

We will determine the homogeneous Kähler structures on CH(n) ≡ AN in terms of
the basis of left-invariant forms α, β, γj , γ′j , 1 � j � n − 1, dual to A0, U , Zj , Z ′

j . If
S is a homogeneous Riemannian structure on AN and ∇̃ = ∇−S, the condition ∇̃g = 0

https://doi.org/10.1017/S0013091508001004 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091508001004


404 P. M. Gadea and J. A. Oubiña

in (2.1) is equivalent to SXY Z + SXZY = 0 for all X, Y, Z ∈ a + n. Moreover, ∇̃R = 0 is
equivalent to the condition

(∇XR)Y1Y2Y3Y4 = −RSXY1Y2Y3Y4 − RY1SXY2Y3Y4 − RY1Y2SXY3Y4 − RY1Y2Y3SXY4

for all Y1, Y1, Y3, Y4 ∈ a + n. Replacing (Y1, Y2, Y3, Y4) by (A0, U, A0, Zj), (A0, U, A0, Z
′
j),

(A0, U, Zk, Zj) and (A0, U, Zk, Z ′
j), one obtains that SXUZj

= SXA0Z′
j
, SXUZ′

j
=

−SXA0Zj , SXZkZ′
j

= −SXZ′
kZj

and SXZkZj = SXZ′
kZ′

j
, respectively. It is easy to see

that the condition ∇̃R = 0 holds if and only if the last four equations are satisfied for
all X ∈ a + n. These equations also show (see (3.2)) that the condition S · J = 0 of
homogeneous Kähler structures (see Proposition 2.2) is fulfilled. We set

ω(X) = SXA0U , σj(X) = SXA0Zj = −SXUZ′
j
, τ j(X) = SXA0Z′

j
= SXUZj , (3.4)

θkj(X) = SXZkZ′
j

= SXZjZ′
k
, ψkj(X) = SXZkZj

= SXZ′
kZ′

j
. (3.5)

We have θkj = θjk and ψkj = −ψjk. Now, we must determine the conditions for the
1-forms ω, σj , τ j , θkj and σkj under which the condition ∇̃S = 0 in (2.1) is satisfied.

By (3.3)–(3.5), the connection ∇̃ = ∇ − S is given by

∇̃XA0 = −(2β + ω)(X)U −
∑

j

(γj + σj)(X)Zj −
∑

j

(γ′j + τ j)(X)Z ′
j ,

∇̃XU = (2β + ω)(X)A0 −
∑

j

(γ′j + τ j)(X)Zj +
∑

j

(γj + σj)(X)Z ′
j ,

∇̃XZj = (γj + σj)(X)A0 + (γ′j + τ j)(X)U + (β − θj)(X)Z ′
j

+
∑
k �=j

(ψkj(X)Zk − θkj(X)Z ′
k),

∇̃XZ ′
j = (γ′j + τ j)(X)A0 − (γj + σj)(X)U + (θj − β)(X)Zj

+
∑
k �=j

(θkj(X)Zk − ψkj(X)Z ′
k).

Now, replacing (V1, V2) in the equation (∇̃XS)(W, V1, V2) = 0 by (A0, U), (A0, Zj),
(A0, Z

′
j), (Zk, Zj) and (Zk, Z ′

j), respectively, we obtain that the condition ∇̃S = 0 is
equivalent to the following conditions:

∇̃ω = 2
∑

j

((γj + σj) ⊗ τ j − (γ′j + τ j) ⊗ σj),

∇̃σj = −(β + ω + θj) ⊗ τ j + (γ′j + τ j) ⊗ (ω + θj)

+
∑
k �=j

(ψkj ⊗ σk − θkj ⊗ τk + (γ′k + τk) ⊗ θkj − (γk + σk) ⊗ ψkj),

∇̃τ j = (β + ω + θj) ⊗ σj − (γj + σj) ⊗ (ω + θj)

+
∑
k �=j

(θkj ⊗ σk + ψkj ⊗ τk − (γk + σk) ⊗ θkj − (γ′k + τk) ⊗ ψkj),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.6)
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∇̃θkj = (γj + σj) ⊗ τk + (γk + τk) ⊗ τ j − (γ′j + τ j) ⊗ σk − (γ′k + τk) ⊗ σj

+
∑

l

ψlk ∧ θjl +
∑

l

θlk ∧ ψjl,

∇̃ψkj = (γk + σk) ⊗ σj − (γj + σj) ⊗ σk − (γ′k + τk) ⊗ τ j − (γ′j + τ j) ⊗ τk

+
∑

l

θlk ∧ θjl −
∑

l

ψlk ∧ ψjl,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(3.6 cont.)

where θj = θjj . Thus, from (3.4) and (3.5), we have the following.

Theorem 3.1. All the homogeneous Kähler structures on CH(n) ≡ AN are given by

S = ω ⊗ (α ∧ β)

+
n−1∑
j=1

(σj ⊗ (α ∧ γj − β ∧ γ′j) + τ j ⊗ (α ∧ γ′j + β ∧ γj) + θjj ⊗ (γj ∧ γ′j))

+
∑

1�k<j�n−1

(ψkj ⊗ (γk ∧ γj + γ′k ∧ γ′j) + θkj ⊗ (γk ∧ γ′j + γj ∧ γ′k)),

where ω, σj , τ j , θkj , ψkj (1 � k, j � n − 1), are 1-forms on AN satisfying θjk = θkj ,
ψjk = −ψkj and Equations (3.6).

If n = 2, we set γ = γ1, γ′ = γ′1, so that {α, β, γ, γ′} is the basis of left-invariant forms
on AN = CH(2) dual to {A0, U, Z, Z ′}, and we have the following.

Corollary 3.2. All the homogeneous Kähler structures on the complex hyperbolic
plane CH(2) ≡ AN are given by

S = ω ⊗ (α ∧ β) + σ ⊗ (α ∧ γ − β ∧ γ′) + τ ⊗ (α ∧ γ′ + β ∧ γ) + θ ⊗ (γ ∧ γ′),

where ω, σ, τ and θ are 1-forms on AN satisfying

∇̃ω = 2(γ + σ) ⊗ τ − 2(γ′ + τ) ⊗ σ = ∇̃θ,

∇̃σ = −(β + ω + θ) ⊗ γ + (γ′ + τ) ⊗ (ω + θ),

∇̃τ = (β + ω + θ) ⊗ σ − (γ + σ) ⊗ (ω + θ).

If n = 1, {α, β} is the basis of 1-invariant forms on the two-dimensional solvable Lie
group AN = CH(1) dual to the basis {A0, U} of a + n, and we have the following.

Corollary 3.3. All the homogeneous Kähler structures on the complex hyperbolic
line (or real hyperbolic plane) CH(1) ≡ AN are given by S = ω ⊗ (α ∧ β), where ω is a
1-form on AN satisfying ∇̃ω = 0.

Remark 3.4. If S = ω ⊗ (α ∧ β) is a homogeneous Kähler structure on CH(1), and
ω = λα + µβ, where λ and µ are functions on CH(1), the condition ∇̃ω = 0 together
with the structure equation [A0, U ] = 2U gives λ = µ = 0 or λ2 + µ2 = 4, and we
have that there are infinite homogeneous Kähler structures on CH(1). However, up to
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isomorphism [28, Theorem 4.4], there are only two homogeneous structures on the real
hyperbolic plane: one of them is S = 0 (λ = µ = 0), and the other, which is given by
SXY = g(X, Y )ξ0 − g(ξ0, Y )X, with ξ0 = 2A0 (for X, Y ∈ a + n = 〈A0, U〉), corresponds
to S = ω ⊗ (α ∧ β), with ω = −2β (λ = 0, µ = −2).

Remark 3.5. For each n > 0, S = 0 is a homogeneous Kähler structure on
CH(n) ≡ AN ; the corresponding canonical connection is ∇̃ = ∇, its holonomy alge-
bra is k ∼= s(u(n) ⊕ u(1)), the associated reductive decomposition is the Cartan decom-
position su(n, 1) = k + p and it gives the description of CH(n) as symmetric space
CH(n) = SU(n, 1)/ S(U(n) × U(1)).

Now, our purpose is to obtain non-trivial homogeneous Kähler structures on CH(n),
n � 2, their associated reductive decompositions, and the corresponding descriptions as
homogeneous Kähler spaces.

We will seek for solutions for which σj = −γj , τ j = −γ′j . In this case, we have

∇̃γj = (β − θj) ⊗ γ′j +
∑
k �=j

(ψkj ⊗ γk − θkj ⊗ γ′k),

∇̃γ′j = (θj − β) ⊗ γj +
∑
k �=j

(θkj ⊗ γk + ψkj ⊗ γ′k).

(Obviously, the last summands on the right hand-side in each of the two equations above
do not appear if n = 2.) By the second and third equations in (3.6), we must have
ω = −2β, which also satisfies the first equation in (3.6), because

∇̃β = (2β + ω) ⊗ α −
∑

j

(γ′j + τ j) ⊗ γj +
∑

j

(γj + σj) ⊗ γ′j = 0.

If n = 2, by Corollary 3.2, we have only to determine θ such that ∇̃θ = 0. If we set
θ = aα+bβ +cγ +c′γ′, by also using the structure equations of a + n = 〈A0, U, Z, Z ′〉, we
obtain that c = c′ = 0 and a and b are constant. For n > 2 we set θj = θjj = ajα + bjβ,
θkj = ckjα, ψkj = pkjα, k �= j, with aj , bj , ckj , pkj ∈ R. Then, if σj = −γj , τ j = −γ′j

and ω = −2β, Equations (3.6) are satisfied if and only if one has

pkj(bk − bj) = ckj(bk − bj) = 0.

Consequently, we get the following.

Proposition 3.6. For n > 2, the space CH(n) admits the multi-parametric family
of homogeneous Kähler structures S = Saj ,bj ,ckj ,pkj given in terms of the generators of
a + n by Table 1.

The complex hyperbolic plane CH(2) admits the two-parametric family of homoge-
neous Kähler structures S = Sa,b given in terms of the generators of a + n by Table 2.
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Table 1. Homogeneous Kähler structure S = Saj ,bj ,ckj ,pkj .

A0 U Zj Z′
j

SA0 0 0 ajZ
′
j +

∑
l�=j

(pjlZl + cjlZ
′
l) −ajZj +

∑
l�=j

(pjlZ
′
l − cjlZl)

SU −2U 2A0 bjZ
′
j −bjZj

SZk −Zk Z′
k δkjA0 −δkjU

SZ′
k

−Z′
k −Zk δkjU δkjA0

Table 2. Homogeneous Kähler structure S = Sa,b.

A0 U Z Z′

SA0 0 0 aZ′ −aZ

SU −2U 2A0 bZ′ −bZ

SZ −Z Z′ A0 −U

SZ′ −Z′ −Z U A0

If S = Saj ,bj ,ckj ,pkj , with respect to the basis {A0, U, Zj , Z
′
j} of a + n, the connection

∇̃ = ∇ − S is given by

∇̃A0Zj = −ajZ
′
j −

∑
l �=j

(pjlZl + cjlZ
′
l), ∇̃UZj = (1 − bj)Z ′

j ,

∇̃A0Z
′
j = ajZj −

∑
l �=j

(pjlZ
′
l − cjlZl), ∇̃UZ ′

j = (bj − 1)Zj ,

with the rest vanishing. Hence, the components of the curvature tensor field are

R̃A0U = −R̃ZkZ′
k

= 2
∑

j

(1 − bj)(Z ′
j ⊗ γj − Zj ⊗ γ′j),

and the rest are zero.
If bj = 1 for all j = 1, . . . , n−1, the holonomy algebra of ∇̃ is trivial and the reductive

decompositions associated to the homogeneous Kähler structures given in Proposition 3.6
are given by g̃

aj ,ckj ,pkj = {0} + (a + n). From (2.3), the non-vanishing brackets are given
by

[A0, Zj ] = Zj + ajZ
′
j +

∑
l �=j

(pjlZl + cjlZ
′
l), [A0, U ] = 2U,

[A0, Z
′
j ] = −ajZj + Z ′

j +
∑
l �=j

(pjlZ
′
l + cjlZl), [Zj , Z

′
j ] = −2U.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (3.7)

On the other hand, the element

Â0 = λ1C1 + · · · + λn−1Cn−1 +
∑
j<l

(cjlHjl − pjlFjl) + A0
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of su(n, 1) generates a subspace eλj ,ckj ,pkj of Zk(a) + a, and the structure equations of
the Lie subalgebra eλj ,ckj ,pkj + n of su(n, 1) are

[Â0, Zj ] = Zj +
(

3λj +
∑
l �=j

λl

)
Z ′

j +
∑
l �=j

(pjlZl + cjlZ
′
l), [Â0, U ] = 2U,

[Â0, Z
′
j ] = −

(
3λj +

∑
l �=j

λl

)
Zj + Z ′

j +
∑
l �=j

(pjlZ
′
l + cjlZl), [Zj , Z

′
j ] = −2U,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (3.8)

with the rest vanishing. From (3.7) and (3.8), it follows that g̃
aj ,ckj ,pkj is isomorphic to

eλj ,ckj ,pkj + n.
Now, for the structure S = Saj ,bj ,ckj ,pkj in Table 1, suppose that bj �= 1 for some

j = 1, . . . , n − 1. Then,

ρ = R̃A0U = −R̃ZkZ′
k

= 2
∑

j

(1 − bj)(Z ′
j ⊗ γj − Zj ⊗ γ′j)

generates the holonomy algebra h̃
aj ,bj ,ckj ,pkj of ∇̃ = ∇ − S, and the reductive decompo-

sition associated to S is

g̃
aj ,bj ,ckj ,pkj = h̃

aj ,bj ,ckj ,pkj + (a + n) = 〈ρ, A0, U, Zj , Z
′
j〉.

From (2.3), the structure equations are given by

[ρ, A0] = [ρ, U ] = 0, [ρ, Zj ] = 2(1 − bj)Z ′
j , [ρ, Z ′

j ] = 2(bj − 1)Zj ,

[A0, U ] = ρ + 2U, [A0, Zj ] = Zj + ajZ
′
j +

∑
l �=j

(pjlZl + cjlZ
′
l),

[A0, Z
′
j ] = −ajZj + Z ′

j +
∑
l �=j

(pjlZ
′
l + cjlZl),

[U, Zj ] = (bj − 1)Z ′
j , [U, Z ′

j ] = (1 − bj)Zj , [Zk, Z ′
j ] = −δkj(ρ + 2U).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(3.9)

If u ∼= u(1) is the subspace of Zk(a) generated by C = C1 + · · · + Cn−1, it is easy to see
that the Lie algebra g̃

aj ,bj ,ckj ,pkj is isomorphic to the Lie subalgebra

u + e
λj ,ckj ,pkj + n = 〈C, Â0, U, Zj , Z

′
j〉

of su(n, 1). We deduce the following.

Theorem 3.7. Let S = Saj ,bj ,ckj ,pkj be the homogeneous Kähler structure on CH(n),
n > 2, given by Table 1, and let eλj ,ckj ,pkj be the subspace of Zk(a) + a generated by

Â0 =
∑

j

λjCj +
∑

1�j<l�n−1

(cjlHjl − pjlFjl) + A0

(
λj =

naj −
∑

l �=j al

2n + 2

)
,

and u = 〈C1 + · · · + Cn−1〉. If bj = 1 for all j = 1, . . . , n − 1, the corresponding
group of isometries is the connected subgroup Eλj ,ckj ,pkj N of SU(n, 1) whose lie alge-
bra is eλj ,ckj ,pkj + n. If bj �= 1 for some j = 1, . . . , n − 1, the corresponding group of
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Table 3. Homogeneous Sasakian structure St.

AH
0 UH ZH

j Z
′H
j ξ

St
AH

0
0 −ξ 0 0 UH

St
UH ξ 0 0 0 −AH

St
ZH

k
0 0 0 δkjξ −Z

′H
k

St

Z
′H
k

0 0 −δkjξ 0 ZH
k

St
ξ tUH −tAH −tZ

′H
j tZH

j 0

isometries is the connected subgroup U(1)Eλj ,ckj ,pkj N of SU(n, 1) whose Lie algebra is
u + eλj ,ckj ,pkj + n.

If Sa,b is the homogeneous Kähler structure on the complex hyperbolic plane CH(2)
given by Table 2, eλ = 〈Â0〉, where Â0 = λC + A0 (λ = a/3), and u = 〈C〉, then the
corresponding group of isometries is

(i) the subgroup EλN of SU(2, 1) generated by the Lie subalgebra eλ + n of su(2, 1),
if b = 1,

(ii) the subgroup U(1)EλN of SU(2, 1) generated by u + eλ + n, if b �= 1.

Remark 3.8. Each structure Saj ,bj ,ckj ,pkj , with bj = 1 for all j, is also character-
ized by the fact that ∇̃ = ∇ − Saj ,bj ,ckj ,pkj is the canonical connection for the Lie
group Eλj ,ckj ,pkj N , which is the connection for which every left-invariant vector field
on Eλj ,ckj ,pkj N is parallel. Each one of these groups acts simply transitively on CH(n)
and it provides a description of CH(n) as a homogeneous space. If all the parameters
aj , ckj , pkj are zero, then eλj ,ckj ,pkj = a, and we get the usual description as a solvable
Lie group CH(n) = AN . In this case, the corresponding homogeneous structure is given
by SXY = ∇XY for all X, Y ∈ a + n. If bj �= 1 for some j = 1, . . . , n − 1, we get the
descriptions as homogeneous space CH(n) = U(1)Eλj ,ckj ,pkj N/ U(1).

3.3. Principal line bundle over CH(n)

By (3.2), the fundamental 2-form of the Kähler structure (J, g) of CH(n) ≡ AN is
given by

Ω = α ∧ β −
n−1∑
j=1

γj ∧ γ′j = − 1
2dβ,

where {α, β, γj , γ′j : 1 � j � n − 1} is the basis of left-invariant 1-forms on AN dual to
the basis {A0, U, Zj , Z

′
j} of a + n. We consider the principal line bundle π : M̄ → CH(n),

and identify the bundle space M̄ with AN × R and π with the projection on AN . The
fundamental vector field ξ is identified with d/dt, and the 1-form η = dt − π∗β is also
regarded as a connection form on the bundle. If ϕ and ḡ are given by (2.7), then (ϕ, ξ, η, ḡ)
is a Sasakian structure on M̄ .
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By Proposition 2.5 (a), each homogeneous Kähler structure Saj ,bj ,ckj ,pkj on CH(n)
given in Theorem 3.7 defines a homogeneous Sasakian structure S̄aj ,bj ,ckj ,pkj on M̄

which gives a description of M̄ as either the connected subgroup Eλj ,ckj ,pkj N × R

of SU(n, 1) × R (if bj = 1 for all j = 1, . . . , n − 1), or as the homogeneous space
(U(1)Eλj ,ckj ,pkj N × R)/ U(1).

On the other hand, from (b) of Proposition 2.5, we get the following.

Proposition 3.9. The bundle space M̄ of the line bundle π : M̄ → CH(n) admits the
family of homogeneous Sasakian structures {St : t ∈ R} given, in terms of the horizontal
lifts of the generators of a + n and the fundamental vector field ξ, by Table 3.

Remark 3.10. For each p ∈ M̄ , if c12(St)p is the map from the tangent space Tp(M̄)
to its dual given by

c12(St)p(X̃) =
2n+1∑
i=1

SeieiX̃
,

where {ei} is an orthonormal basis of Tp(M̄), then c12(St)p vanishes for every t ∈ R.
According to Tricerri and Vanhecke’s classification of homogeneous Riemannian struc-
tures in [28], each St is of type T2 ⊕ T3. Moreover, if t = −1, we have SX̃ Ỹ + SỸ X̃ = 0.
Then S−1 is of type T3, which means that M̄ is a naturally reductive Riemannian space.
If t = 2, then each cyclic sum SX̃Ỹ Z̃SX̃Ỹ Z̃ vanishes, and hence M̄ is of type T2, which
may also be expressed by saying that M̄ is a cotorsionless manifold [13].

We will construct the reductive decomposition g̃t = h̃t + m̄ associated to each homoge-
neous Sasakian structure St, where m̄ = To(M̄), with o ∈ M̄ , is generated by Ã = (AH

0 )o,
Ũ = (UH)o, Z̃j = (ZH

j )o, Z̃ ′
j = (Z ′

j)
H
o , ξ̄ = ξo, 1 � j � n − 1, and h̃t is the holonomy

algebra of the connection D̃t = D − St. Each connection D̃t is given by Table 4.
Let R̃t be the curvature of D̃t, and let {ᾱ, β̄, γ̄j , γ̄′j , η̄} be the basis dual to the basis

{Ã, Ũ , Z̃j , Z̃
′
j , ξ̄} of m̄. The holonomy algebra h̃t of D̃t is generated by the curvature

operators ρ0, ρr, ϕr, ψr, σjk, τjk (r, j, k = 1, . . . , n − 1, j < k), given by

ρ0 = R̃t
ÃŨ

= 2(t − 3)(ᾱ ⊗ Ũ − β̄ ⊗ Ã) + 2(2 − t)
n−1∑
j=1

(γ̄j ⊗ Z̃ ′
j − γ̄′j ⊗ Z̃j),

ρr = R̃t
Z̃rZ̃′

r

= 2(2 − t)(ᾱ ⊗ Ũ − β̄ ⊗ Ã) + 2(t − 3)(γ̄r ⊗ Z̃ ′
r − γ̄′r ⊗ Z̃r)

+ 2(t − 2)
∑
j �=r

(γ̄j ⊗ Z̃ ′
j − γ̄′j ⊗ Z̃j),

ϕr = R̃t
ÃZ̃r

= −R̃t
ŨZ̃′

r
= −ᾱ ⊗ Z̃r + β̄ ⊗ Z̃ ′

r + γ̄r ⊗ Ã − γ̄′r ⊗ Ũ ,

ψr = R̃t
ŨZ̃r

= R̃t
ÃZ̃′

r
= −ᾱ ⊗ Z̃ ′

r − β̄ ⊗ Z̃r + γ̄r ⊗ Ũ + γ̄′r ⊗ Ã,

σjk = R̃t
Z̃jZ̃k

= R̃t
Z̃′

jZ̃′
k

= −γ̄j ⊗ Z̃k − γ̄′j ⊗ Z̃ ′
k + γ̄k ⊗ Z̃j + γ̄′k ⊗ Z̃ ′

j ,

τjk = R̃t
Z̃jZ̃′

k
= R̃t

Z̃kZ̃′
j

= −γ̄j ⊗ Z̃ ′
k + γ̄′j ⊗ Z̃k − γ̄k ⊗ Z̃ ′

j + γ̄′k ⊗ Z̃j .
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Table 4. Connection D̃t = D − St.

AH
0 UH ZH

j Z
′H
j ξ

D̃t
AH

0
0 0 0 0 0

D̃t
UH −2UH 2AH

0 Z
′H
j −ZH

j 0
D̃t

ZH
k

−ZH
k Z

′H
k δkjA

H
0 −δkjU

H 0

D̃t

Z
′H
k

−Z
′H
k −ZH

k δkjU
H δkjA

H
0 0

D̃t
ξ (1 − t)UH (t − 1)AH (t − 1)Z

′H
j (1 − t)ZH

j 0

(If n = 2, the operators σjk and τjk do not appear, that is, h̃t = 〈ρ0, ρ1, ϕ1, ψ1〉, and if
n = 1, then h̃t is generated by ρ0 = R̃t

ÃŨ
= 2(t − 3)(ᾱ ⊗ Ũ − β̄ ⊗ Ã).) The Lie structure

of g̃t = h̃t + m̄ is defined by Equations (2.3). If t �= (2n + 1)/n, the subalgebra h̃t is
isomorphic to the Lie algebra k = s(u(n) + u(1)) ∼= u(n) in § 3.1, via the map h : h̃t → k

given by h(ρ0) = 2Uk, h(ρr) = −(Cr + Uk), h(ϕr) = (Zr)k, h(ψr) = (Z ′
r)k, h(σjk) = Fjk,

h(τjk) = −Hjk. If we set ρ̂0 = 1
2 (ρ0 − 2ξ̄), ρ̂r = − 1

2ρ0 − ρr − ξ̄, then

ŝu(n, 1) = 〈ρ̂0, ρ̂r, ϕr, ψr, σjk, τjk, Ã, Ũ , Z̃r, Z̃
′
r : r, j, k = 1, . . . , n − 1, j < k〉

is an ideal of g̃t, and the map h extends to a Lie algebra isomorphism

h̃ : ŝu(n, 1) → su(n, 1) = k + p,

given by h̃(ρ̂0) = Uk, h̃(ρ̂r) = Cr, h̃(ϕr) = (Zr)k, h̃(ψr) = (Z ′
r)k, h̃(σjk) = Fjk, h̃(τjk) =

−Hjk, h̃(Ã) = A0, h̃(Ũ) = Up, h̃(Z̃r) = (Zr)p, h̃(Z̃ ′
r) = (Z ′

r)p. Moreover, g̃t is the
semidirect product of ŝu(n, 1) and the line generated by ξ̄ under the homomorphism

δt : 〈ξ̄〉 → Der(ŝu(n, 1)),

given by δt(ξ̄)(Ã) = (t − 1)Ũ , δt(ξ̄)(Ũ) = (1 − t)Ã, δt(ξ̄)(Z̃r) = (1 − t)Z̃ ′
r, δt(ξ̄)(Z̃ ′

r) =
(t − 1)Z̃r, and δt(ξ̄)(〈ρ̂0, ρ̂r, ϕr, ψr, σjk, τjk〉) = 0. So, we have the following.

Proposition 3.11. The reductive decomposition associated to the homogeneous
Sasakian structure St, t �= (2n + 1)/n, on the total space of the line bundle M̄ → CH(n)
is g̃t = h̃t + m̄, where h̃t

∼= s(u(n) + u(1)) ∼= u(n) ⊂ su(n, 1), and

m̄ = p +〈ξ̄〉 = 〈A0, Up, (Zr)p, (Z ′
r)p, ξ̄ : 1 � r � n − 1〉.

Moreover, g̃t is the semidirect product g̃t = 〈ξ̄〉�δt su(n, 1), where δt(ξ̄)(A0) = (t−1)Up,
δt(ξ̄)(Up) = (1 − t)A0, δt(ξ̄)((Zr)p) = (1 − t)(Z ′

r)p, δt(ξ̄)((Z ′
r)p) = (t − 1)(Zr)p, and

δt(ξ̄)(h̃t) = 0.

If n � 2 and t = (2n+1)/n, then it is easy to see that ρ0 = ρ1 + · · ·+ρn−1, and we set
ρ̃r = 1

2 (ρ0 +ρr), 1 � r � n−1. In this case, g̃(2n+1)/n = h̃(2n+1)/n + m̄ coincides with the
reductive decomposition su(n, 1) = k

′ + m′, where k
′ = [k, k] ∼= su(n), and m′ = p +〈c〉,
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c being the centre of k, which is generated by the element EJ such that adEJ
: p → p

defines the complex structure of CH(n). In fact, we have the isomorphism

f : g̃(2n+1)/n → su(n, 1)

given by f(ρ̃r) = 1
2 (Uk − Cr), f(ϕr) = (Zr)k, f(ψr) = (Z ′

r)k, f(σjk) = Fjk, f(τjk) =
−Hjk, f(Ã) = A0, f(Ũ) = Up, f(Z̃r) = (Zr)p, f(Z̃ ′

r) = (Z ′
r)p and

f(ξ̄) = −n + 1
n

EJ = − 1
2n

(C1 + · · · + Cn−1 + (n + 1)Uk)

and, in particular, f(h̃(2n+1)/n) = k
′ and f(m̄) = m′. If n = 1 and t = 3, then ρ0 = 0.

In this case, h̃3 = 0, k
′ = [k, k] = 0, c = 〈EJ〉, EJ = 1

2Uk, g̃3 = {0} + m̄ is the reductive
decomposition su(1, 1) = {0} + m′, where m̄ = 〈Ã, Ũ , ξ̄〉, m′ = 〈A0, Up, Uk〉, and f : g̃3 →
su(1, 1) such that f(Ã) = A0, f(Ũ) = Up, f(ξ̄) = −Uk. Hence, we have obtained the
following.

Proposition 3.12. The reductive decomposition associated to the homogeneous
Sasakian structure St, with t = (2n + 1)/n, on the total space of the line bundle
M̄ → CH(n) is su(n, 1) = k

′ + m′, where k
′ = [k, k] ∼= su(n) and m′ = p + c, c = 〈EJ〉

being the centre of k.

Remark 3.13. The reductive decomposition su(n, 1) = k
′ + m′ associated to the

homogeneous Sasakian structure St, with t = (2n + 1)/n, provides the description of
M̄ as the homogeneous space S̃U(n, 1)/K ′, where S̃U(n, 1) is the universal covering of
SU(n, 1), and K ′ ∼= SU(n) is the connected subgroup of S̃U(n, 1) whose Lie algebra
is k

′ ∼= su(n). (In particular, if n = 1, M̄ is the universal covering space of Sl(2, R).)
These spaces appear in the classification by Jiménez and Kowalski [17] of complete sim-
ply connected ϕ-symmetric Sasakian manifolds, and they are also Sasakian space forms
(they have constant ϕ-sectional curvature −7). Notice that for a Sasakian manifold the
condition of being a locally symmetric space is too strong, because in this case it is a
space of constant curvature [25]. For this reason, Takahashi [27] introduced ϕ-symmetric
spaces in Sasakian geometry as generalizations of Sasakian space forms. They are also
analogues of Hermitian symmetric spaces. A ϕ-symmetric space is a complete connected
regular Sasakian manifold M̄ that fibres over a Hermitian symmetric space M so that
the geodesic involutions of M lift to involutive automorphisms of the Sasakian struc-
ture on M̄ . Moreover, each complete simply connected ϕ-symmetric space is a naturally
reductive homogeneous space [5].
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