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Following the findings by Wangsawijaya et al. (J. Fluid Mech., vol. 894, 2020, A7),
we re-examine the turbulent boundary layers developing over surfaces with spanwise
heterogeneous roughness of various roughness half-wavelengths 0.32 ≤ S/δ̄ ≤ 3.63,
where S is the width of the roughness strips and δ̄ is the spanwise-averaged boundary-layer
thickness. The heterogeneous cases induce counter-rotating secondary flows, and these are
compared with the large-scale turbulent structures that occur naturally over the smooth
wall. Both appear as meandering elongated high- and low-momentum streaks in the
instantaneous flow field. Results based on the triple decomposed velocity fluctuations
suggest that the secondary flows are spanwise-locked turbulent structures, with S/δ̄
governing the strength of the turbulent structures and the efficacy of the surface in locking
the structures in place (most effective when S/δ̄ ≈ 1). In terms of unsteadiness, we find
additional evidence from conditional averages of the fluctuating velocity fields showing
that the secondary flows exhibit maximum unsteadiness (or meandering) when S/δ̄ ≈ 1.
The conditional averages of both spanwise heterogeneous and smooth-wall cases result in
structures that are reminiscent of those proposed for the streak-vortex instability model
for the inner cycle of wall-bounded turbulence. However, in this case these structures are
larger and do not necessarily share the same formation mechanism with the inner cycle.
Secondary flows and large-scale structures coexist in the limits where either S/δ̄ � 1
or S/δ̄ � 1, where the secondary flows scale on δ or S, respectively. When S/δ̄ � 1,
the secondary flows are locked about the roughness transition, while relatively unaltered
large-scale structures occur further from the transition. In the case where S/δ̄ � 1,
S-scaled secondary flows are confined close to the surface, coexisting with unaltered
larger-scale turbulent structures that penetrate much deeper into the layer.
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1. Introduction

We consider a specific case of heterogeneous roughness where the roughness varies
in the spanwise direction. Spanwise heterogeneity is imposed by alternating rough
and smooth strips to form a test surface over which a turbulent boundary layer is
developed (figure 2). This type of roughness heterogeneity induces secondary flows in
the form of counter-rotating streamwise rollers, which are apparent in the time-averaged
velocity field. An examination of the instantaneous velocity field, however, reveals the
secondary flows as elongated meandering high- and low-speed streaks, not unlike the
large-scale/very-large-scale motions (LSMs/VLSMs) that occur naturally in wall-bounded
turbulence. Throughout this study, we refer to ‘secondary flows’ as structures generated
by spanwise heterogeneity, and ‘large-scale structures’ or LSMs as those which naturally
occur in wall-bounded turbulence.

LSMs have commonly been associated with hairpin packets (Adrian, Meinhart
& Tomkins 2000; Tomkins & Adrian 2003) and δ-scaled meandering high- and
low-momentum streaks (Hutchins & Marusic 2007a,b) in the outer layer of wall-bounded
turbulent flows, where δ is either the boundary-layer thickness, channel half-height or
pipe radius. In the logarithmic region, clusters of hairpin packets agglomerate to form
VLSMs or ‘superstructures’ (Kim & Adrian 1999; Guala, Hommema & Adrian 2006;
Balakumar & Adrian 2007; Hutchins & Marusic 2007a; Dennis & Nickels 2011b;
Lee & Sung 2011; Hutchins et al. 2012; Wu, Baltzer & Adrian 2012). The imprint
of symmetrical hairpin vortex packets is evident in certain statistical analyses of these
structures. For example, two-point correlations of the fluctuating flow field exhibit an
elongated low-momentum streak flanked by high-momentum streaks in the spanwise
direction (Ganapathisubramani, Longmire & Marusic 2003; Tomkins & Adrian 2003;
Ganapathisubramani et al. 2005; Hutchins, Hambleton & Marusic 2005; Hutchins &
Marusic 2007a; Marusic, Mathis & Hutchins 2010; Dennis & Nickels 2011a). However,
Johansson, Alfredsson & Kim (1991) cautioned against this interpretation of the two-point
correlation contours. Ensemble averaging and assumptions of spanwise homogeneity,
as typically applied in the computation for smooth wall-bounded turbulence, enforce
a plane of symmetry in the resulting conditional average. Asymmetrical large-scale
structures (one-sided roll modes) have, in fact, been observed instantaneously in turbulent
boundary layers formed over smooth walls (Lozano-Durán, Flores & Jiménez 2012;
Kevin, Monty & Hutchins 2019a), heterogeneous roughness (Vanderwel et al. 2019;
Wangsawijaya et al. 2020) and converging–diverging (C–D) riblets (Kevin et al. 2017).
Elsinga et al. (2010) observed that hairpin packets are most likely comprised of arch-like
or cane-shaped structures. Similar to the near-wall cycle, an alternative model for the
formation mechanism has been suggested for coherent structures in the outer layer.
Large-scale elongated streaks with a sinuous instability and associated asymmetric
staggered quasi-streamwise vortices have been observed in the logarithmic region and
beyond (Flores & Jiménez 2010; Cossu & Hwang 2017; de Giovanetti, Sung & Hwang
2017), which are similar to, but at a much larger scale than, structures associated with
the streak-vortex instability, which was initially developed as a model for near-wall streak
formation (Jeong et al. 1997; Waleffe 2001; Schoppa & Hussain 2002).

The secondary flows are regarded as a result of production–dissipation imbalance of
turbulent kinetic energy induced by spanwise heterogeneity (Hinze 1967). For a surface
comprised of spanwise-alternating rough–smooth strips, production exceeds dissipation
above the rough strips, and vice versa for the smooth strips, resulting in counter-rotating
secondary flows, with upwelling above the smooth strips and downwelling above the
rough strips. Within the flow, these are associated with the formation of low-momentum
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pathways and high-momentum pathways (for upwelling and downwelling, respectively
(Barros & Christensen 2014; Willingham et al. 2014; Anderson et al. 2015). Previous
studies have shown that spacing/roughness strip width dictates the behaviour of the
(time-averaged) secondary flows. In general, three regimes of the flow, differently affected
by the resulting secondary flows, have been observed: where the strip width S is either
larger/much larger than δ (S/δ̄ � 1), comparable to δ (S/δ̄ ≈ 1) and smaller/much
smaller than δ (S/δ̄ � 1) (Chung, Monty & Hutchins 2018; Medjnoun, Vanderwel &
Ganapathisubramani 2018; Yang & Anderson 2018). In the regime where S/δ � 1,
domain-sized secondary flows are observed (Yang & Anderson 2018), along with the
recovery to outer layer similarity at spanwise locations far removed from the secondary
flows (Chung et al. 2018). This regime has been referred to as the ‘heterogeneity’ regime
by Yang & Anderson (2018). In the intermediate regime (S/δ ≈ 1), the flow becomes truly
‘heterogeneous’ as the secondary flows occupy the entire space provided by the boundary
layer/channel (Medjnoun et al. 2018). This regime has been referred to as ‘transitional’
by Yang & Anderson (2018) or the ‘intermediate’ regime by Chung et al. (2018) and
Wangsawijaya et al. (2020). Here, the strength of the secondary flows is most significant
compared with the other two regimes (Vanderwel & Ganapathisubramani 2015; Yang &
Anderson 2018; Medjnoun et al. 2018; Chung et al. 2018; Wangsawijaya et al. 2020), and
so is the skin friction drag (Chung et al. 2018; Medjnoun et al. 2018). Two phenomena
have been documented in the previous studies within this intermediate regime. Firstly,
the flow slows down above the smooth instead of rough strips, as opposed to the limiting
case behaviour observed for S/δ̄ � 1 (Chung et al. 2018; Xie, Chung & Hutchins 2020;
Wangsawijaya et al. 2020). Secondly, for ridges (where secondary flows are induced by
spanwise variation in the virtual origin), reversal of the secondary flow direction has also
been documented (Yang & Anderson 2018). As S decreases further (S/δ � 1), the size
of the secondary flow diminishes and these flows are constrained close to the surface,
with the flow approaching a ‘homogeneous’ roughness state away from the surface (Yang
& Anderson 2018). Here, the region close to the surface containing secondary flows is
analogous to the roughness sublayer, beyond which we would expect the flow to approach
spanwise homogeneity (Chan et al. 2018; Chung et al. 2018).

Instantaneously, the secondary flows and the naturally occurring large-scale structures
share some similarities, as both are characterised by roll modes and elongated high-
and low-momentum streaks. The LSM/VLSM exhibits a known streamwise coherence
between 3δ (Kovasznay, Kibens & Blackwelder 1970; Guala et al. 2006) up to 20δ
(Hutchins & Marusic 2007a). The secondary flow emerging from surface roughness
heterogeneity investigated here, on the other hand, has a streamwise infinite mode in the
time-averaged sense. However, there is also evidence that these secondary flows have
a time-dependent and spatially varying form (Anderson 2019; Vanderwel et al. 2019;
Wangsawijaya et al. 2020). This behaviour can be inferred from the one-dimensional
(1-D) energy spectrograms (Nugroho, Hutchins & Monty 2013; Awasthi & Anderson
2018; Medjnoun et al. 2018; Zampiron, Cameron & Nikora 2020; Wangsawijaya et al.
2020), two-point correlation maps (Kevin et al. 2017; Kevin, Monty & Hutchins 2019b;
Wangsawijaya et al. 2020), and POD (proper orthogonal decomposition) of the turbulent
fluctuation fields (Vanderwel et al. 2019). Time dependence of secondary flows has
been further demonstrated by Anderson (2019), who noted instantaneous reversal in
polarity of secondary flows for ridge-type spanwise heterogeneous surfaces. It was
suggested by Wangsawijaya et al. (2020) that this unsteadiness is a function of the
spanwise roughness wavelength Λ = 2S, where S is the width of the roughness strip.
The secondary flows strongly meander when S/δ ≈ 1, with a greater meandering
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amplitude as compared with both the LSM/VLSM of smooth-wall turbulent flows and
the secondary flows in the limiting cases where S/δ � 1 or S/δ̄ � 1.

These observed similarities and differences pose questions about the nature of the
secondary flows imposed by surface roughness in comparison with the large-scale
structures in wall-bounded turbulence. The similarities suggest that secondary flows
and large-scale structures share the same formation mechanism (a notion alluded to
by Townsend 1976, pp. 328–331). If that is the case, (i) is it possible that secondary
flows are just phase-locked large-scale structures (and, large-scale structures are just
non-phase-locked secondary flows)? Given the unsteadiness of secondary flows noted
above, especially in the case when S/δ̄ ≈ 1 and (ii) can this be explained as the natural
meandering process of the large-scale structures? In the study by Chung et al. (2018),
the isovels of the mean streamwise velocity showed that, in the limiting case scenarios
where S/δ � 1 or S/δ̄ � 1, the secondary flows are confined within certain parts of
turbulent boundary layer while other regions approach locally homogeneous conditions,
which implies the possibility of coexistence between the naturally occurring LSM/VLSM
and roughness-induced secondary flows. This has previously been suggested by Zampiron
et al. (2020) for cases where S/δ � 1, and also by Awasthi & Anderson (2018) over
spanwise ridges, who observed large-scale correlation of the fluctuating velocity, implying
the presence of VLSM, between two ridges. This leads to the final question regarding
(iii) the extent to which the secondary flows and the naturally present turbulent structures
coexist in boundary layers formed over spanwise heterogeneous roughness. In this study,
we aim to answer these three research questions regarding the interplay between secondary
flows (imposed by surface roughness) and the large-scale structures in wall-bounded
turbulence: (i) whether the secondary flows are phase-locked turbulent structures, (ii) if
this notion can explain the reported meandering behaviour of secondary flows and, finally,
(iii) if those two can coexist with each other? We conduct an analysis of the fluctuating
velocity components obtained from particle image velocimetry (PIV) measurements on
turbulent boundary layers developing over surfaces composed of streamwise-aligned,
spanwise-alternating sandpaper and cardboard strips (figure 2). The test surfaces cover
a range of spanwise wavelengths 0.32 ≤ S/δ̄ ≤ 3.63, that are of interest in the study:
S/δ̄ ≈ 1, where strong meandering has been observed, and the limits S/δ̄ � 1 and S/δ̄ �
1 (where we would expect coexistence between secondary flows and large-scale turbulent
structures). The analyses and discussions in this study will be limited to the turbulent
structures and their response to spanwise heterogeneous roughness configurations. The
experiments are limited to PIV measurements at a constant Rex ≡ xU∞/ν (U∞ is
the free-stream velocity and ν is the kinematic viscosity of air, see table 1) with no
drag measurements. Hence, the question of the Reynolds number (Re) effects on these
structures, and further, the effect of these structures on the surface drag cannot be explored
and must be left for future work.

The axis system in this study x = (x, y, z) is defined as the streamwise, spanwise
and wall-normal directions, respectively, which correspond to the instantaneous velocity
components u = (u, v,w). As illustrated in figure 1, u is triple decomposed into its
temporal, spatial average, and the fluctuations (Raupach & Shaw 1982; Finnigan 2000;
Coceal et al. 2006),

u( y, z, t) = U( y, z)+ u′( y, z, t), (1.1)

= 〈U〉Λ(z)+ Ũ( y, z)+ u′( y, z, t), (1.2)
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Spanwise heterogeneous roughness

S δ̄ U∞ Rex Reδ̄
Case (mm) (mm) S/δ̄ (m s−1) (×106) (×104) Reθ̄ zsheet/δ̄ zsheet/S

SR250-2 250 68.8 3.63 15.4 3.91 6.72 9090 0.49 0.13
SR160 160 70.0 2.28 15.3 3.91 6.84 9200 0.48 0.21
SR100 100 73.9 1.35 15.2 3.94 7.27 10150 0.46 0.34
SR50 50 80.7 0.62 15.3 3.92 7.92 10220 0.32 0.51
SR25 25 77.6 0.32 15.5 3.86 7.49 9990 0.18 0.55

Reference smooth wall

S δs U∞ Rex Reδs

Case (mm) (mm) S/δs (m s−1) (×106) (×104) Reθs zsheet/δs zsheet/S
SW-2 — 56.4 — 15.2 3.99 5.62 7320 0.46 —
SW-2 — 56.4 — 15.2 3.99 5.62 7320 0.24 —

Table 1. Summary of spanwise heterogeneous roughness cases and the reference smooth-wall cases at
x = 4 m. Here, δ̄ is the spanwise-averaged 98 % boundary-layer thickness of the surface with spanwise
heterogeneity, while δs is the 98 % boundary-layer thickness of the reference smooth-wall case; θ̄ is the
spanwise-averaged momentum thickness of the spanwise heterogeneous surfaces, while θs is the momentum
thickness of the reference smooth-wall case. Reynolds number definitions are: Rex ≡ xU∞/ν, Reδ ≡ δU∞/ν,
and Reθ ≡ θU∞/ν; zsheet is the wall-normal location of the wall-parallel PIV laser sheet, measured from the
wall.

= 〈U〉Λ(z)+ ũ′( y, z, t), (1.3)

where U (figure 1a) is the Reynolds (temporal) average, and u′ (figure 1f ) is the turbulent
fluctuations about this Reynolds average. Here, U is further decomposed into its yt-average
〈U〉Λ (figure 1d) and the spatial fluctuations about this mean Ũ (figure 1e). Since
〈V〉Λ = 〈W〉Λ = 0, Ũ = (Ũ,V,W). With this chosen decomposition method for spanwise
heterogeneous roughness, Ũ can be considered as the stationary components of the
secondary flows (or the dispersive components) and u′ are both the advecting turbulence
and the unsteadiness of the secondary flows. We also introduce the quantity ũ′ (see (1.3)),
which is defined as ũ′ ≡ Ũ + u′ (figure 1h). It should be noted that for the reference
smooth-wall case SW-2, as a result of spanwise homogeneity, Ũ = 0 and ũ′ = u′.

2. Experimental set-up

2.1. Test surfaces
The measurements are performed in an open return boundary-layer wind tunnel in the
Walter Basset Aerodynamics Laboratory at the University of Melbourne using the same
experimental set-up and test surfaces as Wangsawijaya et al. (2020). The spanwise
heterogeneous roughness (‘SR’) surfaces are constructed from spanwise-alternating strips
of P-36 grit sandpaper (‘rough’ patch) and cardboard (‘smooth’ patch) of equal width
S (figure 2), with minimal variations in surface elevation between the two. Throughout
this report, the rough patches are shaded black and the smooth strips are shaded white.
This study considers measurements over heterogeneous surfaces of various S at x = 4 m
downstream of the sandpaper trip located at the inlet of the wind tunnel test section,
covering a range of 0.32 ≤ S/δ̄ ≤ 3.63. For comparison with SR cases, measurements
are also conducted over a reference smooth-wall (‘SW’) case at the same Rex as the
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Figure 1. Triple decomposition of (a) instantaneous snapshot streamwise velocity u into (d) yt-average 〈U〉Λ,
(e) time-average spatial fluctuation Ũ and ( f ) instantaneous snapshot of turbulent fluctuation u′ for case SR50
(S/δ̄ = 0.62). In (b),Λci is the mean swirl strength multiplied by the sign of streamwise vorticityΩx/|Ωx| and
normalised by δ̄/U∞. Red dashed lines illustrate the extent of non-zero Λci, whose width is ly. (c) Shows the
variance of streamwise turbulent fluctuation u′u′. (g) Contours of time-averaged streamwise velocity U. Vectors
indicate V and W, downsampled for clarity. Solid white lines mark the three spanwise locations related to the
mean secondary flows: common flow up ( u ), centre of a mean secondary flow ( c ) and common flow down
( d ). Black and white patches indicate ‘rough’ and ‘smooth’ strips, respectively. (h) Contours of ũ′, which is
defined as ũ′ ≡ Ũ + u′.

SR cases. The reference smooth-wall case has the friction Reynolds number of δ+s ≡
δsUτ /ν ≈ 2000 (table 2), where δs is the smooth-wall boundary-layer thickness and Uτ is
the friction velocity, obtained by fitting the streamwise velocity profile U to the composite
profile of Chauhan, Monkewitz & Nagib (2009). Based on the smooth-wall value for
Uτ , this corresponds to 917 ≤ S+ ≤ 9167 for the range of spanwise heterogeneous
half-wavelengths tested in the present study, so any effects relating to viscous scaling of
spanwise heterogeneity are unlikely to manifest. The details of spanwise heterogeneous
and smooth-wall reference cases are summarised in table 1. Note that the ‘−2’ suffix in
SR250 and SW cases refer to measurements at x = 4 m, such that it is consistent with the
nomenclature in the study by Wangsawijaya et al. (2020).

2.2. Particle image velocimetry
PIV measurements are conducted over the test surfaces in two planes: stereoscopic
PIV (SPIV) in the cross-stream (y–z) plane and wall-parallel PIV (WPPIV) in the
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SPIV laser sheet

WPPIV laser sheet

Flow

Rough patch

Smooth patch

x = 4 m

x = 3.5 m

x = 0

xy

z

zsheet
2S

Figure 2. Schematic of PIV experimental set-up: stereoscopic PIV (SPIV) in y–z-plane and wall-parallel PIV
(WPPIV) in plane x–y-plane. Measurements in these planes are not conducted simultaneously.

Uτ Cf �y+ ×�z+ �x+ ×�y+
(m s−1) (×10−3) δ+s (SPIV) (WPPIV)

0.55 2.6 2030 70 × 70 60 × 60

Table 2. Summary of the reference smooth-wall case SW-2 in viscous-scaled units; δs ≡ δsUτ /ν, and the
skin friction coefficient Cf ≡ 2(Uτ /U∞)2. The last two columns show the spatial resolution of the PIV
measurements.

streamwise–spanwise (x–y) plane (figure 2). Measurements in both planes are non-time
resolved and non-simultaneous. The SPIV plane is located at x = 4 m downstream of the
trip, coinciding with the WPPIV plane which spans 3.5 ≤ x ≤ 4.01 m. SPIV images are
captured by two pco.4000 cameras in forward scatter arrangement, which gives a field of
view (FOV) of 4δs × 3δs (y × z). For WPPIV, the FOV is obtained by stitching images
from three pco.4000 cameras, resulting in a FOV of total size 9δs × 5δs (x × y). The
wall-normal location of the WPPIV laser sheet relative to the wall zsheet varies between
SR cases (see table 1), depending on whether the secondary flow sizes are governed by
δ̄ or S (see equation (3.1) in Wangsawijaya et al. 2020). For the cases where S/δ̄ ≥ 1
(SR250-2, SR160 and SR100), the sheet is located at zsheet/δ̄ ≈ 0.5, while for S/δ̄ < 1
(SR50 and SR25), the sheet is located at zsheet/S ≈ 0.5. To accommodate the variation
of zsheet, WPPIV measurements for the reference smooth-wall case SW-2 are conducted
in two x–y-planes, at zsheet/δs = 0.46 and 0.24. It should be noted that, for SR250-2 and
SR160 cases, only half of the spanwise roughness wavelength is captured in the SPIV and
WPPIV images due to the limited FOV width. The complete description of the SPIV and
WPPIV experimental set-ups are given in the appendices A and B of Wangsawijaya et al.
(2020).

3. Meandering of secondary flows

Meandering of the low-momentum pathways, the manifestation of the secondary flows in
the instantaneous flow field, can be inferred from the y–z plane by a spanwise-leaning
behaviour and asymmetry of the low-speed features. It has been observed that these
features lean sideways (in y) depending on the sign of v′, with the intermediate cases
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(S/δ̄ ≈ 1) showing the strongest leaning amplitude (Kevin et al. 2017; Vanderwel et al.
2019; Wangsawijaya et al. 2020). In the wall-parallel (x–y) plane, meandering was implied
by the two-point correlations of u′, showing a strong periodicity in x for the cases where
S/δ̄ ≈ 1 when computed at certain y locations (Kevin et al. 2019b; Wangsawijaya et al.
2020). In the current study, analysis of the WPPIV data (for the reference smooth-wall case
and spanwise heterogeneous roughness) is extended to permit further examination of this
meandering behaviour, and also the similarities (and differences) between the secondary
flows and the naturally occurring LSMs/VLSMs.

We attempt to reconstruct the meandering of large-scale structures and secondary
flows through conditional averaging of the fluctuating velocity field. Figure 3 shows the
instantaneous low-speed structures from a single representative snapshot taken from the
WPPIV measurements for the reference smooth-wall case SW-2 (figure 3a) at z/δs =
0.46 and all SR cases (figure 3b–f ) at a wall-normal location that corresponds to the
approximate centre of the roll modes associated with the mean secondary flows. Grey
coloured contours show negative fluctuations of ũ′ ≡ Ũ + u′ (total velocity with the
global yt-average subtracted), ũ′/U∞ < −0.03. To limit the analysis to long, large-scale
structures, the velocity field is filtered with a box filter of size 0.1δs × 0.1δs for SW-2
and 0.1δ̄ × 0.1δ̄ for SR cases and only structures with length ≥ 3δ̄ (≥ 3δs for SW-2) are
retained for analysis. The ‘spine’ of each detected low-speed region is constructed from
the spanwise midpoint of the structure at all streamwise locations along the length of the
detected feature (grey solid lines, light grey solid line in figure 3). This ‘spine’ is further
smoothed with a 1-D low-pass filter whose length is δ̄ (δs for SW-2), shown by the black
solid lines (black solid line) in figure 3. Conditional averaging of the turbulent fluctuation
u′ (instead of ũ′) is computed at the ‘minima’ in y of the smooth spines fitted to the detected
low-speed structures, as marked by the ‘+’ symbols in figure 3, and also at the ‘maxima’
in y (not shown in figure 3). The ‘minima’ and ‘maxima’ represent the point in the fitted
spines y(x) where dy/dx = 0. Physically, these points correspond to locations where a
fitted spine deviates furthest from the midpoint in y, where the structure either leans to
the right (+y) or left (−y), before it leans to the other direction, which are associated with
meandering of the structure.

Figure 3(d,e) also shows how the meandering of low-speed structures is clearly ‘phase
locked’ about the spanwise location of the common flow up of the mean secondary flows
(marked by dashed lines, black dashed line and u ). This is expected since ũ′ and Ũ is
phase locked. Ensemble averaging of the total velocity field, as shown in the contours of
swirl strength Λci (figure 4), reveal time-averaged large-scale secondary flows, even for
cases where S/δ̄ � 1 (figure 4a) and S/δ̄ � 1 (figure 4c). Based on the time-averaged
secondary flows depicted in figure 4, it can be assumed that the secondary flows in
the instantaneous velocity fields meander about a certain spanwise location for all S/δ̄
cases. Here, it is assumed that the secondary flows due to spanwise heterogeneity cause
low-speed streaks to meander about yu, the spanwise location of common flow up ( u
in figures 3 and 4), spanning the area shaded by red in figure 3. This area spans yu ± ly
(figure 3b), where ly is the width of the mean secondary flow roll mode, as illustrated
in figures 1(b) and 4. Under this assumption, all detected low-speed structures could
be classified as either secondary flows due to spanwise heterogeneity (red shaded area)
or LSM/VLSM over homogeneous roughness regions in the cases where S/δ̄ > 1 (blue
shaded area in figure 3b–d). In the cases where S/δ̄ < 1 (figure 3e, f ), ly = S and all
detected low-speed structures will be categorised as belonging to the secondary flows;
hence, this categorisation is somewhat flawed. It should be noted that, although the
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Figure 3. Detected low-speed structures for (a) reference case SW-2 at zsheet/δs = 0.46 and SR cases: (b)
SR250-2 (S/δ̄ = 3.63), (c) SR160 (S/δ̄ = 2.28), (d) SR100 (z/δ̄ = 0.46, S/δ̄ = 1.35), (e) SR50 (S/δ̄ = 0.62),
( f ) SR25 (S/δ̄ = 0.32), about the centre of the secondary flows. Grey coloured contours are the low-speed
structures, ũ′/U∞ < −0.03. ‘+’ marks the minima (in terms of y location) of a low-speed structure. The spines
of the detected low-speed structures are shown in solid lines (from PIV data: light grey solid line, smoothed:
black solid line). Dashed lines (black dashed line) are the spanwise locations of the common flow up of the
secondary flows (marked by u , see figure 1(g) for these locations in the y–z-plane). The low-speed structures
related to the secondary flows due to spanwise heterogeneity are assumed to occur inside the red-shaded area,
spanning 2ly about the location of common flow up, as shown in (b) and figure 4. In (b–f ), white and black
patches illustrate the arrangement of smooth and rough strips, respectively, underneath the WPPIV planes. (a)
SW2.

secondary flows fill the entire spanwise extent of the turbulent boundary layers in these
cases, larger structures whose scale is δ̄ also coexist with the secondary flows. However,
these two cannot be distinguished in cases where S/δ̄ ≤ 1 because the currently available
WPPIV snapshots in the x–y plane are obtained at a zsheet height that is centred on the roll
modes and also because the method used to separate secondary flows and LSM/VLSM is
based only on the spanwise location of the secondary flows (and not the spanwise length
scale or wall-normal extent of the detected structure). A method to discriminate secondary
flows from large-scale structures for the case where S/δ̄ � 1 based on POD filtering is
proposed in § 4.2.2. The locations of the wall-parallel slices relative to the secondary
flows and the locations of red- and blue-shaded regions in the y–z plane are illustrated
in figure 4. For all subsequent conditional averaging, features are assigned to the red or the
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Figure 4. Contours of mean swirl strength Λci in y–z-plane multiplied by the sign of vorticity Ωx/|Ωx| for
case: (a) SR250-2 (S/δ̄ = 3.63), (b) SR100 (S/δ̄ = 1.35), (a) SR25 (S/δ̄ = 0.32). Contours are normalised by
δs/U∞. Vectors indicate V and W, downsampled for clarity. u is the location of common flow up. Red (red
solid line) and blue (blue solid line) solid lines illustrate the WPPIV laser sheets (x–y-plane in figure 3) of each
case. Secondary flows are assumed to occur along the red lines, LSM/VLSM along the blue lines. Red arrows
indicate ly, the spanwise extent of the mean secondary flows.

blue regions based on which region the detected y-minimum of the low-speed structures
(which is the condition vector) resides.

Figure 5 shows the histogram of the detected low-speed streaks (identified in the manner
depicted in figure 3) for all SR cases, split into those that we crudely classified as secondary
flows (occurring within the red regions of figure 3) and LSM/VLSM (occurring within the
blue regions). The histogram counts the observed yref minima (denoted by the black +
sign in figure 3) in these two regions. The probability of the occurrence of long, low-speed
structures are distributed equally across the span of the FOV in the reference smooth-wall
case SW-2 (figure 5a). For the case SR250-2 (S/δ̄ = 3.63, red bars in figure 5b) and SR160
(S/δ̄ = 2.28, figure 5c), the low-speed structures related to the secondary flows comprise
41 % and 74 % of all structures detected across the FOV, respectively (as a reference the red
shaded regions associated with the secondary flows consist of 38 % and 53 % respectively
of the available total area in these cases). The secondary flows dominate as S/δ̄ approaches
1 (86 % of detections occur within the red regions for case SR100, which occupy 40 % of
the total area, see figure 5d), and they are also clearly ‘phase locked’ to the location of
common flow up (case SR50, figure 5e). It is also noted that as S → δ̄, the ‘locking’ of the
detected low-speed structures over the location of the common flow up (smooth strips)
implies the occurrence of persistent momentum deficits over low-momentum pathway
locations. For the smallest S/δ̄ case (case SR25, figure 5f ), the spines are more evenly
distributed across the span compared with cases SR100 and SR50 (figure 5d,e), with a
hint of some residual spanwise locking of the structures (higher probabilities over common
flow up regions).

Figure 6 shows the conditional average of filtered streamwise u′
f (figure 6a,c) and

spanwise v′
f (figure 6b,d) turbulent fluctuations for the reference smooth-wall case SW-2

at z/δs = 0.46. The subscript ‘f ’ denotes the velocity fields filtered with a box filter
of 0.1δs × 0.1δs size (0.1δ̄ × 0.1δ̄ for SR cases). Figure 6(a,b) shows u′

f conditionally
averaged at the local y minima of the spines of the detected low-speed structures as
illustrated in figure 3(a), while figure 6(c,d) is conditionally averaged at the maxima of
the detected low-speed structures (not shown in figure 3a). The contours of u′

f show a
low-speed structure flanked by two high-speed structures meandering to the left and right
depending on the reference location (minima or maxima) where the conditional average
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Figure 5. Histogram of the spanwise location of the detected minima of low-speed structures yref for (a)
reference case SW-2 at z/δs = 0.46 and SR cases (b) SR250-2 (S/δ̄ = 3.63), (c) SR160 (S/δ̄ = 2.28), (d)
SR100 (S/δ̄ = 1.35), (e) SR50 (S/δ̄ = 0.62), ( f ) SR25 (S/δ̄ = 0.32) about the centre of the secondary flows.
Red bars (�, red) indicate yref detected inside the red-shaded area in figure 3, while blue bars (�, blue) are
detected inside the blue-shaded area in the same figure. Dashed lines (black dashed line) are the spanwise
locations of the common flow up of the mean secondary flows (marked by u ).

is computed. The meandering tendency is also shown in v′
f , where the conditional average

at the minima of low-speed structures largely correspond to v′
f > 0 (figure 3b) and the

maxima to v′
f < 0 (figure 3d). Diagonal alignment of v′, similar to that observed in the

studies by Sillero, Jiménez & Moser (2014) and de Silva et al. (2018), is also apparent in
these contours.

To obtain a complete picture of how the secondary flow meanders, similar conditional
averaging is also computed in the y–z plane from SPIV measurements. Since the minima
and maxima of the spine-fitted low-speed structure cannot be observed in the y–z-plane,
a different conditional averaging approach must be taken to detect these same events.
Informed by the conditional averages shown in figure 6, we elect to use the simultaneous
detection criteria of negative ũ′ and either v′ > 0 or < 0 to approximately detect the
minima and maxima of the fitted structure spines (cases shown in figures 6a,b and
6c,d, respectively). The conditional average is computed at the common flow up ( u in
figure 1g) in y and at z/δ̄ = 0.1, as close to the wall as the FOV permits. For the reference
case SW-2, the average is computed at any point in y along z/δs = 0.1 where the conditions
are satisfied. The conditions ũ′ < 0, v′ > 0 and ũ′ < 0, v′ < 0 are each satisfied for 25 %
of the smooth-wall realisations. The velocity fields in the y–z-plane are filtered with a
box filter of size 0.1δs × 0.1δs (0.1δ̄ × 0.1δ̄ for SR cases). It should be highlighted that
these condition vectors for the ensemble averaging differ between the x–y and y–z planes
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Figure 6. Contours of filtered turbulent fluctuation (a,c) u′
f and (b,d) v′

f conditionally averaged at (a,b) the
minima and (c,d) maxima of the detected low-speed structures illustrated in figure 3 for the reference case
SW-2 at z/δs = 0.46. (a) SW-2. (b) SR250-2 (S/δ̄ = 3.63). (c) SR160 (S/δ̄ = 2.28). (d) SR100 (S/δ̄ = 1.35).
(e) SR50 (S/δ̄ = 0.62). ( f ) SR25 (S/δ̄ = 0.32).

and are only intended to show the representation of the high- and low-speed structures
to complement the conditional averages in the x–y plane. As a direct comparison, the
conditional average at the exact same condition points in x–y and y–z planes has also been
computed, showing a good agreement between both planes (not shown here for brevity,
but available in Wangsawijaya 2020, pp. 157–158).

Conditionally averaged u′
f for the reference smooth-wall case SW-2 and all SR cases

computed for features within the red-shaded region in figure 3 are shown in figure 7.
The plots show a low-speed structure flanked by two high-speed structures in both
the y–z- (i) and x–y-planes (ii). Panel (i) shows the tendency of the structures in the
cross-plane to lean sideways to the right when v′

f > 0, corresponding to the minima of
yref in the wall-parallel plane (ii). The left-leaning tendency in the cross-plane for v′

f < 0,
corresponding to the maxima of yref in the wall-parallel plane, is not shown for brevity.
The leaning is strongly one sided for the cases where S/δ̄ ≈ 1 in figure 7(d,e) (i), where
the low-speed structures lean to one side and are flanked by asymmetric high-speed
structures which are highly one sided. For the reference smooth-wall case SW-2 in
figure 7(a) and the heterogeneous cases where S/δ̄ � 1 (figure 7b,c), the sideways
leaning of the low-speed event is less prominent with a more symmetric arrangement of
flanking high-speed events. The conditionally averaged velocity fields in the x–y-plane
(ii) further confirm the differences between the smooth wall and the limiting cases
compared with the S/δ̄ ≈ 1 cases. In the wall-parallel plane, the structures exhibit
stronger meandering and asymmetry (appearing as a clear streamwise anti-phase pattern)
in figure 7(d,e) (ii) when S → δ̄ compared with the reference smooth wall and the
limiting cases where S � δ̄ or S � δ̄ in figure 7(a–c, f ). The approximate streamwise
wavelength observed in figure 7 is λx/δ̄ ≈ 4 (see figure 7e (ii), similar to that observed
in the spectrograms from hot-wire anemometry measurements for the same surfaces in
Wangsawijaya et al. (2020). Structures resulting from this conditional average for the
limiting cases where S/δ̄ � 1 and S/δ̄ � 1 are further discussed in §§ 4.2.1 and 4.2.2,
respectively.

934 A40-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

11
52

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.1152


Unsteady secondary flows and large-scale turbulence

–1

0

1

1.0

–3 0 3

0.5

0

–1

0

1

1.0

0.5

0

–1

0

1

1.0

0.5

0

–1

0

1

1.0

0.5

0

–1

0

1

1.0

0.5

0

–1

0

1

1.0

0.5

0

–3–1 0 1 –2 –1 0 1 2 3

–3–1 0 1 –2 –1 0 1 2 3

–3–1 0 1 –2 –1 0 1 2 3

–3–1 0 1 –2 –1 0 1 2 3

–3–1 0 1 –2 –1 0 1 2 3

–3–1 0 1 –2 –1 0 1 2 3

�y/δ̄

z/δs

z/δ̄

�x/δ̄

�y/δs

�y/δs

�y/δ̄

z/δ̄ �y/δ̄

z/δ̄ �y/δ̄

z/δ̄ �y/δ̄

λx/δ̄≈ 4

z/δ̄ �y/δ̄

�x/δs

u′
f /U∞ (×10–2)

ŷ
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Figure 7. Contours of conditionally averaged turbulent fluctuation u′ for (a) reference case SW-2 at z/δs =
0.46 and all SR cases: (b) SR250-2, (c) SR160, (d) SR100, (e) SR50 and ( f ) SR25. Conditions: (i) ũ′ < 0
and v′ > 0 at the y location of common flow up ( u in figure 3), (ii) minima of detected low-speed structures
(ũ′/U∞ < −0.03) assumed to be the secondary flows (red-shaded regions in figure 3). In (a (ii)), solid black
line (black solid line) is the ‘spine’ extracted from the conditionally averaged low-speed structure and ŷ is the
amplitude of meandering.

We next attempt to quantify the meandering of the conditionally averaged structures
in the x–y plane. This will supplement the quantification of the leaning angle in the y–z
plane conducted in Wangsawijaya et al. (2020). ‘Spines’, similar to those fitted to the
instantaneous low-speed structures in figure 3, are now fitted to the conditionally averaged
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Figure 8. (a) Illustration of meandering (spanwise leaning) angleψ in y–z plane, constructed from meandering
amplitude ŷ and the wall-normal location of the WPPIV laser sheet zsheet. (b) Meandering amplitude ŷ
measured from the ‘spines’ of the conditionally averaged structures (see figure 7a (ii)) and normalised by
zsheet as a function of S/δ̄. −−�−−, blue: ŷ measured from the structures assumed to be LSM, when available
(blue-shaded regions in figure 3) and −−�−−, red: ŷ measured from the structures assumed to be secondary
flows (red-shaded regions in figure 3). Measured ŷ of the reference smooth-wall case SW-2, black dashed dotted
line: zsheet/δs = 0.24 and black dashed line: zsheet/δs = 0.46. ×, blue: ŷ of structures assumed to be LSM, ×,
red: ŷ of structures assumed to be secondary flows, both extracted from u′ instead of ũ′ (see Appendix A for
details).

low-speed structures in figure 7. The meandering amplitude ŷ is defined as the average
distance between the y location of the spines at�x/δ̄ = 0 and�x/δ̄ ± 2 (see figure 7a (ii)).
It should be noted that the wall-normal location of the x–y plane (i.e. the WPPIV laser
sheet location zsheet) differs between cases, depending on the size of the secondary flows
(table 1) – hence the measured ŷ is not directly comparable between SR and SW cases.
Alternatively, meandering can also be quantified with the spanwise-leaning angle in the
y–z plane, ψ ≡ 2 tan−1(ŷ/2zsheet) (figure 8a).

Figure 8(b) shows ŷ normalised by zsheet (left-hand side abscissa) and ψ (right-hand
side abscissa) of the secondary flows (−−�−−, red) as a function of S/δ̄ (zsheet is roughly
the radius of the secondary flows, see figure 4). The red symbols on this figure show
the meandering amplitude of the secondary flows as a function of S/δ̄, and clearly this
amplitude is maximum at S/δ̄ = 0.62 (SR50, S/δ̄ ≈ 1), similar to the trend previously
reported for the y–z plane (Wangsawijaya et al. 2020). The amplitude of the meandering
normalised by the wall-normal sheet location ŷ/zsheet is approximately equal to or less
than 1 for the smooth-wall case SW-2 and for the limiting cases (S/δ̄ � 1 and � 1) and
larger than 1 for the intermediate cases (S/δ̄ ≈ 1). For the limiting cases S/δ̄ � 1 (S/δ̄ =
2.28 and 3.63), the magnitude of ŷ measured at zsheet/δ̄ ≈ 0.5 is closer to that of the
reference smooth-wall case SW-2 at zsheet/δs = 0.46 (dashed line in figure 8b), while in
the limit S/δ̄ � 1, ŷ measured at zsheet/δ̄ = 0.18 is approximately equal to that of SW-2 at
zsheet/δs = 0.24 (dash-dot line in figure 8b). This suggests that in the limiting cases where
S � δ̄ or S � δ̄, the meandering of the secondary flows reverts to smooth-like behaviour.

It is also important to note that, while the contours in figure 7 show the conditionally
averaged (and filtered) fluctuating velocity field u′, the condition points (‘+’ in figure 3) are
extracted from ũ′ for SR cases (which contains the stationary component of the secondary
flows Ũ) and from u′ for the reference smooth-wall case SW-2 (Ũ = 0 for this case). As a
direct comparison, we compute the same conditional average of the maxima and minima of
the low-speed structures with the spines extracted from u′ (the non-stationary component
of secondary flow) instead of ũ′ for all SR cases. An example of this analysis is given in
Appendix A for case SR50 (S/δ̄ = 0.62). The magnitude of ŷ extracted from the u′ field

934 A40-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

11
52

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.1152


Unsteady secondary flows and large-scale turbulence

(‘×, red’ symbol in figure 8b) is approximately equal to that extracted from ũ′ for the
limiting cases S/δ̄ � 1 and � 1, and slightly smaller for the intermediate cases S/δ̄ ≈ 1.
However, in general, this illustrates that the choice of u′ or ũ′ for the condition vector makes
very little difference in terms of the salient trends exhibited in figure 8(b). Regardless of
the condition vector, the meandering amplitude of the secondary flows exhibits a clear
peak when S/δ̄ ≈ 1.

4. Secondary flows and large-scale structures

The similarities and differences between secondary flows (intermediate cases, figure 7d,e)
and the LSMs (SW case, figure 7a) raise many important questions. Firstly, is it possible
that secondary flows due to spanwise heterogeneity and LSMs share similar formation
mechanisms? Some parallels regarding the formation mechanism have been suggested. For
example, Lee, Sung & Adrian (2019), when studying VLSMs in canonical smooth-wall
pipe flow, have associated their formation with instantaneous lateral variations of the
wall shear stress of homogeneous turbulent pipe flows. Secondary flows, on the other
hand, are also associated with stationary or persistent lateral variations in the wall shear
stress (Townsend 1976). In this sense, both naturally occurring large-scale structures and
secondary flows are both triggered by lateral stress variations (the former convecting and
transient, and the latter stationary). Figure 9(a,b) shows the 3-D reconstruction of the
large-scale streaks from x–y- and y–z-planes for cases SW-2 and SR100 (S/δ̄ = 1.35),
respectively. It should be noted that the condition vectors for the ensemble averaging
differ between the x–y- and y–z-planes and these figures are only intended to show the
representation of the high- and low-speed structures above the reference smooth-wall
case and an intermediate case. The yawed and inclined asymmetric roll modes can be
inferred from the in-plane vorticity (grey-shaded contours in figure 9b) calculated from
the conditionally averaged velocity fields: ω′

x ≡ ∂w′
f /∂y − ∂v′

f /∂z in the y–z plane and
ω′

z ≡ ∂v′
f /∂x − ∂u′

f /∂y in the x–y plane. A cursory look at figure 9 reveals that the
meandering is more prominent in the intermediate cases where S/δ̄ ≈ 1 (secondary flows,
figure 9b) than that of the reference smooth-wall case (LSM/VLSM, figure 9a). However,
both structures show similarities to the streak-vortex models for the near-wall cycle and
the naturally occurring large-scale structures proposed by Jeong et al. (1997), Waleffe
(2001), Schoppa & Hussain (2002), Flores & Jiménez (2010), Cossu & Hwang (2017)
and de Giovanetti et al. (2017). These asymmetric streak-vortex structures have also been
elucidated in the log region from both PIV of C–D riblets, which also induce secondary
flows, and in direct numerical simulations of smooth-wall channel flow (Kevin et al.
2019a). The possibility of both secondary flows and large-scale structures sharing a similar
formation mechanism leads to other questions regarding the concept of secondary flows
as being phase-locked large-scale structures, and also the reason why strong meandering
is only observed when S/δ̄ ≈ 1 (figure 8b). Finally, there is also a question regarding
coexistence between secondary flows and large-scale structures at certain heterogeneous
wavelengths. These questions will be addressed in the following sections of this study.

4.1. Phase locking
The 1-D spanwise energy spectra, related to spanwise wavenumber ky and wavelength λy,
are computed from the fluctuating velocity field obtained from SPIV measurements. At
any wall-normal location z in the FOV, the non-normalised two-point correlation of the
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Figure 9. Illustrations of meandering low-speed structures flanked by two high-speed structures constructed
by conditionally averaged u′ from SPIV and WPPIV plane for (a) the reference case SW-2 and (b) case SR100
(S/δ̄ = 1.35, structures extracted from the red region in figure 3d), conditioned at the minima of the detected
low-speed structures illustrated in figure 3. Solid red lines (red solid line) show u′

f U∞ = 0.05, 0.1, 0.2, . . . , 0.5,
blue solid lines (blue solid line): −0.5,−0.4, . . . ,−0.1,−0.05. In (b), grey-shaded contours indicate vorticity
of the conditionally averaged velocity field ω′

xδ̄/U∞ = 0.2 and ω′
zδ̄/U∞ = 0.8 for case SR100 in y–z and x–y

planes, respectively.

fluctuating velocity component u′ is given by

R̂u′u′(�y, z) = u′( y, z)u′( y +�y, z), (4.1)

where the overbar denotes ensemble averaging at all y and for all SPIV realisations and
�y is the spanwise shift. The Fourier transformation of R̂u′u′ yields the energy spectra of
the fluctuating velocity component u′

Φu′u′ =
∫ ∞

−∞
R̂u′u′ exp(−j2πky�y) d(�y), (4.2)

where ky is the spanwise wavenumber and λy = 2π/ky is the spanwise wavelength. The
relationship between the Reynolds stress component u′u′ and Φu′u′ is given by

u′u′ =
∫ ∞

0
Φu′u′ d(ky). (4.3)

Due to the limited spanwise extent of the FOV, the velocity field is padded with zeros
in y to increase the length of the signal to three times the total width of the FOV (from
4δs to about 12δs) and thus increase the resolution in ky and λy. This method for 1-D
spanwise energy spectrum computation, however, must be applied with caution for the
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Figure 10. Contours of premultiplied energy spectra (i) kyΦu′u′ and (ii) kyΦŨŨ as functions of λy and z for (a)
reference case SW-2 and SR cases: (b) SR250-2 (S/δ̄ = 3.63), (c) SR50 (S/δ̄ = 0.62), (d) SR25 (S/δ̄ = 0.32).
Data are obtained from SPIV measurements. In (i), ‘+’ marks the peak of energy spectra in the outer layer at
z/δ̄ = 0.2 and λy/δ̄ = 1 (b–d), z/δs = 0.2 and λy/δs = 1 in (a). Black boxes are the area of integration in (4.4)
In (ii), ‘+, red’ marks the spanwise wavelengths related to the mean secondary flows. White boxes are the area
of integration in (4.5) and (4.6).

spanwise heterogeneous roughness cases. Figure 1( f ) shows the instantaneous turbulent
fluctuation component u′ for case SR50 (S/δ̄ = 0.62), whose mean (for all snapshots)
across the repeating period of the spanwise heterogeneous roughness is zero. Its variance
u′u′, however, is heterogeneous in y (see figure 1c). Using this method, integration of the
energy spectra across ky in (4.3) results in the average of u′u′ in y, and yields no information
regarding the spanwise heterogeneity of the flow.

Figure 10(i) shows the premultiplied energy spectra kyΦu′u′ for the reference
smooth-wall case SW-2 (figure 10a (i)) and SR cases: SR250-2, SR50 and SR25
(figures 10b (i)–10d (i), respectively). In general, all SR cases have higher energy than
the reference smooth-wall case SW-2, which is expected since the presence of surface
roughness results in higher magnitude of energy (when normalised by U∞). Further, all
cases (SR and SW-2) also show an outer peak (‘+’) at z/δ̄ ≈ 0.2 and λy/δ̄ ≈ 1 (z/δs ≈
0.2 and λy/δs ≈ 1 for SW-2) which is associated with the width and spacing between
large-scale low- and high-speed streaks for the LSM and VLSM. It is important to note that
kyΦu′u′ does not contain information regarding the stationary (time-averaged) secondary
flows. Instead, this is contained in Ũ (figure 10(ii)). Figure 10(i) contains information
about non-stationary turbulent fluctuations, and these seem largely similar between the
smooth and heterogeneously rough surfaces. The contours of spanwise energy spectra
for SR cases calculated from the SPIV data also do not contain a clear imprint of the
time-dependent (meandering) secondary flows, unlike the 1-D streamwise energy spectra
kxΦu′u′ (Medjnoun et al. 2018; Wangsawijaya et al. 2020). This is expected since the
assumed meandering behaviour is related primarily to the phase of the spanwise Fourier
modes which are not analysed in the amplitude spectra (although increased meandering
might affect the magnitude of the resolved kyΦu′u′ energy).
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Figure 11. Integrated energy spectra of u′ (IΦu′u′ , −−�−−, red) and Ũ (IΦŨŨ
, −−�−−, blue) as a function

of S/δ̄ for SR cases. Red and blue dashed lines are IΦu′u′ and IΦŨŨ
for the reference smooth wall SW-2,

respectively.

It is also worth noting that, compared with other SR cases, the magnitude of kyΦu′u′ is
the lowest for case SR50 (figure 10c (i)). This case is within the range of S/δ̄ ≈ 1, which
shows a strong outer peak in kxΦu′u′ (Medjnoun et al. 2018; Wangsawijaya et al. 2020)
and the most prominent meandering (figure 8b). To understand this phenomenon, another
attempt is made to examine the characteristics of the secondary flows that appear in the
spanwise energy spectra. Instead of the turbulent fluctuations, the energy spectrograms are
computed for the time-averaged spatial velocity fluctuation Ũ (figure 1e), which carries the
footprint of the stationary (time-averaged) secondary flows. The method for computation
is similar to that of turbulent fluctuations in (4.1)–(4.3). To ensure zero mean across y,
the FOV is reflected for the largest S cases (SR250-2 and SR160) so that it captures one
spanwise roughness wavelength Λ = 2S. For the cases where S/δ̄ � 1: SR100, SR50 and
SR25, the FOV is clipped so that it captures an integer number of spanwise wavelengths,
Λ, 2Λ and 4Λ, respectively.

Figure 10(ii) shows the premultiplied energy spectra of Ũ. As expected, the magnitude
of kyΦŨŨ is zero for the reference smooth-wall case SW-2 in figure 10(a) (ii).
Clear, prominent modes in the energy spectra are observed in all SR cases in
figures 10(b) (ii)–10(d) (ii). These peaks are related to the mean secondary flows and are
expected to occur at λy = 2S, i.e. the spanwise roughness wavelength, except for the
case where S/δ̄ > 1. Here, for case SR250-2 (S/δ̄ = 3.63, figure 10b (ii)), the peak is
observed at λy/S ≈ 0.6 (λy/δ̄ ≈ 2). This shows that the secondary flow size is capped by
δ̄ instead of S for this case (see figure 12a). The prominent mode is locked at λy = 2S for
cases where S/δ̄ ≤ 1. Contours of kyΦŨŨ show a very strong mode at λy/S = 2 for case
SR50 (S/δ̄ = 0.62, figure 10c (ii)) and a much weaker one for case SR25 (S/δ̄ = 0.32,
figure 10d (ii)). This is similar to previous observations regarding the strength of mean
secondary flows, that the swirling strength is maximum at S/δ̄ = 0.62 and decreases
for larger or smaller S/δ̄ (Wangsawijaya et al. 2020). Similar behaviour regarding the
strength/significance of the secondary flows in this regime were previously reported by
Vanderwel & Ganapathisubramani (2015), Medjnoun et al. (2018) and Yang & Anderson
(2018). Here, the strongest magnitude of energy in Ũ occurs at SR50 (S/δ̄ = 0.62) and it
decreases as S approaches S/δ̄ � 1.

The premultiplied energy spectra of u′ and Ũ seem to show the opposite tendency for the
SR50 case: when compared with the rest of the SR cases, the magnitude of kyΦu′u′ exhibits
a minimum while the magnitude of kyΦŨŨ is maximum (see figure 10c (i) and 10c (ii))
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Figure 12. Illustration of the limiting cases in spanwise heterogeneous roughness: (a) S/δ̄ � 1 and (b)
S/δ̄ � 1. Areas bounded by black dotted line show regions approaching spanwise homogeneity.

when S/δ̄ ≈ 1. To further examine this, kyΦu′u′ is integrated across the area enclosing the
outer peak (black boxes in figure 10(i)): 0.6 ≤ λy/δ̄ ≤ 1.4 and 0.1 ≤ z/δ̄ ≤ 0.4,

IΦu′u′ = 1
0.3δ̄

∫ 0.4δ̄

0.1δ̄

∫ 10π/7δ̄

10π/3δ̄

Φu′u′

U2∞
dky dz. (4.4)

For the reference smooth-wall cases SW-2, δs is used instead of δ̄; kyΦŨŨ for SR
cases is integrated across the area enclosing the prominent Ũ modes (white boxes in
figures 10b (ii)–10d (ii)): 0.5 ≤ λy/S ≤ 3 and 0.1 ≤ z/δ̄ ≤ 1,

IΦŨŨ
= 1

0.9δ̄

∫ δ̄

0.1δ̄

∫ 2π/3S

4π/S

ΦŨŨ

U2∞
dky dz. (4.5)

For the reference smooth-wall case in figure 10(a) (ii), the integration area encompasses
0.5 ≤ λy/δs ≤ 3 and 0.1 ≤ z/δs ≤ 1,

IΦŨŨ
= 1

0.9δs

∫ δs

0.1δs

∫ 2π/3δs

4π/δs

ΦŨŨ

U2∞
dky dz. (4.6)

Integrated energy spectra of u′ and Ũ are shown in figure 11 as functions of S/δ̄
(dashed lines show the reference smooth-wall case SW-2). The lines in figure 11 suggest
a relationship between u′ and Ũ: as S/δ̄ approaches 1, Ũ and u′ reach a maximum
and minimum, respectively. As S/δ̄ � 1, the rise of u′ is accompanied by a decrease
in Ũ. In some sense this fits with the conceptual picture that the secondary flows are
spanwise-locked large-scale structures. Under this assumption, SR50 (S/δ̄ = 0.62) is the
case where the locking is most complete, since the secondary flows are the strongest
and fill the entire wall-normal and spanwise extents of the boundary layer (figure 1b,e).
If the secondary flows can really be viewed as locked turbulent structures, it seems
reasonable to assume that, for heterogeneous surfaces that generate secondary flows,
some of the large-scale structure energy will be transferred from turbulent fluctuations
u′ to the dispersive component Ũ. This interplay between turbulent fluctuations and the
dispersive components (as one goes up, the other one goes down and vice versa) is
strongly reminiscent of similar observations by Nikora et al. (2019) of secondary flows
in rough-bed open channel flows and by Modesti et al. (2018) of secondary flows in a
square duct. In the latter case, Modesti et al. (2018) also observed that when the secondary
flows are artificially suppressed, the turbulent fluctuations rise to compensate the loss of
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dispersive component. Taken together, one interpretation of these results would be that the
Ũ component is an indicator of the efficacy of the surface at locking turbulent structures
in place. For example, in the smooth surface, Ũ is zero (blue dashed line in figures 11 and
10a (ii)), and the turbulent structures are randomly occurring (completely unlocked), so all
energy ends up in the u′ component. It is noted that the cases where S/δ̄ � 1 and S/δ̄ � 1
in figure 11 (SR25, S/δ̄ = 0.32 and SR250-2, S/δ̄ = 3.63) approach this condition, with
the integrated energy in Ũ approaching the smooth-wall reference case. From the analysis
above, it can be concluded that for S/δ̄ ≈ 1, the turbulent structures are optimally locked or
trapped by the surface, and hence energy from u′ is surrendered into Ũ (which respectively
reach a minimum and a maximum at these S/δ̄). However, this behaviour is complicated
somewhat by the observed meandering behaviour in § 3. It is noted that the meandering
of the secondary flows increases above that of the naturally occurring turbulent structures
when S/δ̄ → 1 (figure 8b). Such behaviour is not easily reconcilable with the notion of
secondary flows as locked turbulent structures and is perhaps indicative of some additional
instability or forcing when secondary flows are locked at particular spanwise wavelengths.

4.2. Coexistence of secondary flows and the large-scale structures
Coexistence of the VLSM and secondary flows was hinted at by Zampiron et al. (2020)
at larger spanwise wavelengths, where these two features exist at a very different scales in
the energy spectrograms. At both limits, when S/δ̄ � 1 and when S/δ̄ � 1, the secondary
flows are confined to certain areas of the surface such that we expect the LSM/VLSM to
exist in a relatively unaltered form for large areas of the flow, especially when we are far
from the secondary flows, e.g. far from the roughness transition for the case with S � δ̄,
or z > S for the case where S � δ̄ (figure 12). What follows is an attempt to separate
the secondary flows due to spanwise heterogeneity and (presumably) unaltered, naturally
occurring LSM/VLSM in the limiting cases: S/δ̄ � 1 (§ 4.2.1) and S/δ̄ � 1 (§ 4.2.2).
Conditional averaging and POD analysis are conducted for the two largest wavelength
cases: SR250-2 (S/δ̄ = 3.63) and SR160 (S/δ̄ = 2.28), and the smallest wavelength, SR25
(S/δ̄ = 0.32).

4.2.1. Limiting case: S/δ̄ � 1
Figure 3(b,c) shows the detected low-speed structures and the minima of the spines of
these structures at an instantaneous velocity field of limiting cases SR250-2 (S/δ̄ = 3.63)
and SR160 (S/δ̄ = 2.28), respectively, taken from WPPIV measurements approximately
at the centre of the mean secondary flows (z/δ̄ ≈ 0.5). Instantaneously, the large-scale
structures induced by spanwise heterogeneity meander about a certain spanwise location,
which results in δ-scaled secondary flows in the time-averaged velocity field near the
interface between rough and smooth strips (figure 12a). Here, it is assumed that the
low-speed structures related to the secondary flows (upwelling motions) meander about
the spanwise location of common flow up yu ± ly, where ly is the spanwise extent of
the mean secondary flows. This area is shaded red in figure 3. Far removed from the
secondary flows, the flow becomes locally homogeneous (either homogeneously smooth
or homogeneously rough). In figure 3(b), areas shaded in blue (closer to the centreline
of smooth and rough strips) represent this condition. It is assumed that secondary flows
occur in the red-shaded area, while LSM/VLSM occur in the blue-shaded area (these
two terms are used here to distinguish between structures that are imposed or locked by
the roughness heterogeneity and naturally occurring turbulent structures, respectively).
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Histograms in figure 5(b,c) show that the secondary flows (red bars) comprise 41 %
and 74 % of all low-speed structures detected across the FOV for case SR250-2 and
SR160, respectively (compared with respective areas occupied by the red regions of
37 % and 54 % of the FOV), and thus LSM/VLSM (blue bars) comprise the rest (59 %
and 26 %).

Similar to the analysis conducted in § 3, the conditional average is also calculated at
the y-minima and y-maxima of the spines fitted to detected low-speed structures and in
the y–z-plane from SPIV measurements, using a different but related condition vector.
For the y–z-plane, the average is computed at zref /δ̄ = 0.1, based on the condition of ũ′
and v′ (see § 3). Figure 13 shows the conditional average of case SR250-2 (figure 13b,c)
compared with the reference smooth-wall case SW-2 (figure 13a). The conditional average
for the secondary flows (‘SF’) due to spanwise heterogeneity given in figure 13(b) is
computed at the spanwise location of common flow up ( u ) in panels (i) and (iii).
It is computed at the minima and maxima of the detected low-speed structures inside
the red-shaded area (figure 3b) in panels (ii) and (iv). The conditional average for the
LSM/VLSM is computed at yref /S = −0.72, close to the centreline of a rough strip
(y/S = −1). A one-sided-leaning tendency is observed in the conditionally averaged
secondary flows (figure 13b). However, both secondary flows and LSM/VLSM (figure 13c)
have similar shape and size (when scaled by δ̄) to the LSM/VLSM in the reference
smooth-wall case.

A cursory inspection of figures 13(b) and 13(c) suggests that the LSM/VLSM
are stronger (higher in magnitude) than the secondary flows. This is expected since
the secondary flows are assumed to occur above the interface between rough and
smooth strips, while the detected LSMs/VLSMs are mostly obtained above rough strips
(figure 4a), where the turbulent energy is higher (note that the conditionally averaged
u′

f in figure 13 is normalised by U∞). This observation, although not shown for brevity,
also holds for SR160 (S/δ̄ = 2.28). Comparing figures 13(a) and 13(b), we observe
that the LSM/VLSM of the reference smooth-wall case SW-2 is slightly stronger than
the secondary flows of SR250-2 case. However, despite these minor differences, the
overarching impression from figure 13 is the striking similarity between the smooth-wall
LSMs/VLSMs and both the secondary flows and LSMs/VLSMs that occur in the
large-scale limiting spanwise heterogeneity case (S � δ̄).

A comparison of the magnitude of meandering between the secondary flows and
LSM/VLSM is shown by the blue and red symbols in figure 8(b). Recall that this
meandering amplitude is measured from the ‘spines’ extracted from the conditionally
averaged low-speed structures (figure 7a). This comparison is only possible for the range of
spanwise heterogeneous wavelengths (1.35 ≤ S/δ̄ ≤ 3.63), where the red and blue regions
of figure 3 can both be defined. At smaller wavelengths, the secondary flow regions
(defined as yu ± ly) occupy the entire spanwise domain and so the LSM/VLSM region
cannot be identified. The trend shows that ŷ (normalised by the zsheet/size of the roll modes)
of secondary flows increases as S/δ̄ approaches 1, but ŷ of the LSM/VLSM, whether it is
extracted from ũ′ or u′ fields, remains approximately constant. More importantly, as S/δ̄
becomes large in case SR250-2, we note from figure 8(b) that the meandering amplitude
of both the secondary flows and the LSMs/VLSMs seem to converge to the same value,
which is close to that recorded for the smooth wall. Again, this reconfirms the general
underlying similarity between the conditional features presented for the smooth wall and
case SR250-2 in figure 13.
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Figure 13. Contours of conditionally averaged turbulent fluctuation u′ for (a) reference case SW-2 at z/δs =
0.46 and (b,c) SR250-2: conditioned at low-speed structures associated with (b) secondary flows (SF) and (c)
LSMs/VLSMs. Conditions: (i) ũ′ < 0 and v′ > 0, (iii) ũ′ < 0 and v′ < 0, (ii) y-minima and (iv) y-maxima of
detected spine-fitted low-speed structures (ũ′/U∞ < −0.03) illustrated in figure 3(b).

4.2.2. Limiting case: S/δ̄ � 1
For the smallest S/δ̄ case, SR25 (S/δ̄ = 0.32), the WPPIV measurement plane is set as
close as possible to the centre of the secondary flows at z/δ̄ = 0.18, while the diameter of
the secondary flows is approximately 0.32δ̄. As shown in figure 4(c), the secondary flows
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Figure 14. Turbulent velocity fluctuations u′ of case SR25 in the y–z-plane: (a) all resolved scales, (b) large
scales (constructed from u′ POD modes with dominant λy/δ̄ > 0.64), (c) small scales (constructed from u′
POD modes with dominant λy/δ̄ ≤ 0.64).

fill the entire spanwise extent at this wall height (see also red shaded area in figure 3f ). A
similar conditional average at the minima and maxima of the detected low-speed structures
in the x–y plane and at the common flow up in the y–z plane as that in §§ 3 and 4.2.1 is
also computed for SR25 case. Figure 7( f ) shows that the conditionally averaged low-speed
structures for this case do not seem to show a marked difference from the LSM/VLSM in
the reference smooth-wall case. The meandering amplitude for this case (figure 8b) is also
approximately equal to that of the reference smooth-wall case at z/δs = 0.24.

These observations for the S/δ̄ � 1 case reveal the problem of using spanwise locations
to separate secondary flows and LSM/VLSM. This strategy works for S/δ̄ � 1 cases
because both secondary flows and LSM/VLSM are both δ-scaled and the secondary
flows are confined about the roughness interface, while the rest of the flow approaches
local homogeneity (smooth wall or homogeneous rough wall). However, for the other
limit where S/δ̄ � 1, the secondary flows and LSM/VLSM coexist in different scales.
The LSM/VLSM are δ-scaled, while the secondary flows are scaled by S (S � δ) and
aligned according to the roughness strips. For case SR25, specifically, the spanwise scale
of the secondary flows is approximately 0.32δ̄ ≈ S. Hence, to study the coexistence of
LSM/VLSM and secondary flows in this limit where S/δ̄ � 1, a different method is
necessary to separate the two.

We propose ‘snapshot’ POD as a method to separate LSM/VLSM and secondary
flows in the SR25 case. POD for fluid mechanics applications was first introduced by
Lumley (1967) and the algorithm used in the present study is the so-called ‘snapshot’
POD (Sirovich 1987; Meyer, Pedersen & Özcan 2007). Using this method, the dominant
spanwise Fourier mode λy of each POD mode is computed at z/δ̄ = 0.1 and separated
into a ‘large’-scale group (dominant λy/δ̄ > 0.64, presumably related to LSM/VLSM) and
‘small’-scale group (dominant λy/δ̄ ≤ 0.64 = 2S). For case SR25, the small-scale group
contains a mix of secondary flows due to spanwise heterogeneity as well as smaller-scale
non-stationary turbulent features. Details of the proposed LSM–secondary flow separation
method are given in Appendix B. Figure 14 shows an instantaneous fluctuating velocity
field u′ of case SR25 (S/δ̄ = 0.32) in the y–z-plane, with figure 14(a) showing the
broadband PIV measurement result (all resolved scales), figure 14(b) is the instantaneous
u′ reconstructed only from POD modes whose dominant λy/δ̄ > 0.64 (‘large’ scales), and
figure 14(c) is reconstructed only from ‘small scales’ (λy/δ̄ ≤ 0.64).

A similar strategy to separate turbulent scales related to LSM/VLSM and the secondary
flows (Appendix B) is also applied for the fluctuating velocity fields in the x–y plane
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Figure 15. Turbulent velocity fluctuations u′ of case SR25 in x–y-plane (z/δ̄ = 0.18): (a) all resolved scales,
(b) large scales (constructed from u′ POD modes with dominant λy/δ̄ > 0.64), (c) small scales (constructed
from u′ POD modes with dominant λy/δ̄ ≤ 0.64).

(WPPIV data) at z/δ̄ = 0.18. This wall-normal location of the x–y-plane is close
to the centre of the secondary flows, which is estimated at z/δ̄ ≈ 0.16, z/S ≈ 0.5.
Figure 15 illustrates the fluctuating velocity fields u′ reconstructed from both ‘large’-
and ‘small’-scale POD modes. The conditional average of turbulent fluctuation u′ is
computed at the minima and maxima of the low-speed structures in the x–y plane. The
same algorithm to detect ‘spines’ of the structures and the minima/maxima in § 4.2.1 is
also applied for SR25. However, for previously analysed cases where S/δ̄ � 1 in § 4.2.1 the
low-speed structures were separated into LSM/VLSM and secondary flows based on their
spanwise locations. Here, where S/δ̄ � 1, each instantaneous turbulent fluctuation field is
separated into the ‘large’ scales (presumably LSM/VLSM) and ‘small’ scales (presumably
containing the secondary flows) based on the dominant λy of the POD modes. Examples
of detected low-speed structures for case SR25 (z/δ̄ = 0.18) are shown in figure 16(a)
for the ‘large’ scales and in figure 16(b) for the ‘small’ scales (grey filled contours are
ũ′/U∞ < −0.03). Due to the decreasing length of the structures detected as the ‘small’
scales (figures 15c and 16b), only structures whose length is ≥ 2δ̄ are included in the
computation (this criterion for low-speed structure detection is lower than that in § 4.2.1).
Figure 17 shows the histogram of the y-minima of the detected low-speed structures
constructed from large (figure 17a) and small scales (figure 17b). The smaller scales
exhibit a phase-locking behaviour of the structures, with higher possibility of the spines
detected over the common flow up. This phase-locking behaviour is still apparent (to lesser
extent) in the larger scales since ũ′ is used for detection (cf. figure 3( f ) for spine detection
without scale separation). With this criterion for low-speed structure detection, 40 % of
the detected streaks belong to the small scales, and 60 % belong to the large scales.

Conditional averages of u′ are computed in the y–z and x–y planes for both ‘large’
and ‘small’ scales. In the y–z plane, the condition point of u′ (‘+’ in figure 18i,iii) is
at z/δ̄ = 0.1 (as close to the wall as the FOV permits) and at the spanwise locations of
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Figure 16. Detected low-speed structures ũ′ for case SR25 (z/δ̄ = 0.18): (a) large scales (constructed from u′
POD modes with dominant λy/δ̄ > 0.64), (b) small scales (constructed from u′ POD modes with dominant
λy/δ̄ ≤ 0.64). Grey coloured contours are the low-speed structures, ũ′/U∞ < −0.03. ‘+’ marks the minima
of a low-speed structure. The spines of the detected low-speed structures with length ≥ 2δ̄ are shown in solid
lines (from PIV data: light grey solid line, smoothed: black solid line). Dashed lines (black dashed line) are the
spanwise locations of the common flow up of the secondary flows (marked by u ).
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Figure 17. Histogram of the minima detected low-speed structures yref for case SR25 (z/δ̄ = 0.18): (a) large
scales (figure 16a) and (b) small scales (figure 16b). Dashed lines (black dashed line) are the spanwise locations
of the common flow up of the secondary flows (marked by u ).

common flow up (marked by u , centre of the smooth strips for this case) for consistency
with the previous analysis in §§ 3 and 4.2.1 (for ‘larger’ scales, the resulting conditionally
averaged structures are insensitive to the spanwise location of the condition vector). The
conditions for the y–z plane are as follows: ũ′ < 0 (low-speed streaks) and v′ > 0 or ũ′ < 0
(low-speed streaks) and v′ < 0. In the x–y plane, the condition point is at the y-minima and
y-maxima of the spines fitted to the detected low-speed streaks, which correspond to v′ > 0
and v′ < 0 (see figure 6 for an example). To provide a valid comparison, the same POD
and conditions are also applied to the reference smooth-wall case SW-2 with appropriate
scaling (δs instead of δ̄). For the smooth case, the velocity field is also separated into
‘large’ (POD modes with dominant λy/δs > 0.64) and ‘small’ scales (λy/δs ≤ 0.64). In
the smooth y–z plane, the condition point of u′ is at z/δs = 0.1 and spanwise homogeneity
is assumed. For the smooth x–y plane, only structures with length ≥ 2δs are included
and spanwise homogeneity is also assumed. With this criterion for low-speed structure
detection, 13 % of the detected streaks belong to the small scales, and 87 % belong to the
large scales.
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Figure 18. Contours of conditionally averaged large-scale turbulent fluctuation u′ (constructed from u′ POD
modes with dominant λy/δ̄ > 0.64 or λy/δs > 0.64) for (a) reference case SW-2 at z/δs = 0.24 and (b) SR25
at z/δ̄ = 0.18, S/δ̄ = 0.32. Conditions: (i) ũ′ < 0 and v′ > 0, (ii) ũ′ < 0 and v′ < 0 at ‘+’, (iii) minima and (iv)
maxima of detected low-speed structures (at ‘+’, ũ′/U∞ < −0.03) illustrated in figure 16(a) (refer to § 3 for
the method used to extract the ‘spines’ of low-speed structures). In (b) (iii) and (iv), dashed lines (black dashed
line) show the width of the roughness strips S.

Figure 18(a,b) shows the contours of conditionally averaged ‘large’-scale u′ for the
reference smooth-wall case SW-2 and case SR25 (S/δ̄ = 0.32), respectively. Conditionally
averaged u′ in the y–z plane is shown in panels (i) and (iii). The x–y plane (panels ii
and iv) is located at z/δs = 0.24 for SW-2 and z/δ̄ = 0.18 for SR25 (close to the centre
of the secondary flows). The contours show the structures leaning to the left and right,
similar to those shown in §§ 3 and 4.2.1. It is interesting to note, however, that, when only
‘large’ scales (i.e. scales that are larger than the spanwise heterogeneity) are considered,
the structures of SW-2 and SR25 are identical, showing that, in the case of spanwise
heterogeneity where the roughness S/δ̄ � 1, scales that are � S can be considered as
the naturally occurring turbulent structures and they exist in a relatively unchanged form
compared with those observed in the reference smooth wall. This is also in line with
Townsend’s outer layer similarity for rough walls. As S/δ̄ becomes very small, the wall
condition approaches large-scale homogeneity, and we expect that beyond the roughness
sublayer (z > S, see Chan et al. 2018), outer layer similarity should be preserved. Locking
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Figure 19. Contours of conditionally averaged small-scale turbulent fluctuation u′ (constructed from u′ POD
modes with dominant λy/δ̄ ≤ 0.64 or λy/δs ≤ 0.64) for (a) reference case SW-2 at z/δs = 0.24, (b) SR25 at
z/δ̄ = 0.18, S/δ̄ = 0.32 and (c) conditionally averaged ũ′ (small-scale u′ supplemented with Ũ) for case SR25
at z/δ̄ = 0.18, S/δ̄ = 0.32. Conditions: (i) ũ′ < 0 and v′ > 0, (ii) ũ′ < 0 and v′ < 0 at ‘+’, (iii) minima and (iv)
maxima of detected low-speed structures (at ‘+’, ũ′/U∞ < −0.03) illustrated in figure 16(b) (refer to § 3 for
the method used to extract the ‘spines’ of low-speed structures). In (b) (iii) and (iv), dashed lines (black dashed
line) show the width of the roughness strips S.
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of large scales now would be minimal, and it would only be scales that were close to
λy = 2S that we would perhaps expect to be locked by the spanwise heterogeneity.

Figure 19(a,b) shows the contours of conditionally averaged ‘small’-scale u′ for the
reference smooth-wall case SW-2 and case SR25 (S/δ̄ = 0.32), respectively. In the y–z
plane, the structures for both SW-2 and SR25 are capped in the wall-normal direction
at z/δ̄ � 0.32 (z/δs � 0.32), as suggested by Chan et al. (2018), who observed that
the roughness sublayer height is approximately half of the spanwise wavelength of
the roughness. However, a clear spanwise periodic pattern is observed in the SR25
case (figure 19b, panels i and iii), which is less apparent in the smooth-wall reference
(figure 19a, panels i and iii). The wavelength of this spanwise periodic pattern is 2S
(which is also the spanwise roughness wavelength Λ), as shown by the dashed lines in
figure 19(b) (iii). A slight misalignment is attributed to the condition of v′, such that
structures lean slightly to the left and right. In the x–y-plane, a similar pattern is also
observed. The pronounced spanwise periodicity for the SR25 case is largely absent for the
smooth-wall reference. Furthermore, the streaks for case SR25 appear to be elongated
in x (approximately 3δ̄ long, figure 19(b) (ii) and (iv)) to a greater extent than those
observed for SW-2 (∼ 2δs). This length is similar to the streamwise wavelength λx/δ̄ ≈ 3
associated with the kxΦu′u′ spectrum peak (Wangsawijaya et al. 2020), which has been
previously associated with meandering of the secondary flows. It is important to note
that the conditional averages shown in figure 19 are for u′, the convecting non-stationary
turbulent component. A locked fluctuation such as this is distinct from the stationary
secondary flows (which would appear in ũ′, as shown in figure 19c). These elongated
streaks can be explained as a result of meandering behaviour of the secondary flows
occurring at the interface between the rough and smooth strips. The pronounced spanwise
periodicity exhibited for case SR25 in figure 19 is more difficult to explain, but implies
cross-talk between adjacent secondary flows such that their meandering is in phase. The
results presented in figures 18 and 19 show that the secondary flows and naturally occurring
δ̄-scaled LSM/VLSM co-exist in the case where S/δ̄ � 1. With S-scaled features residing
close to the wall (z < S) that are locked to the phase of the spanwise heterogeneity, and
with superimposed large-scale features that are virtually unchanged from those occurring
over smooth surfaces, exhibiting no spanwise locking or alteration due to the heterogeneity.

5. Conclusions

We conduct an analysis of secondary flows and perturbed turbulent boundary layers
resulting from spanwise varying surface conditions within a range of spanwise
half-wavelength 0.32 ≤ S/δ̄ ≤ 3.63. In the study by Wangsawijaya et al. (2020), it was
observed that S/δ̄ governs the size and strength of the secondary flows. The latter
is maximum for intermediate cases (S/δ̄ ≈ 1), which suggests two possible scenarios:
either (i) that these cases induce the strongest secondary streamwise vortices or (ii) if
secondary flows are spatially locked turbulent structures, that these are more effectively
locked in place for these heterogeneous wavelengths. Present results show that (ii)
is viable. Following this scenario, we consider the secondary flows (instantaneously)
as spanwise-locked large-scale turbulent structures. The 1-D spanwise energy spectra
(figures 10 and 11) reveal an interplay between the stationary secondary flows and the
turbulent fluctuations, where energy of the former leeches into the latter, and this is also
governed by S/δ̄. In the intermediate cases (S/δ̄ ≈ 1), where the secondary flows are space
filling (hence, effectively locked), the energy deposited into the stationary component and
turbulent fluctuations reach maximum and minimum, respectively. This further suggests
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that S/δ̄ determines the efficacy of roughness wavelengths in locking the secondary
flows/turbulent structures in place.

In addition to being spanwise locked, secondary flows exhibit a quantifiable streamwise
unsteadiness, which was interpreted as statistical evidence for meandering with a preferred
streamwise wavelength when S/δ̄ ≈ 1. In the current study we reveal the strongly
meandering structures through conditional averaging of u′ for both SR cases and the
reference smooth-wall case. The resulting structures for both of these cases are strongly
reminiscent of the streak-vortex instability model proposed by Jeong et al. (1997), Waleffe
(2001), Flores & Jiménez (2010), Cossu & Hwang (2017) and de Giovanetti et al. (2017)
(figure 9).

In the limits where S/δ̄ � 1 and S/δ̄ � 1, it is possible to examine the coexistence
of secondary flows and the naturally occurring large-scale structures. In the cases where
S/δ̄ � 1 both the secondary flows and large-scale structures are δ-scaled. The former are
locked about the roughness transition and still carry the imprint of meandering secondary
flows, although not as strong as the intermediate cases, while the latter occur farther
from the transition and are identical to those observed in the reference smooth-wall case
(figure 13). In the other limit where S/δ̄ � 1, secondary flows and large-scale structures
scale on S and δ, respectively. Using a POD-based filter, each velocity field snapshot can
be separated into scales> S or ≤ S. The conditional average of u′ of the larger scales show
that the structures of turbulence in the limiting case (S/δ̄ � 1) and the reference smooth
wall are identical (figure 18), suggesting that structures with spanwise scales > 2S are
unaffected by the heterogeneity. The smaller scales for the spanwise heterogeneous cases,
however, exhibit the imprint of secondary flows leeching into u′, characterised as long
meandering spanwise-alternating streaks that are locked and aligned with the roughness
strips.

One outstanding question that remains unanswered in the present study is the cause
of the prominent meandering of the turbulent structures, which is only observed when
S/δ̄ ≈ 1, where phase-locked, elongated low-speed streaks appear over the smooth strips.
Coincidentally, maximum drag penalty has also been observed in this regime by Chung
et al. (2018) and Medjnoun et al. (2018). This can also be inferred (within the limitations
of the momentum balance approach) from the spanwise-averaged momentum thickness
θ̄ shown in table 1 for all cases (overbar indicates spanwise averaging over a single
heterogeneous roughness wavelength). Here, θ̄ is shown as Reθ̄ = θ̄U∞/ν (U∞/ν is
approximately constant) and it notably has a similar trend compared with that of the
skin friction coefficient Cf observed in Chung et al. (2018) and Medjnoun et al. (2018).
The reason for prominent meandering in S/δ̄ ≈ 1 regime and whether this behaviour has
implications for drag penalty will be interesting questions to address in the future.

As a summary, the following phenomena regarding roughness-induced secondary flows
have been observed so far: (i) maximum strength of the secondary flows when S/δ ≈
1 (Vanderwel & Ganapathisubramani 2015; Medjnoun et al. 2018; Yang & Anderson
2018; Wangsawijaya et al. 2020), (ii) prominent time-dependent behaviour (i.e. strong
meandering) when S/δ ≈ 1 (Vanderwel et al. 2019; Wangsawijaya et al. 2020; Zampiron
et al. 2020), (iii) limiting case behaviour when S/δ � 1 and S/δ � 1 (Yang & Anderson
2018; Chung et al. 2018; Wangsawijaya et al. 2020) and (iv) maximum drag when S/δ ≈ 1
(Chung et al. 2018; Medjnoun et al. 2018). The consistency of secondary flow behaviours
reported in these studies suggests (although does not prove) that these behaviours are
robust across the range of Re of these studies (500 � δ+ � 5000). However, at lower Re
we also note that there are signs of drag dependency on Re, which has been observed
over secondary flows induced by superhydrophobic surfaces (Lee, Jelly & Zaki 2015,

934 A40-29

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

11
52

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.1152


D.D. Wangsawijaya and N. Hutchins

180 ≤ δ+ ≤ 590). Furthermore, for very low Re cases (100 � δ+ � 300), Stroh et al.
(2016) have reported a more complex behaviour of the secondary flows. In both cases,
these low Reynolds number effects likely result from the spanwise heterogeneity scale
encroaching on the scales associated with the near-wall cycle (i.e. S+ → O(100)). In the
future, it would also be interesting to examine the extent to which these behaviours are
contingent of Re,�τ (the magnitude of the wall shear stress variation between smooth and
rough strips) and the geometry of the spanwise heterogeneity (i.e. demarcation between
ridge- and strip-type roughness).
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Appendix A. Stationary vs non-stationary component of the secondary flows

Figure 20 compares the extracted spines from an instantaneous velocity field ũ′ ≡ Ũ +
u′ (figure 20a) and u′ (figure 20b) of case SR50 (S/δ̄ = 0.62). The spine extraction
method for both ũ′ and u′ velocity fields is the same: both are filtered with a box filter
of 0.1δ̄ × 0.1δ̄ size, the grey-coloured contours in figure 20 are ũ′/U∞ < −0.03 and
u′/U∞ < −0.03, respectively, and only structures longer than or equal to 3δ̄ are kept for
the analysis. For comparison between ũ′ and u′, we introduce three parameters related
to the extracted spines: the length of the spine lspine relative to the streamwise extent
of the FOV lFOV , the location of the minima/maxima xref relative to the spine and the
location of the spine relative to the common flow up ( u in figure 20). Figure 21(a,e)
shows the histogram of the length of the extracted spines lspine from ũ′ and u′ velocity
fields, respectively. When the ũ′ field is used for extraction, the spines are likely to extend
across the streamwise extent of the FOV (lspine/lFOV = 1). The spines are mostly shorter
(lspine/lFOV = 0.5) when u′ is used instead of ũ′. This is expected since the stationary
component of the secondary flows Ũ has an infinite mode in x, which is present for ũ′
but removed for u′. The histograms of the streamwise location xref of the minima of the
extracted structures relative to the start of the detected structure (see ‘+’ and the definition
of xref in figure 20) from ũ′ and u′ fields are shown in figure 21(b, f ), respectively, while
the histograms for the maxima are shown in figure 21(c,g). The histograms illustrate the
location (of the minima and maxima) relative to the extracted spines xref /lspine. Here,
xref /lspine = 0 means that the minimum/maximum is located at upstream end of the spine,
while xref /lspine = 1 means that it is located at the downstream end. Figure 21(b,c, f,g)
shows that xref is roughly evenly distributed across 10 %–90 % of the length of the spines
when either ũ′ or u′ is used for extraction. Lastly, we also examine the spanwise locking
of the low-speed structures. We compute the distance between the y location of the spines
ymean and the location of common flow up yup (dashed black lines in figure 20). Here,
ymean is the y-average of all extracted spines (solid black lines in figure 20). Figure 21(d,h)
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Figure 20. Detected low-speed structures for case SR50 (S/δ̄ = 0.62) from a WPPIV snapshot. Grey-coloured
contours are: (a) ũ′/U∞ < −0.03 and (b) u′/U∞ < −0.03. ‘+’ marks the minima of a low-speed structure.
The spines of the detected low-speed structures are shown in solid lines (from PIV data: light grey solid line,
smoothed: black solid line). Dashed lines (black dashed line) are the spanwise locations of the common flow
up of the secondary flows (marked by u , see figure 1(g) for these locations in the y–z-plane).
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Figure 21. Histograms of the low-speed structures for case SR50 (S/δ̄ = 0.62), detected in the fluctuating
velocity field: (a–d) ũ′ and (e–h) u′. (a,e) Length of spines of the detected structures relative to the FOV, (b, f )
streamwise position of the detected minima and (c,g) maxima relative to the length of the spines, (d,h) spanwise
position of the spines relative to the common flow up.

shows the histograms of the calculated distance between the spines and common flow
up normalised by S when ũ′ and u′ field are used for extraction, respectively. Here,
( ymean − yu)/S = 0 is the centre of a smooth strip (which coincides with the common
flow up) and ( ymean − yu)/S ± 0.5 is the interface between a smooth strip and adjacent
rough strips (figure 1). The histograms show that the extracted spines from ũ′ are more
likely to be locked onto the common flow up (yu) compared with those extracted from u′,
which is expected since Ũ is a minimum at yu, and hence we are much more likely to detect
a minimum in ũ′ ≡ Ũ + u′ at this location.

We repeat the computation of the conditionally averaged fluctuating velocity field
previously introduced in § 3 at the minima and maxima of the spines extracted from
u′ field (instead of ũ′). It should be noted that the conditional average is computed for
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Figure 22. Contours of filtered turbulent fluctuation u′
f conditionally averaged at (a,b) the minima and (c,d)

maxima of the detected low-speed structures for case SR50 (S/δ̄ = 0.62). Structures are detected in the
fluctuating velocity field: (a,c) ũ′ and (b,d) u′, as illustrated in figure 20.

filtered turbulent fluctuation u′
f , but the condition points differ between the spines extracted

from ũ′ and u′ field (see ‘+’ in figure 20). Contours of conditionally averaged u′
f of case

SR50 (S/δ̄ = 0.62) are shown in figure 22(a,c) for condition points extracted from ũ′ and
figure 22(b,d) from u′. Both cases show blue-filled contours (low-speed structures) flanked
by red-filled contours (high-speed structures), but the strength of flanking high-speed
events seems stronger and more symmetrically arranged about the low-speed streak for
u′ (figure 22b,d) than ũ′ (figure 22a,c). Further, the amplitude of meandering for u′ is
only slightly lower than that of ũ′. This suggests that the choice of ũ′ or u′ makes very
little difference to the resulting conditionally averaged structures, and explains the very
marginal influence of choice of condition vector evident in figure 8(b).

Appendix B. Snapshot POD for LSM/VLSM and secondary flow separation

In the context of PIV data, each instantaneous velocity field is considered as a ‘snapshot’
and the fluctuating velocity components of snapshot n, u′n = (u′n, v′n,w′n), can be written
as a linear expansion

u′n =
N∑

i=1

an
i φ

i, (B1)

where φi is the ith POD mode, an
i is the POD coefficient of mode i of snapshot n and

N is the total number of snapshots. In snapshot POD, the number of resolved POD
modes is equal to the number of snapshots, which corresponds to 4800 for the spanwise
heterogeneous cases in the y–z-plane (1200 for the reference smooth-wall case SW-2) and
1200 snapshots in the x–y-plane (600 for SW-2). It is noted that the POD modes φi are
ordered according to their contribution to the total turbulent kinetic energy such that the
first mode φ1 has the largest fraction of total energy, followed by the second mode φ2, and
so forth.

Figure 23 shows POD modes of streamwise velocity fluctuation φi
u′ for case SR25 in

the y–z plane. Three modes are arbitrarily selected to provide details on how each POD
mode is associated with a particular spanwise dominant Fourier mode: modes i = 1, 5 and
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Figure 23. POD modes of u′ for SR25 case in the y–z-plane: (a,d) mode 1, (b,e) mode 5 and (c, f ) mode 18.
Brackets on top left show the fraction of energy of the POD modes. (d–f ) Are 1-D premultiplied energy spectra
of the modes kyΦφφ as a function of λy, computed at z/δ̄ = 0.1 (solid black lines in a–c). The dominant modes
are: (a) λy/δ̄ ≈ 1.5, (b) λy/δ̄ ≈ 1 and (c) λy/δ̄ ≈ 0.64 (λy/S ≈ 2).

18, which contribute to 3.3 %, 2.2 % and 0.9 % of the total kinetic energy, respectively.
All three selected modes show a spanwise periodic pattern of low- and high-speed streaks
(blue and red filled contours, respectively) of different scales. Such streaks could be due
to either LSM/VLSM or heterogeneity-induced secondary flows. To measure the ‘scale’
of turbulence in each mode, the fast Fourier transform (FFT) is computed for each φu′ at
a reference wall-normal location z/δ̄ = 0.1 (as close to the wall as the FOV permits, see
solid black lines in figure 23a–c). The 1-D power spectral density of φu′ at z/δ̄ = 0.1 is
defined as

Φφφ = 2cnc∗
n

�ky
, (B2)

where cn is the nth Fourier coefficient, c∗
n is its complex conjugate and ky is the spanwise

wavenumber. Figure 23(d–f ) shows the 1-D energy spectra premultiplied by ky of modes
1, 5 and 18, respectively. These figures show that the spanwise periodic pattern observed in
figure 23(a–c) corresponds to a dominant spanwise wavelength λy, i.e. maximum kyΦφφ .
Mode 1, for example, has the dominant λy/δ̄ ≈ 1.5, while the dominant wavelength for
modes 5 and 18 are λy/δ̄ ≈ 1 and ≈ 0.64, respectively. Dominant spanwise wavelengths
are then computed for all 4800 resolved POD modes and separated into two groups: ‘large’
scales (dominant λy/δ̄ > 0.64, presumably related to LSM/VLSM) and ‘small’ scales
(dominant λy/δ̄ ≤ 0.64 = 2S for case SR25 which will contain a mix of secondary flows
due to spanwise heterogeneity as well as smaller scale non-stationary turbulent features).
With this threshold for ‘large’/‘small’ scale separation, the POD modes associated with
‘large’ and ‘small’ scales make up 0.6 % and 99.4 % of all resolved modes, but contribute
to 33.7 % and 66.3 % of the total kinetic energy, respectively. The fluctuating velocity
fields are then reconstructed from both ‘large’- and ‘small’-scale POD modes in (B1).

For the WPPIV measurements in the x–y plane, FFT is once again computed for each
φu′ in both the x- and y-directions. The 2-D power spectral density of φu′ in the x–y-plane
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is defined as

Φφφ = 4cnc∗
n

�kx�ky
, (B3)

where kx is the streamwise wavenumber. The maxima of the premultiplied 2-D energy
spectra of each POD mode kxkyΦφφ correspond to the dominant streamwise and spanwise
wavelength (λx and λy) of each mode. It should be noted that the accuracy of this method
to detect dominant λx and λy is limited by the streamwise and spanwise extents of the FOV.
Similar to the POD modes of u′ in the y–z plane, φu′ in the x–y plane are also separated into
two groups based on the dominant λy: ‘large’ scales (dominant λy/δ̄ > 0.64) and ‘small’
scales (dominant λy/δ̄ ≤ 0.64 = 2S). No such threshold for scale separation is applied for
the dominant λx. With this threshold for ‘large’/‘small’ scale separation, the POD modes
in the x–y planes associated with ‘large’ and ‘small’ scales make up 6.3 % and 93.7 % of
all resolved 1200 modes, but contribute to 32.8 % and 67.2 % of the total kinetic energy,
respectively.
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