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NONLINEAR POTENTIALS IN FUNCTION SPACES

MURALI RAO and ZORAN VONDRAČEK1) 2)

Abstract. We introduce a framework for a nonlinear potential theory without
a kernel on a reflexive, strictly convex and smooth Banach space of functions.
Nonlinear potentials are defined as images of nonnegative continuous linear
functionals on that space under the duality mapping. We study potentials and
reduced functions by using a variant of the Gauss-Frostman quadratic func-
tional. The framework allows a development of other main concepts of nonlin-
ear potential theory such as capacities, equilibrium potentials and measures of
finite energy.

§1. Introduction

The goal of this paper is to present a fairly general setting which allows

a development of basic concepts of nonlinear potential theory. This setting

provides a unified approach to several aspects of nonlinear potential theory

with kernel, as well as some kernel free potential theory. The concepts that

can be developed include capacities of sets and functions, nonlinear poten-

tials, equilibrium potentials, reduced functions, balayage, and measures of

finite energy.

The framework of our approach is a reflexive, strictly convex and

smooth Banach space of functions satisfying two additional hypotheses.

Nonlinear potential theory in function spaces has been the subject of re-

search in several papers during seventies (e.g., [7], [12], [19]). The goal was

to extend the Dirichlet space theory to the nonlinear setting. This was

achieved under various hypotheses. The common hypothesis was that the

underlying function space is a Banach space with a vector lattice structure.

Almost at the same time, a different type of nonlinear potential the-

ory began to take shape in the works of Fuglede, Meyers, and Havin and
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Maz’ya ([13], [21], [16]). This approach was based on a kernel, and has been

fully developed in the book by Adams and Hedberg ([1], 1996). Besides the

usual Lp-theories (which by use of α-Bessel kernel lead to Sobolev spaces

Hα,p), variants were developed to accomodate function spaces like Besov

spaces and Lizorkin-Triebel spaces (see [1, pp. 104–108], and in a somewhat

different form [22]). Another variant, developed by Aı̈ssaoui and Benki-

rane in [2] and [3], is to replace the Lp-space by a nice Orlicz space. We

also mention the paper by Kazumi and Shikegawa, [18], where a nonlinear

potential theory based on a contraction semigroup on Lp was developed.

The usual setting for Lp-theories with kernel is roughly as follows: Let

X be a Hausdorff topological space (most often locally compact), and let Y

be a measureable space equipped with a positive measure ν. For 1 < p <

∞, let Lp(Y, ν) denote the space of p-integrable functions (or equivalence

classes of functions) on Y . A kernel on X × Y is a function v : X × Y →
[0,∞] satisfying certain regularity assumptions which depend on the precise

settings. Potentials of functions are defined as follows: For a nonnegative

function f on Y , or for f ∈ Lp(Y, ν), let

V f(x) :=

∫

Y
v(x, y)f(y) ν(dy).(1.1)

A norm can be introduced on the linear space of such potentials of functions

providing it with the Banach space strucure. On the other hand, it is rarely

the case that such a space is a lattice.

We propose a framework of a nonlinear potential theory in a function

space which is broad enough to accomodate basic features of nonlinear po-

tential theories with a kernel. The formulation of the theory is in the spirit

of Dirichlet space theory, and is also related to the work of Aronszajn and

Smith in [5]. In studying equilibrium potentials and reduced functions we

minimize convex functions of the norm over closed convex sets. This in-

vites variational methods and one is inevitably led to the concept of duality

mapping. A duality mapping on the dual of the underlying function space

is the key to our approach. We define (nonlinear) potentials to be images,

under the duality mapping, of nonnegative continuous linear functionals on

the function space. Similar definition also appears in [7], [12] and [19]. Our

definition of a nonlinear potential generalizes the definition of nonlinear po-

tentials in potential theories with a kernel (see Section 5, Example A). The

basic assumption we impose is that the duality mapping (on the dual) is

nonnegative, ensuring that potentials are nonnegative functions.
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The concept of the potential is the cornerstone of our approach, and

besides giving several equivalent definitions and convergence properties, we

also point out the usefulness of potentials in applications. These ideas and

applications will be expounded elsewhere. We also pay a close attention to

reduced functions, a concept very important in linear potential theory, but

not much studied in nonlinear settings. Instead of employing the usual min-

imax theorem for studying the dual representation of the reduced function,

we propose a different method based on a variant of the Gauss-Frostman

quadratic functional. A neat treatment of reduced functions following from

this approach is the second main feature of this work.

Let us point out that the proposed framework (with additional topo-

logical and analytical hypotheses) allows a development of other basic ideas

and results of a nonlinear potential theory such as capacities of sets and

functions, quasicontinuous modifications of functions, equilibrium poten-

tials and measures of finite energy. We have obtained the usual results

folowing the methods from [11], [14], [15] and [18], as well as the modi-

fied Gauss-Frostman method for the dual representation of the capacity.

In particular, under appropriate conditions, positive linear functionals are

identified with measures of finite energy. To stay concentrated on what is

new in our approach, we decided to omit these results from the present

paper, and leave them to future extended notes. Moreover, leaving aside

topological and analytical hypotheses shows clearly that certain potential-

theoretic concepts can be developed in a purely functional-analytic setting.

In order to show the versatility of our approach, we discuss examples of

function spaces that fit in our framework.

Organization of the paper: In the next section we introduce the setting

and hypotheses. Potentials are studied in Section 3, and reduced functions

in Section 4. In the last section we present several examples.

§2. Setting and hypotheses

Let X be a nonempty set, and let N be an ideal of subsets of X. More

precisely,

(i) If N ∈ N and M ⊂ N , then M ∈ N , and

(ii) If Nk ∈ N for k ∈ N, then
⋃∞

k=1Nk ∈ N .

We say that a property holds N almost everywhere (N -a.e.) if it holds

outside of a set from N .

Let F be a vector space of N -a.e. defined functions taking values in

[−∞,+∞] such that for every u ∈ F , {|u| = +∞} ∈ N . We assume that
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there is a seminorm ‖ ‖ on F such that ‖u‖ = 0 for u ∈ F , implies that

u = 0 N -a.e. As it is customary, we identify functions that are equal N -

a.e., and denote by the same letter F the vector space of equivalence classes.

Then (F , ‖ ‖) becomes a normed space. There is a natural order on F : for

u, v ∈ F , v ≥ u (as equivalence classes) if v ≥ u N -a.e. (as functions).

In most applications N will be the ideal of sets of measure zero for the

underlying measure, or the ideal of quasi-null sets. In the latter situation,

one would deal with quasicontinuous modifications of functions from F .

Let F∗ denote the dual space of F with the dual norm ‖ ‖. The duality

pairing between φ ∈ F∗ and u ∈ F will be denoted by 〈φ, u〉. We will

assume that (F , ‖ ‖) satisfies the following hypotheses:

Hypothesis (F) on (F , ‖ ‖).
(i) F is a reflexive Banach space,
(ii) F is strictly convex, and
(iii) F is smooth.

Let us recall that the normed space F is strictly convex if for every

u, v ∈ F such that u 6= v and ‖u‖ = ‖v‖ = 1, it follows that ‖u+v‖ < 2. The

space F is smooth if for every u ∈ F , u 6= 0, there exists a unique φ ∈ F∗

such that 〈φ, u〉 = ‖u‖ and ‖φ‖ = 1. It is well known that F is smooth

if and only if the norm ‖ ‖ is Gateaux differentiable on F \ {0} (e.g. [8,

Theorem I. 3.5]). Moreover, since F is reflexive, F is smooth (respectively

strictly convex) if and only if F∗ is strictly convex (respectively smooth)

([8, Corollary II. 1.4]). Therefore, by our hypotheses on F , the dual space

F∗ is also strictly convex and smooth.

We will also need a hypothesis that relates convergence in F with the

pointwise convergence of functions:

Hypothesis (C). If (un, n ∈ N) is a sequence in F such that
limn→∞ un = u in F , then there exists a subsequence (nk, k ∈ N) such
that limk→∞ unk

= u N -a.e.

Let us recall several facts about the duality mapping (due to Asplund

[6]; see also [8, Corollary I. 4.5]). Let γ : [0,∞) → [0,∞) be a continuous

and strictly increasing function such that γ(0) = 0 and limt→∞ γ(t) = +∞.

Such a function γ will be called a weight function. Let Γ : [0,∞) → [0,∞)

be defined by

Γ(t) =

∫ t

0
γ(s) ds
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Then Γ is a convex function (and clearly strictly increasing). Since F
is smooth, there exists a (single valued) duality mapping J : F → F∗

characterized by

〈Ju, u〉 = ‖Ju‖ ‖u‖ and ‖Ju‖ = γ(‖u‖).(2.1)

Moreover,

〈Ju, v〉 =
d

dt
Γ(‖u+ tv‖)|t=0 for any u, v ∈ F .(2.2)

Let us mention that J : F → F∗ is a nonlinear operator. The duality

mapping does not essentially depend on the choice of the weight function.

If γ̂ is another weight function with the corresponding duality mapping Ĵ ,

then

Ĵu =
γ̂(‖u‖)

γ(‖u‖)
Ju, for any u 6= 0.

The duality mapping corresponding to the weight function γ(t) = t is called

the normalized duality mapping. In that case, for u 6= 0, Ju is the gradient

of the norm at u.

Let γ∗ = γ−1 be the inverse function of γ, and define

Γ∗(t) =

∫ t

0
γ∗(s) ds.

Let U : F∗ → F be the duality mapping of weight γ∗ (which is single valued

due to the fact that F∗ is also smooth). Then both J and U are 1-1 and

onto, and moreover U = J−1 (e.g. [8, Corollary II. 3.5]). The dual form of

(2.2) reads

〈ψ,Uφ〉 =
d

dt
Γ∗(‖φ+ tψ‖)|t=0 for any φ,ψ ∈ F∗.(2.3)

Let F+ denote the convex cone of nonnegative elements from F : u ∈ F+

if u ≥ 0 (i.e., u ≥ 0 N -a.e. as a function). Let F∗
+ denote the dual cone of

F+. Thus, φ ∈ F∗
+ if 〈φ, u〉 ≥ 0 for every u ∈ F+. The following simple

result is fundamental.

Theorem 2.1. (i) Let K ⊂ F be a closed, convex set. Then there

exists a unique u0 ∈ K such that

‖u0‖ = min{‖u‖ : u ∈ K}(2.4)

(ii) If K has the property that u ∈ K, v ∈ F+ imply that u + v ∈ K, then

Ju0 ∈ F∗
+.
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Proof. (i) The existence of u0 follows from the reflexivity of F by
Mazur’s lemma. The uniqueness follows from strict convexity of the norm.
(ii) Note that since Γ is strictly increasing, it holds that

Γ(‖u0‖) = min{Γ(‖u‖) : u ∈ K}.

Let v ≥ 0. Then u0 + tv ∈ K for every t ≥ 0. Hence Γ(‖u0 + tv‖) ≥ Γ(‖u0‖)
for every t ≥ 0, implying that

0 ≤
d

dt
Γ(‖u0 + tv‖)|t=0 = (2.2) = 〈Ju0, v〉.

Since this holds for every v ≥ 0, it follows that Ju0 ∈ F∗
+.

For a function u ∈ F let u+ = max{u, 0}. We introduce now a new

hypothesis on F which is crucial:

Hypothesis (D+). For every u ∈ F there exists v ∈ F such that
u+ ≤ v and ‖v‖ ≤ ‖u‖.

The following result shows that (D+) is the correct hypothesis if one

wants potentials to be nonnegative functions.

Proposition 2.2. The following are equivalent :
(i) Hypothesis (D+) holds true.

(ii) The duality mapping U : F∗ → F is nonnegative in the sense that if

φ ∈ F∗
+, then Uφ ∈ F+.

Proof. (i) ⇒ (ii): Let φ ∈ F∗
+ \ {0}, and let u = Uφ. Let us consider

the set
Ku := {v ∈ F : v ≥ u}.

Then Ku is convex, closed and satisfies the assumption from Theorem 2.1
(ii) (note that closedness follows from hypothesis (C)). Let

‖u0‖ = min{‖v‖ : v ∈ Ku}.

By 2.1 (ii), Ju0 ≥ 0 in F∗. By (D+), there exists v ∈ F such that v ≥ u+
0 ≥

0 and ‖v‖ ≤ ‖u0‖. Therefore, v ≥ u0 ≥ u, hence v ∈ Ku. Since ‖v‖ ≤ ‖u0‖,
by uniqueness v = u0. Therefore, u0 ≥ 0.

We show now that u = u0 which proves the claim. Note that Ju =
J(Uφ) = φ ≥ 0. Since u0 − u ≥ 0, it follows that 0 ≤ 〈Ju, u0 − u〉,
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i.e., 〈Ju, u〉 ≤ 〈Ju, u0〉. From (2.1), 〈Ju, u〉 = ‖Ju‖ ‖u‖, while 〈Ju, u0〉 ≤
‖Ju‖ ‖u0‖. Therefore, ‖u‖ ≤ ‖u0‖. Since ‖u0‖ ≤ ‖u‖ by definition, unique-
ness and the fact that u ∈ Ku imply that u = u0.

(ii) ⇒ (i): Let u ∈ F , and let ‖u0‖ = min{‖v‖ : v ≥ u}. Then u0 ≥ u,
‖u0‖ ≤ ‖u‖, and by Theorem 2.1 (ii), Ju0 ≥ 0. By the assumption on U ,
u0 = U(Ju0) ≥ 0. Thus, u0 ≥ u and u0 ≥ 0, implying that u0 ≥ u+. Since
‖u0‖ ≤ ‖u‖, (D+) holds true.

It is worth pointing out that J : F → F∗ need not be nonnegative.

Let us note that nonnegativity of U may be regarded as a replacement for

the concept of obtuse cones studied in [9]. A Dirichlet space theory view

on (D+) reveals it as a weak form of the contraction principle. A slightly

stronger form would be the following

Hypothesis (D). For every u ∈ F there exists v ∈ F such that
|u| ≤ v and ‖v‖ ≤ ‖u‖.

It is clear that (D) implies (D+). On the other hand, if (D+) holds

true, then for given u ∈ F , there exists v ∈ F such that |u| ≤ v, but

‖v‖ ≤ 2‖u‖. Hypothesis (D) is needed for a development of a satisfactory

concept of capacity of sets and functions. We will have no need of it in

the present paper. From now on, we assume that hypotheses (F), (C) and

(D+) hold true.

At the end of this section, let us introduce a variant of the Gauss-

Frostman quadratic functional. For u ∈ F let Q = Qu : F∗ → R be the

mapping defined by

Q(φ) := Γ∗(‖φ‖) − 〈φ, u〉.(2.5)

Minimization of the functional Q over various subsets of functionals in F∗

will be one of our main tools in studying potentials and reduced functions.

Note that Q is a weak-∗ lower semicontinuous function on F∗. Indeed,

this follows from the well-known fact that φ 7→ ‖φ‖ is weak-∗ l.s.c., from

continuity of Γ∗, and weak-∗ continuity of the mapping φ 7→ 〈φ, u〉.

§3. Potentials

The following definition of a nonlinear potential is based on the dis-

cussion from the introduction, and, as will be seen in examples, includes

definitions of nonlinear potentials in other settings.
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Definition 3.1. We say that u ∈ F is a potential, if u = Uφ for
φ ∈ F∗

+. The function Uφ is called the potential of φ. The set of all
potentials will be denoted by P.

Note that since U is 1-1 and onto, the representation u = Uφ is unique.

Importance of potentials lies in the following observation which easily fol-

lows from Theorem 2.1: For each u ∈ F there exists a potential v ∈ P such

that v ≥ u and ‖v‖ ≤ ‖u‖. In various inequalities the size of a function is

estimated by its norm (e.g. the strong capacitary inequality). The above

observation shows that it is usually sufficient to do the estimate for poten-

tials only. If one wanted to estimate the size of the absolute value of the

function from F , the stronger assumption (D) would be needed.

The following theorem gives several equivalent characterizations of po-

tentials. Equivalence of (i), (iii) and (vi) was shown in [18], of (i), (ii) and

(iii) in [19, Theorem 3.1, Theorem 5.8], and (i) and (iii) in [22, Theorem 10],

and in [12, Proposition 2.5], in respective settings. Implication (iii) ⇒ (i)

appears also in [16] as Lemma 4.1.

Theorem 3.2. Let u ∈ F . The following are equivalent :
(i) u is a potential.

(ii) 〈Ju, v〉 ≥ 0 for every v ∈ F+ (i.e., Ju ∈ F∗
+).

(iii) For every v ∈ F such that v ≥ u it follows that ‖v‖ ≥ ‖u‖.
(iv) min{Q(ψ) : ψ ∈ F∗

+} = min{Q(ψ) : ψ ∈ F∗}.
(v) sup{〈φ, u〉 : φ ∈ F∗

+, ‖φ‖ ≤ 1} = sup{〈φ, u〉 : φ ∈ F∗, ‖φ‖ ≤ 1}.
(vi) u ≥ 0 and c(ũ) = ‖u‖.

Remark. In (iv), Q = Qu. In (vi), c(ũ) denotes the capacity of the
quasicontinuous modification of u. Although we do not deal with these
notions in the present paper, (vi) is included for completness.

Proof. We prove here the equivalence of (i), (ii) and (iii), and leave
the rest to Section 4.

(i) ⇔ (ii): This is immediate from definition and Proposition 2.2.

(iii) ⇒ (ii): Let ‖u0‖ = min{‖v‖ : v ≥ u}. Then u0 ≥ u, ‖u0‖ ≤ ‖u‖,
and Ju0 ≥ 0. By the assumption ‖u0‖ ≥ ‖u‖, and therefore by uniqueness
u0 = u. Hence Ju ≥ 0.

(i) ⇒ (iii): Again, let ‖u0‖ = min{‖v‖ : v ≥ u}. Then u0 ≥ u, u0 ≥ 0,
‖u0‖ ≤ ‖u‖, and Ju0 ≥ 0. Since u is a potential, Ju ≥ 0. Therefore,
0 ≤ 〈Ju, u0 − u〉, i.e., 〈Ju, u〉 ≤ 〈Ju, u0〉. By (2.1), ‖Ju‖ ‖u‖ ≤ ‖Ju‖ ‖u0‖,
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implying that ‖u‖ ≤ ‖u0‖. By uniqueness, u0 = u, and therefore ‖u‖ ≤ ‖v‖
for every v ∈ F satisfying v ≥ u.

The next corollary should be compared with Theorem 3.1 in [9].

Corollary 3.3. Let u ∈ F . There exist u1 and u2 in F+ such that

u = u1 − u2 and u1 is a potential. Moreover, 〈Ju1, u2〉 = 0.

Proof. Let ‖u1‖ = inf{‖v‖ : v ∈ F , v ≥ u}. Then u1 is a potential,
u1 ≥ u, and ‖u1‖ ≤ ‖u‖. Let u2 := u1 − u. Then u = u1 − u2 and u2 ≥ 0.
Next, let w ∈ F+. Then for every t ≥ 0, u1+t(w−u2) = (1−t)u1+t(w+u) ≥
(1 − t)u + t(w + u) = u + tw ≥ u. Therefore, 〈Ju1, w − u2〉 ≥ 0 for every
w ≥ 0. By taking w = 0 and w = 2u2, it follows that 〈Ju1, u2〉 = 0.

An analog of Cartan’s result on completness of potentials is valid, and

has an easy proof.

Theorem 3.4. The set P of all potentials is complete.

Proof. It suffices to show that P is closed in F . Let {un : n ∈ N} be
a sequence of potentials such that un → u in F . Since the duality mapping
J is norm to weak-∗ continuous (e.g. [8, Theorem I.4.12]), it follows that
Jun → Ju weak-∗ in F∗. Let f ∈ F , f ≥ 0. Then 〈Ju, f〉 = limn〈Jun, f〉 ≥
0, because Jun ∈ F∗

+. It follows that Ju ∈ F∗
+, and therefore u = U(Ju) ∈

P.

In the next proposition we show, under the additional assumption of

uniform convexity of F , that the family of potentials is closed under mono-

tone limits. Moreover, proofs of both parts show the usefulness of charac-

terization of potentials by property (iii) in Theorem 3.2.

Proposition 3.5. Assume that F is uniformly convex.

(a) Let 0 ≤ u1 ≤ u2 ≤ · · · be an increasing sequence of potentials such that

sup{‖un‖ : n ∈ N} <∞. Let u = limn un N -a.e. Then u ∈ F and u is also

a potential.

(b) Let u1 ≥ u2 ≥ · · · be a decreasing sequence of potentials, and let u =
limn un N -a.e. Then u ∈ F and u is also a potential.
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Proof. (a) Let ρ := sup{‖un‖ : n ∈ N} < ∞. Since every un is a
potential, the sequence {‖un‖ : n ∈ N} is increasing, and therefore, ρ =
limn ‖un‖. Let us consider the sequence {un/ρ : n ∈ N}. Clearly,

lim
n

‖un/ρ‖ = 1.(3.1)

Further, for m < n it holds that (1/2)(um + un) ≥ um. Since um is a
potential, ‖(1/2)(um + un)‖ ≥ ‖um‖. It follows that

lim inf
m,n→∞

∥∥∥ 1

2

(um

ρ
+
un

ρ

)∥∥∥ ≥ lim inf
m

∥∥∥um

ρ

∥∥∥ = 1.(3.2)

From (3.1) and (3.2) it follows that the sequence {un/ρ : n ∈ N} converges
(strongly) in F (e.g., [1, Corollary 1.3.3]). Hence, {un : n ∈ N} also con-
verges in F , and by hypothesis (C) it easily follows that the limit function is
equal to u. Thus u ∈ F , and clearly, ‖u‖ = ρ. Suppose now that v ∈ F such
that v ≥ u. Then v ≥ un, hence ‖v‖ ≥ ‖un‖, for every n ∈ N. Therefore,
‖v‖ ≥ ‖u‖, and by Theorem 3.2, u is a potential.

(b) By boundedness of {‖un‖ : n ∈ N} and reflexivity of F , we may
assume, without loss of generality, that un → v weakly for some v ∈ F .
By a corollary of Mazur’s lemma, there is a sequence of {vn : n ∈ N}
of convex combinations of {un : n ∈ N} such that vn → v in F . More
precisely, for each n ∈ N, vn =

∑kn

j=1 αnjuj , αnj ≥ 0, j = 1, . . . , kn,
∑kn

j=1 αnj = 1. Note that vn ≥
∑kn

j=1 αnjukn
= ukn

, for every n ∈ N.
Since ukn

is a potential, it holds that ‖vn‖ ≥ ‖ukn
‖, for every n ∈ N.

Therefore, lim supn ‖ukn
‖ ≤ lim ‖vn‖ = ‖v‖. On the other hand, ukn

→ v
weakly, and so lim infn ‖ukn

‖ ≥ ‖v‖ by the weak lower semicontinuity of
the norm. These two inequalities imply that limn ‖ukn

‖ = ‖v‖. Since F
was assumed to be uniformly convex, it follows that ukn

→ v in F . By
Theorem 3.4, v ∈ P. Moreover, by the hypothesis (C), v = u N -a.e. Thus
u ∈ P.

Remark. Suppose that 0 ≤ u1 ≤ u2 ≤ · · · is an increasing sequence
of potentials converging N -a.e. to u. If we assume that u ∈ F , then u ≥
un and the fact that un is a potential, imply that ‖un‖ ≤ ‖u‖. Hence,
supn{‖un‖, n ∈ N} <∞, and therefore, u is a potential.

§4. Reduced functions

Let B ⊂ X. For u, v ∈ F we say that v ≥ u on B (as equivalence

classes) if v ≥ u N -a.e. on B (as functions). This means that there is
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N ∈ N such that v(x) ≥ u(x) for every x ∈ B \N . Let

Ku,B := {v ∈ F : v ≥ u on B}.

Then Ku,B is convex and closed in F . Moreover, if v ∈ Ku,B and w ∈ F+,

then v + w ∈ Ku,B . Thus the following theorem is a direct consequence of

Theorem 2.1

Theorem 4.1. Let u ∈ F . There exists a unique uB ∈ Ku,B such that

‖uB‖ = min{‖v‖ : v ≥ u on B}.(4.1)

Moreover, uB is a potential and there is a unique φB ∈ F∗
+ such that uB =

UφB.

Definition 4.2. The potential uB = UφB is called the reduced func-

tion of u onto B.

Remark. We note that (uB)B = uB . Indeed, since uB ≥ u on B, it
follows that

‖(uB)B‖ = inf{‖v‖ : v ≥ uB on B}

≥ inf{‖v‖ : v ≥ u on B} = ‖uB‖.

But clearly, ‖(uB)B‖ ≤ ‖uB‖. Therefore, (uB)B = uB.

Now we want to show that the functional φB representing the reduced

function uB is “supported” by B. To make this precise, let

FX\B, + := {v ∈ F : v ≥ 0 on B}.

and let FX\B := (FX\B, +)∩(−FX\B, +). Note that both FX\B, + and FX\B

are closed in F . Indeed, if (vn, n ∈ N) ⊂ FX\B, + and vn → v in F , then

there is a subsequence (vnk
, k ∈ N) such that vnk

→ v N -a.e. Therefore,

v ≥ 0 N -a.e. on B, i.e., v ∈ FX\B, +.

The object dual to FX\B, + is defined by

F∗
B, + := {φ ∈ F∗ : 〈φ, u〉 ≥ 0 for every u ∈ FX\B, +}.

Note that F∗
B, + ⊂ F∗

+. Moreover, if F∗
B := {φ ∈ F∗ : 〈φ, u〉 = 0 for every

u ∈ FX\B}, then also F∗
B, + ⊂ F∗

B . It is reasonable to regard the elements

of F∗
B, + as positive functionals “supported” by B.
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Lemma 4.3. Let u ∈ F satisfy 〈φ, u〉 ≥ 0 for every φ ∈ F∗
B, +. Then

u ∈ FX\B, +.

Proof. Suppose that u /∈ FX\B, +. Since FX\B, + is closed and convex,
by the Hahn-Banach separation theorem there exists φ0 ∈ F∗ such that

〈φ0, u〉 < inf{〈φ0, v〉 : v ∈ FX\B, +}.

Let v ∈ FX\B, +. Then nv ∈ FX\B, + for every n ∈ N, and hence

〈φ0, u〉 < 〈φ0, nv〉 = n〈φ0, v〉, for every n ∈ N.

This is possible only if 〈φ0, v〉 ≥ 0. Since v ∈ FX\B, + was arbitrary, it
follows that φ0 ∈ F∗

B, +. On the other hand, 〈φ0, u〉 < inf{〈φ0, v〉 : v ∈
FX\B, +} = 0, contradicting the assumption on u.

Corollary 4.4. (i) If 〈φ, u〉 ≥ 0 for every φ ∈ F∗
+, then u ∈ F+.

(ii) F∗
B, + = {0} if and only if B ∈ N .

Let u ∈ F be fixed, and recall that Q = Qu : F∗ → R was defined by

(2.5) as Q(φ) = Γ∗(‖φ‖) − 〈φ, u〉.

Lemma 4.5. Let φ ∈ F∗ and let ‖φ‖ = 1. Then t 7→ Q(tφ), t ∈ R,

attains its minimum for |t| ≤ γ(‖u‖).

Proof. Since ‖φ‖ = 1, it follows that Q(tφ) = Γ∗(|t|)−t〈φ, u〉. Further,

d

dt
Γ∗(tφ) = (sign t)γ∗(t) − 〈φ, u〉.

It easily follows that the minimum is attained for |t| ≤ γ(|〈φ, u〉|) ≤
γ(‖φ‖ ‖u‖) = γ(‖u‖).

Let G∗ ⊂ F∗ be any closed subset of functionals having a nonempty

intersection with the closed ball {φ ∈ F∗ : ‖φ‖ ≤ γ(‖u‖)}. Lemma 4.5

shows that

inf{Q(φ) : φ ∈ G∗} = inf{Q(φ) : φ ∈ G∗, ‖φ‖ ≤ γ(‖u‖)}.

Moreover, by the Banach-Alaoglu theorem, G∗ ∩ {φ : ‖φ‖ ≤ γ(‖u‖)} is

weak-∗ compact. Therefore, the infimum of the right hand side, and hence

of the left hand side, is attained.
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Lemma 4.6. Let G∗ be a closed and convex subset of F∗ having a

nonempty intersection with the closed ball of radius γ(‖u‖). Then there

exists a unique ψ ∈ G∗ such that

Q(ψ) = min{Q(φ) : φ ∈ G∗}.(4.2)

Proof. Existence of such a ψ was shown before the lemma. Suppose
that there are two functionals, ψ1, ψ2 ∈ G∗ minimizing the right hand side
in (4.2). By convexity of G∗, ψ := (ψ1 + ψ2)/2 ∈ G∗. By strict convexity of
F∗ and convexity of Γ∗ the following sequence of inequalities is valid:

Q(ψ) = Γ∗(‖ψ‖) − 〈ψ, u〉

< Γ∗
( 1

2
‖ψ1‖ +

1

2
‖ψ2‖

)
−

1

2
〈ψ1, u〉 −

1

2
〈ψ2, u〉

≤
1

2
Γ∗(‖ψ1‖) +

1

2
Γ∗(‖ψ2‖) −

1

2
〈ψ1, u〉 −

1

2
〈ψ2, u〉

=
1

2
Q(ψ1) +

1

2
Q(ψ2) = Q(ψ1)

But this contradicts the fact that ψ1 minimizes the right hand side in (4.2).

Let B ⊂ X, let u ∈ F , and let uB = UφB be the reduced function of

u onto B. The Gauss-Frostman approach to reduced functions consists of

solving the following minimizing problem:

min{Q(ψ) : ψ ∈ F∗
B, +}.(4.3)

By taking G∗ = F∗
B, + in Lemma 4.6, we conclude that there exists a unique

ψB ∈ F∗
B, + such that

Q(ψB) = min{Q(ψ) : ψ ∈ F∗
B, +}.(4.4)

Theorem 4.7. The potential of ψB is equal to the reduced function of

u onto B: UψB = uB. In particular φB = ψB.

Proof. Recall equation (2.3) according to which for every ψ ∈ F∗

d

dt
Γ∗(‖ψB + tψ‖)|t=0 = 〈ψ,UψB〉 .(4.5)
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Let t ≥ 0 and ψ ∈ F∗
B, +. Then ψB +tψ ∈ F∗

B, + and therefore Q(ψB +tψ) ≥
Q(ψB) for every t ≥ 0. Therefore

d

dt
Q(ψB + tψ)|t=0 ≥ 0.

By using (4.5), it follows that

d

dt
Q(ψB + tψ)|t=0 = 〈ψ,UψB〉 − 〈ψ, u〉.

Therefore,

〈ψ,UψB − u〉 ≥ 0 for every ψ ∈ F∗
B, +.(4.6)

By Lemma 4.3 it follows that UψB − u ∈ FX\B, +, i.e., UψB ≥ u on B.
Further, notice that ψB + tψB ∈ F∗

B, + for every t ∈ (−1,∞). This is
clear for t ≥ 0, while for t ∈ (−1, 0), ψB + tψB = (1 + t)ψB ∈ F∗

B, + since
1+ t > 0. Therefore, Q(ψB + tψB) ≥ Q(ψB) for every t > −1. This implies
that

0 =
d

dt
Q(ψB + tψB)|t=0 = 〈ψB , UψB − u〉.(4.7)

Further, since uB ≥ u on B, it follows that 〈ψB , uB − u〉 ≥ 0. Hence,
〈ψB , uB − UψB〉 = 〈ψB , uB − u〉 + 〈ψB , u − UψB〉 ≥ 0. Therefore,
‖ψB‖ ‖UψB‖ = 〈ψB , UψB〉 ≤ 〈ψB , uB〉 ≤ ‖ψB‖ ‖uB‖. If ‖ψB‖ 6= 0, it
follows that ‖UψB‖ ≤ ‖uB‖. But UψB ≥ u on B. Hence by uniquness of
the reduced function, it follows that UψB = uB . The case when ‖ψB‖ = 0
may happen only when u ∈ −(FX\B, +), when clearly uB = 0 and the zero
functional minimizes Q.

By taking B ⊂ X such that X \ B ∈ N (or simply B = X), we get

that FX\B, + = F+ and F∗
B, + = F∗

+. Let u ∈ F , and let ‖u0‖ = ‖Uφ0‖ =

min{v ∈ F : v ≥ u}. If

Q(ψ0) = min{Q(ψ) : ψ ∈ F∗
+},

then by Theorem 4.7, u0 = Uψ0. We may now prove the equivalence of

(i) and (iv) from Theorem 3.2. Let ψ̂0 ∈ F∗ minimize the right hand side

in (iv). Then Q(ψ̂0 + tψ) ≥ Q(ψ̂0) for every ψ ∈ F∗ and every t ∈ R.

Therefore,

0 =
d

dt
Q(ψ̂0 + tψ)|t=0 = 〈ψ,Uψ̂0 − u〉 for every ψ ∈ F∗.
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This implies that u = Uψ̂0.

(i) ⇒ (iv): If u is a potential, then ψ̂0 = Ju ≥ 0, hence ψ̂0 minimizes

Q over nonnegative functionals as well.

(iv) ⇒ (i): If Q(ψ̂0) = min{Q(ψ) : ψ ∈ F∗
+}, then ψ̂0 ∈ F∗

+, and hence

u = Uψ̂0 is a potential.

Here is a simple corollary of the fact that φB ∈ F∗
B, +.

Corollary 4.8. Let u ∈ F , B ⊂ X, and let uB = UφB be the reduced

function of u onto B. Let v ∈ F be such that v ≥ u on B. Then 〈φB , uB〉 ≤
〈φB , v〉.

Proof. Note that for t ∈ [0, 1] it holds that uB + t(v − uB) = (1 −
t)uB + tv ≥ u on B. Therefore, ‖uB + t(v−uB)‖ ≥ ‖uB‖ for every t ∈ [0, 1].
Hence,

0 ≤ 〈JuB , v − uB〉 = 〈φB , v − uB〉

Alternatively, since 〈φB , u − uB〉 = 0, it follows immediately that

〈φB , v − uB〉 = 〈φB , v − u〉 + 〈φB , u− uB〉 ≥ 0.

Let again B ⊂ X, and let u ∈ F . We consider the following dual

problem:

sup{〈φ, u〉 : φ ∈ F∗
B, +, ‖φ‖ ≤ 1}.(4.8)

Note that φ 7→ 〈φ, u〉 is weak-∗ continuous. Since the set F∗
B, +∩{φ : ‖φ‖ ≤

1} is weak-∗ compact, the mapping φ 7→ 〈φ, u〉 attains its maximum on that

set. Let χB ∈ F∗
B, +, ‖χB‖ ≤ 1 be the maximizing functional:

〈χB , u〉 = max{〈φ, u〉 : φ ∈ F∗
B, +, ‖φ‖ ≤ 1}.(4.9)

Suppose that u ≤ 0 on B. For every φ ∈ F∗
B, + it holds that 〈φ, u〉 ≤

0. Therefore, χB = 0. Moreover, note that for such u it holds that

uB = UφB = 0 and therefore φB = 0. From now on we assume that

u /∈ −FX\B, +.

Lemma 4.9. Suppose that u /∈ −FX\B, +. There exists a unique χB

such that (4.9) holds true. Moreover, ‖χB‖ = 1.
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Proof. The existence of χB with ‖χB‖ ≤ 1 was shown. Note that
there exists φ ∈ F∗

B, + such that 〈φ, u〉 > 0. Indeed, if 〈φ, u〉 ≤ 0 for every
φ ∈ F∗

B, +, then it follows by Lemma 4.3 that u ≤ 0 on B, contrary to the
assumption.

This implies that 〈χB , u〉 > 0. If ‖χB‖ < 1, then

〈 χB

‖χB‖
, u

〉
> 〈χB , u〉.

Therefore, ‖χB‖ = 1.
Suppose that χ1 and χ2 are two functionals in F∗

B, + maximizing the
right hand side in (4.8) both having norm equal to 1. Define χ := (χ1 +
χ2)/2. Then χ ∈ F∗

B, +, ‖χ‖ < 1 (by the strict convexity of F∗), and clearly

〈χ, u〉 = max{〈φ, u〉 : φ ∈ F∗
B, +, ‖φ‖ ≤ 1}.

But every maximizing functional is of norm 1, contradicting the fact that
‖χ‖ < 1. Therefore, χB is unique.

Theorem 4.10. Let B ⊂ X, let u ∈ F , u /∈ −FX\B, +, and let uB =
UφB be the reduced function of u onto B. Let χB satisfy (4.9). Then

χB =
φB

‖φB‖
.

Proof. Recall from Theorem 4.7 that φB minimizes Q over all func-
tionals in F∗

B, +. Therefore

Γ∗(‖φB‖) − 〈φB , u〉 = Q(φB) ≤ Q(‖φB‖χB) = Γ∗(‖φB‖) − ‖φB‖〈χB , u〉.

It follows that

〈χB , u〉 ≤
〈 φB

‖φB‖
, u

〉
.

By uniqueness of χB it follows that χB = φB/‖φB‖.

Having identified the functional maximizing (4.8), it is now easy to

compute the value of the maximum. Indeed,

〈χB , u〉 =
〈 φB

‖φB‖
, u

〉
=

1

‖φB‖
〈φB , UφB〉 = ‖UφB‖,

because 〈φB , UφB〉 = ‖φB‖ ‖UφB‖. Thus, the following corollary holds.
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Corollary 4.11. For B ⊂ X and u ∈ F we have

inf{‖v‖ : v ∈ F , v ≥ u on B} = ‖uB‖(4.10)

= sup{〈φ, u〉 : φ ∈ F∗
B, +, ‖φ‖ ≤ 1}.

We can now prove the equivalence of (i) and (v) from Theorem 3.2.

Note that sup{〈φ, u〉 : φ ∈ F∗, ‖φ‖ ≤ 1} = ‖u‖, and the unique functional

for which the maximum is attained is Ju/‖Ju‖. If u is a potential, then

Ju ∈ F∗
+, and therefore (v) holds. If (v) holds, then it follows that Ju ≥ 0,

hence u is a potential.

The following proposition compares the reduced functions onto two

different sets.

Proposition 4.12. Let B ⊂ C ⊂ X, let u ∈ F , and let uB = UφB

and uC , be the reduced functions of u onto B and C, respectively. Then

〈φB , uC − uB〉 ≥ 0.(4.11)

Proof. Let uC = UφC , and let χB = φB/‖φB‖ and χC = φC/‖φC‖.
Then

〈χB , u〉 = sup{〈φ, u〉 : φ ∈ F∗
B, +, ‖φ‖ ≤ 1}

〈χC , u〉 = sup{〈φ, u〉 : φ ∈ F∗
C, +, ‖φ‖ ≤ 1}

Since FX\B, + ⊃ FX\C, +, it follows that F∗
B, + ⊂ F∗

C, +, and therefore
〈χB , u〉 ≤ 〈χC , u〉. Note that 〈χB , u〉 = 〈χB , uB〉 (see (4.7)). Further, since
uC ≥ u on C ⊃ B, it follows that 〈χB , uC −u〉 ≥ 0, i.e., 〈χB, u〉 ≤ 〈χB, uC〉.
Therefore, 〈χB , uB〉 = 〈χB , u〉 ≤ 〈χB, uC〉, i.e., 〈φB , uC − uB〉 ≥ 0.

We will now show another convergence result. For the proof we need

the result due to S. Kakutani saying that every uniformly convex Banach

space has the following Banach-Saks property: Every bounded sequence has

a subsequence whose arithmetic means converge in norm (e.g. [10, p. 78]).

Proposition 4.13. Assume that both F and F∗ are uniformly convex.

Let B ⊂ X, let u ∈ F , u ≥ 0, and let {un ; n ∈ N} ⊂ F be a sequence such

that u1 ≥ u2 ≥ · · · on B and limn un = u on B. Assume that sup{‖un‖ :
n ∈ N} < ∞. Let (un)B be the reduced function of un onto B. Then

(un)B → uB in F .
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Proof. First note that since un+1 ≤ un and (un)B ≥ un on B, it
follows that (un)B ≥ un+1 on B. Therefore, ‖(un)B‖ ≥ ‖(un+1)B‖. Also,
sup{‖(un)B‖ : n ∈ N} < ∞. By passing to a subsequence, we may assume
that there are u′, v ∈ F such that un → u′ and (un)B → v weakly, and
arithmetic means wn of {(un)B : n ∈ N} converge to v strongly. Clearly,
wn ≥ un on B, and hence, ‖wn‖ ≥ ‖(un)B‖. Similarly as in the proof of
Proposition 3.5 (ii), it follows that (un)B → v strongly in F , and v is a
potential. Moreover, by (C), v ≥ u on B, and hence, ‖v‖ ≥ ‖uB‖. Let
(un)B = Uφn and v = Uφ. By uniform convexity of F∗, J is norm to norm
continuous (e.g. [8, Theorem II.2.16]). Therefore, φn → φ in F∗. Since
φn ∈ F∗

B, +, it follows that φ ∈ F∗
B, + as well. Further, 〈φn − φ, un〉 ≤

‖φn − φ‖ ‖un‖ → 0. Next, by equation (4.2),

〈φn, (un)B〉 = 〈φn, un〉(4.12)

for every n ∈ N. Since un → u′ weakly, arithmetic means converge strongly,
and by (C), N -a.e. Hence, u′ = u on B. Therefore, 〈φ, un〉 → 〈φ, u′〉 =
〈φ, u〉. It follows from (4.12) that

lim
n
〈φn, (un)B〉 = lim

n
〈φn, un〉 = lim

n
〈φ, un〉 + lim

n
〈φn − φ, un〉 = 〈φ, u〉.

Let χ ∈ F∗
B, +, ‖χ‖ ≤ 1. Then 〈χ, un〉 ≤ 〈φn/‖φn‖, un〉. Hence,

〈χ, u〉 ≤ 〈χ, un〉 ≤
〈 φn

‖φn‖
, un

〉
−→

〈 φ

‖φ‖
, u

〉
,

provided φ 6= 0. Therefore,

〈 φ

‖φ‖
, u

〉
= sup{〈χ, u〉 : χ ∈ F∗

B, +, ‖χ‖ ≤ 1} = ‖uB‖

by Corollary 4.11. Let uB = UφB . By Theorem 4.10, φ/‖φ‖ = φB/‖φB‖.
Since we know that ‖Uφ‖ = ‖v‖ ≥ ‖uB‖ = ‖UφB‖, it follows ‖φ‖ ≥ ‖φB‖,
and therefore ‖φ‖ = ‖φB‖. This proves that v = uB . The case when φ = 0
is even simpler.

Since this holds for every subsequence, the claim of the proposition
follows.

It is possible to consider a concept of a reduced function for a function

which does not necessarily belong to F . Indeed, let f : X → R be an

N -a.e. defined function. For B ⊂ X assume that the set Kf,B = {v ∈ F :
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v ≥ f on B} is nonempty. Then exactly as before we may conclude that

there exists a unique potential fB = UφB such that

‖fB‖ = inf{‖v‖ ; v ∈ Kf,B}.

Let us show that φB ∈ F∗
B, +. Look at (fB)B defined uniquely by

‖(fB)B‖ = inf{‖v‖ : v ∈ F , v ≥ fB on B}.

Note that (fB)B ≥ fB on B, and hence (fB)B ≥ f on B. Therefore ‖fB‖ ≥
‖(fB)B‖. By definition ‖fB‖ ≥ ‖(fB)B‖. By uniqueness, (fB)B = fB =

UφB. Since fB ∈ F , the fact that φB ∈ F∗
B, + follows from Theorem 4.7.

§5. Examples

We present now several examples that satisfy the introduced hypothe-

ses.

Example A. Our first example is in fact a framework for a series of
examples of nonlinear potential theories with a kernel.

Let X be a nonempty set and N an ideal of subsets of X. Let G
denote the vector space of all N -a.e. defined functions on X taking values
in [−∞,+∞] such that for every u ∈ G, {|u| = +∞} ∈ N . We identify
functions in G with equivalence classes of N -a.e. equal functions, and use
the same letter G for the vector space of equivalence classes.

Let Y be another nonempty set, and let (L, ‖ ‖L) be a Banach lattice
of equivalence classes of functions on Y . We do not specify the equivalence
relation yet. Assume that (L, ‖ ‖L) is a reflexive, strictly convex and smooth
space. There is a natural order on L: For f, g ∈ L, f ≤ g in L if f ≤ g
pointwise. We also assume that for every f ∈ L it holds that ‖ |f | ‖L ≤
‖f‖L. Let (L∗, ‖ ‖L∗) denote the dual space of L. We assume that there is
a linear map V : L→ G having the following properties:
(i) If f ≥ 0 in L, then V f ≥ 0 in G,
(ii) If fn → f in (L, ‖ ‖L), then there exists a subsequence (nk, k ∈ N) such
that V fnk

→ V f N -a.e.
Let N := {f ∈ L : V f = 0} be the kernel of V . It follows from (ii) that

N is closed in L. Let (L/N, ‖ ‖L/N ) be the quotient space with the quotient
norm, and let ((L/N)∗, ‖ ‖(L/N)∗) be its dual. Let π : L → L/N be the
natural map with the adjoint π∗. Recall that ‖π(f)‖L/N = inf{‖f + g‖L :
g ∈ N}. It follows from reflexivity, strict convexity and smoothness of L,
that ‖π(f)‖L/N = ‖f‖L for a unique f ∈ L. Moreover, if J : L → L∗
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is the duality mapping, then f is characterized by the following property:

L∗〈Jf, g〉L = 0 for every g ∈ N . By using this fact (among some others),
one easily shows that (L/N, ‖ ‖L/N ) is reflexive, strictly convex and smooth.
Moreover, if I : L∗ → L is the duality mapping of weight γ∗, then the duality
mapping Ĩ : (L/N)∗ → L/N is of the form

Ĩ = π ◦ I ◦ π∗.(5.1)

We define the vector space F as the image of L by the map V : F :=
V (L). Let Ṽ : L/N → G be defined by Ṽ ◦π = V . Then also F = Ṽ (L/N).
For u = V f = Ṽ (π(f)), let ‖u‖ := ‖π(f)‖L/N . Note that one can choose
a unique f ∈ L such that u = V f and ‖u‖ = ‖f‖L. We will say that
such f minimizes the quotient norm. Since Ṽ : L/N → F is an isometric
isomorphism, the Banach space (F , ‖ ‖) is reflexive, strictly convex and
smooth. Hence, hypotheses (F) are satisfied. Hypothesis (C) follows easily
from property (ii) of V . Let us check that (D) also holds. Let u = V f ∈ F
with f ∈ L such that ‖u‖ = ‖f‖L. Define v := V |f | ∈ F . By nonnegativity
of V , it follows that |u| ≤ v. Moreover, ‖v‖ = ‖π(|f |)‖L/N ≤ ‖ |f | ‖L ≤
‖f‖L = ‖u‖.

Let (F∗, ‖ ‖) be the dual space with the dual norm, and let Ṽ ∗ : F∗ →
(L/N)∗ be the adjoint operator of Ṽ . Then Ṽ ∗ is also an isometric isomor-
phism. Let U : F∗ → F be the duality mappings of weight γ∗. Then

U = Ṽ ◦ Ĩ ◦ Ṽ ∗.(5.2)

Indeed, for φ ∈ F∗ it holds that

〈φ, (Ṽ ◦ Ĩ ◦ Ṽ ∗)φ〉 = (L/N)∗〈Ṽ
∗φ, Ĩ(Ṽ ∗φ)〉(L/N)

= ‖Ṽ ∗φ‖(L/N)∗‖Ĩ(Ṽ
∗φ)‖(L/N)

= ‖Ṽ ∗φ‖(L/N)∗γ
∗(‖Ṽ ∗φ‖(L/N)∗) = ‖φ‖γ∗(‖φ‖),

and

‖(Ṽ ◦ Ĩ ◦ Ṽ ∗)φ‖ = ‖Ĩ(Ṽ ∗φ)‖(L/N)∗ = γ∗(‖Ṽ ∗φ‖(L/N)∗ ) = γ∗(‖φ‖).

By uniqueness, (5.2) follows. Let V ∗ : F∗ → L∗ be the adjoint of V . Then
V ∗ = π∗ ◦ Ṽ ∗. It follows from (5.1) and (5.2) that

U = V ◦ I ◦ V ∗.(5.3)
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This representation of the duality mapping U implies that the potentials
in F are of the form

Uφ = (V ◦ I ◦ V ∗)φ, for φ ∈ F∗
+.(5.4)

Finally, we note that if V : L → G is 1-1, i.e., if N = {0}, there is no
need to replace L by the quotient space.

We now list some special cases that fit in the above framework.

(A1) This example is studied in [1], and generalizes the Lp-potential

theory introduced in [21].

Let X be a locally compact separable metric space, and let (Y, ν) be

a measure space, where ν is a positive measure defined on Borel subsets of

Y . We take L = Lp(Y, ν) where 1 < p < ∞. Let v : X × Y → R+ be a

kernel on X × Y such that v( · , y) is lower semicontinuous on X for each

y ∈ Y , and v(x, · ) is measurable on Y for each x ∈ X. For a nonnegative

f ∈ Lp(Y, ν) let

V f(x) :=

∫

Y
v(x, y)f(y) ν(dy)(5.5)

Let N be the smallest ideal containing the family of all sets {x ∈ X :

V |f |(x) = +∞} with f ∈ Lp(Y, ν). Then formula (5.5) defines V f N -

a.e. for every f ∈ Lp(Y, ν). Note that properties (i) and (ii) hold. Set

F := V (Lp(Y, ν)) and ‖u‖ = ‖V f‖ = ‖f‖p (where f minimizes the quotient

norm). Then (F , ‖ ‖) satisfies hypotheses (F), (C) and (D).

Let γ(t) = tp−1. The inverse of γ is γ∗(t) = tp
′−1 with 1/p+ 1/p′ = 1.

The duality mapping I : Lp′(Y, ν) → Lp(Y, ν) of weight γ∗ is of the form

Ig = |g|p
′−1 sign(g),

with g ∈ Lp′(Y, ν). This leads to the following representation of potentials:

For φ ∈ F∗
+

Uφ = V (|V ∗φ|p
′−1 sign(V ∗φ)).(5.6)

In particular, if µ is a Radon measure on X such that V ∗µ ∈ Lp′(Y, ν),

where V ∗µ(y) :=
∫
X v(x, y)µ(dx), then µ defines a nonnegative, continuous

linear functional on F . The potential of µ is

Uµ(x) =

∫

Y
v(x, y)

(∫

X
v(z, y)µ(dz)

)p′−1

ν(dy).
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Special cases of the Lp-potential theory are obtained with X = Y = R
N ,

ν the N -dimensional Lebesgue measure, and the Bessel kernel Gα,p, 0 < α,

or the Riesz kernel Iα,p, 0 < α < N . These kernels define 1-1 operators.

The detailed study of corresponding potential theories is given in [16].

(A2) This is studied in [18].

Let X be a separable metric space, and let m be a finite Borel measure

on X. Let (Tt, t ≥ 0) be a strongly continuous contraction semigroup on

Lp(X,m), where 1 < p <∞. For α > 0 let

Vα =
1

Γ(α/2)

∫ ∞

0
tα/2−1e−tTt dt

be the gamma transform of the semigroup (Tt). It is proved in [18, Propo-

sition 2.3], that Vα is 1-1. Properties (i) and (ii) of Vα are easily checked.

Define the Sobolev spaces (Fα,p, ‖ ‖α,p) by Fα,p = Vα(Lp(X,m)), ‖u‖α,p =

‖f‖p, where u = Vα,p, f ∈ Lp(X,m). For the ideal N we take sets of m-

measure zero. The duality mapping U : F∗
α,p → Fα,p has the same form as

in (5.6), for φ ∈ F∗
α,p.

(A3) Besov spaces.

Let X = R
N , Y = R

N × N, and let 1 < p < ∞, 1 < q < ∞ with

conjugate exponents p′ and q′. We take L = lq(Lp) with the underlying

Lebesgue measure. The lq(Lp)-norm of f : R
N × N → R is given by

‖f‖lq(Lp) :=

( ∞∑

n=1

‖f( · , n)‖q
p

)1/q

.

Let η0 = η 6= 0 be a C∞-function supported in the unit ball. For n ∈ N

let ηn(x) = 2nNη(2nx). For a nonnegative and measurable f = (fn) on

R
N × N, let

Vαf :=

∞∑

n=0

2−nα ηn ∗ fn.

According to [1, Theorem 4.1.7 and Proposition 4.4.1], F := Vα(lq(Lp)) is

equal to the Besov space Bp,q
α . The norm on F is given by

‖u‖ = ‖Vαf‖ = ‖f‖lq(Lp).

where f ∈ lq(Lp) minimizes the quotient norm. Since properties (i), and

(iii) are satisfied for Vα, the Besov space Bp,q
α with the lq(Lp) quotient norm

also fits in our general framework.
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Let γ(t) = tq−1 with the inverse weight function γ∗(t) = tq
′−1. The

corresponding duality mapping I : lq
′

(Lp′) → lq(Lp) is of the form

Ig =
{
‖g( · , n)‖q′−p′

p′ |g( · , n)|p
′−1 sign(g( · , n)), n ∈ N

}
,

leading to a representation of a nonlinear potential of a positive measure µ

on N given in [1, (4.4.9)].

The case studied in [22], similar to the described one, also satisfies our

hypotheses.

(A4) Lizorkin-Triebel spaces.

The setting is as in (A3), with lq(Lp) spaces replaced by Lp(lq). Ac-

cording to [1, Theorem 4.3.10 and Proposition 4.4.1], F := Vα(Lp(lq)) is

equal to the Lizorkin-Tribel space F p,q
α .

(A5) Potential theory for Orlicz spaces.

Let Ω ⊂ RN , and let A and A∗ be complementary N -functions both

satisfying the ∆2-condition (see [20] for details). Let (LA(Ω), ‖| ‖|A) be the

Orlicz space with the Luxemburg norm. Then LA(Ω) is reflexive, and the

dual space may be identified with LA∗(Ω). Moreover, by [20, Theorem 18.5],

the Luxemburg norm is smooth, and therefore strictly convex by the duality

argument. By taking L = LA(Ω), and defining the operator V with an

appropriate kernel function v, this case fits in the general framework.

Potential theory for Orlicz spaces was studied in [2] and [3].

Example B. Weighted Sobolev spaces H1,p(Ω;µ) and H1,p
0 (Ω;µ).

We follow the presentation from [17]. Let Ω be an open subset in R
N ,

N ≥ 2, and let 1 < p < ∞. Let w be a locally integrable function on R
N ,

and let dµ(x) = w(x) dx, where dx is the Lebesgue measure on R
N . We

assume that w is p-admissible (see [17, p. 7], for details). For a function
u ∈ C∞(Ω) let

‖u‖1,p =

(∫

Ω
|u|p dµ

)1/p

+

(∫

Ω
‖∇u‖p dµ

)1/p

.(5.7)

The weighted Sobolev space H1,p(Ω;µ) is defined to be the completion of
{u ∈ C∞(Ω) : ‖u‖1,p < ∞}. The space H1,p

0 (Ω;µ) is the closure of C∞
0 (Ω)

in H1,p(Ω;µ) ([17, p. 9]).
The Sobolev spaces H1,p(Ω;µ) and H1,p

0 (Ω;µ) are uniformly convex,
hence reflexive ([17, p. 13]), and the norm ‖ ‖1,p is smooth. Hence, hy-
potheses (F) are satisfied. Let N be the family of all µ-zero sets. Since
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convergence in the Lp-norm implies µ-a.e. convergence of a subsequence,
(C) holds. Moreover, since the contraction operates on H1,p(Ω;µ) and
H1,p

0 (Ω;µ), the hypothesis (D) also holds true.

Our main interest will be in the Sobolev space H1,p
0 (Ω;µ) for bounded

Ω. In this case, it follows from the Poincaré inequality [17, p. 9 and
Lemma 1.7], that

‖u‖ :=

(∫

Ω
‖∇u‖p dµ

)1/p

(5.8)

defines an equivalent norm on H1,p
0 (Ω;µ). Let (F , ‖ ‖) denote the space

H1,p
0 (Ω;µ) with the norm as in (5.8). Then (F , ‖ ‖) also satisfies hypotheses

(F), (C) and (D). The duality mapping J : F → F∗ is given by

〈Ju, v〉 =

∫

Ω
|∇u|p−2 ∇u · ∇v dµ,(5.9)

for u, v ∈ F . Hence J may be identified with the weighted p-Laplacian

∆p,w = div(w(x)|∇u|p−2∇u)(5.10)

(see [17, p. 55 and p. 59]). Potentials are identified as supersolutions of the
equation −∆p,w(u) = 0 in Ω.

The following example is a case in point where (D+) is valid and not

(D).

Example C. The Sobolev space Hm,2
0 (B) where B is an open ball in

R
N .

The space Hm,2
0 (B) is the closure of C∞

0 (B) with respect to the norm
‖u‖m,2 =

∑
|α|≤m ‖Dα(u)‖2. By the Poincaré inequality,

‖u‖ :=

( ∑

|α|=m

‖Dα(u)‖2
2

)1/2

defines an equivalent norm on Hm,2
0 (B). The space (Hm,2

0 (B), ‖ ‖) is reflex-
ive, strictly convex and smooth. Hence, hypotheses (F) are satisfied, and
clearly, (C) hold as well. We check that (D+) also holds. It is easy to see
that or u, v ∈ Hm,2

0 (B)

d

dt
‖u+ tv‖2

|t=0 = 2
∑

|α|=m

∫

B
(Dαu)(Dαv) = 2

∫

B
(−∆)muv.
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Let J be the duality mapping with weight γ(t) = t. Then from the above
inequality and (2.2),

〈Ju, v〉 =
∑

|α|=m

∫

B
(Dαu)(Dα(v)) =

∫

B
(−∆)muv.

so J may be identified with (−∆)m. Let φ ∈ Hm,2
0 (B)∗. Then φ = Ju for

a u ∈ Hm,2
0 (B). Suppose that φ is nonnegative, i.e., Ju ≥ 0 in Hm,2

0 (B)∗.
Then (−∆)mu ≥ 0 in the distributional sense. From [4, Theorem 1], it
follows that u ≥ 0 on B. Hence u = Uφ ≥ 0, i.e., U is nonnegative. By
Proposition 2.2, this is equivalent to (D+).
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