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of split semiabelian varieties.
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1. Introduction
1·1. Notation

We let N0 := N∪ {0} denote the set of nonnegative integers. For any self-map � on a
variety X and for any integer n ≥ 0, we let �n be the nth iterate of � (where �0 is the
identity map id := idX , by definition). For a point x ∈ X with the property that each point
�n(x) avoids the indeterminacy locus of �, we denote by O�(x) the orbit of x under �,
i.e., the set of all �n(x) for n ≥ 0. We say that x is preperiodic if its orbit O�(x) is finite;
furthermore, if �n(x) = x for some positive integer n, then we say that x is periodic.

1·2. The classical Zariski dense orbit conjecture

The following conjecture was motivated by a similar question raised by Zhang [24] and
was formulated by Medvedev and Scanlon [18] and by Amerik and Campana [1].

Conjecture 1·1. Let X be a quasiprojective variety defined over an algebraically closed
field K of characteristic 0 and let � : X ��� X be a dominant rational self-map. Then either
there exists α ∈ X(K) whose orbit under � is well-defined and Zariski dense in X, or there
exists a non-constant rational function f : X ��� P1 such that f ◦�= f .

There are several partial results known towards Conjecture 1·1 (see [1–3, 8, 11,
13–15, 23]).
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1·3. The picture in positive characteristic

If K has characteristic p> 0, then Conjecture 1·1 does not hold due to the presence of
the Frobenius endomorphism (see [12, remark 1·2]). In particular, if K = Fp (the algebraic
closure of the finite field Fp), then each orbit of a point α ∈ X(K) is finite under a rational
self-map� : X −→ X defined over K = Fp; furthermore, � does not have to preserve a non-
constant rational function. So, the authors proposed the following conjecture as a variant of
Conjecture 1·1 in positive characteristic (see also [12]).

Conjecture 1·2. Let K be an algebraically closed field of positive transcendence degree
over Fp, let X be a quasiprojective variety defined over K, and let� : X ��� X be a dominant
rational self-map defined over K as well. Then at least one of the following three statements
must hold:

(a) There exists α ∈ X(K) whose orbit O�(α) is Zariski dense in X.

(b) There exists a non-constant rational function f : X ��� P1 such that f ◦�= f .

(c) There exist positive integers m and r, there exists a variety Y defined over a finite
subfield Fq of K such that dim(Y) ≥ trdeg

Fp
K + 1 and there exists a dominant rational

map τ : X ��� Y such that

τ ◦�m = Fr ◦ τ ,

where F is the Frobenius endomorphism of Y corresponding to the field Fq.

Clearly (as observed also in [3]), conclusion (a) would prevent conclusion (b) in
Conjecture 1·2. Also, using an argument similar to the one employed in [12, remark 1·2],
one sees that conclusion (c) would also prevent conclusion (b) to hold. On the other hand,
conclusions (a) and (c) are not mutually exclusive as one can easily see from the following
endomorphism � : G3

m −→G3
m defined over Fp(t) by the following rule:

�(x1, x2, x3) = (
x1, xp

2, xp
3

)
;

in this case, � leaves invariant the projection map π1 : G3 −→Gm on the first coordinate,
while � induces the Frobenius endomorphism on the last two coordinates of G3

m.
In [23, proposition 1·7], Xie proved Conjecture 1·2 when the transcendence degree of

K over the minimal field of definition for X is at least dim(X). In this case, the alternative
(c) from Conjecture 1·2 never occurs. In our paper we will deal with Conjecture 1·2 for
regular self-maps of split semiabelian varieties X defined over Fp, while the field K has
arbitrary transcendence degree; in our setting, conclusion (c) from Conjecture 1·2 occurs
and furthermore, it constitutes the most delicate point for our proofs.

1·4. Our results

We prove our Conjecture 1·2 in the case of regular self-maps � of split semiabelian vari-
eties G defined over Fp (see Theorem 1·3), i.e., G is isogenous to a product of an abelian
variety with a torus (or alternatively, G is isogenous with a product of simple semiabelian
varieties). The case of G being isomorphic to a torus has already been proven by the authors
in [12, theorem 1·5]; however, the general case of split semiabelian varieties is more subtle
than the case of tori.
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We prove the following more precise version of Conjecture 1·2 for the case of regular
self-maps of semiabelian varieties defined over a finite field.

THEOREM 1·3. Let K be an algebraically closed field of characteristic p such that
trdeg

Fp
K ≥ 1 and let G be a split semiabelian variety defined over Fp. Let � : G −→ G

be a dominant regular self-map defined over K. Then at least one of the following statements
must hold:

(a) there exists α ∈ G(K) whose orbit under � is Zariski dense in G;

(b) there exists a non-constant rational function f : G ��� P1 such that f ◦�= f ;

(c) there exist positive integers m and r, a semiabelian variety Y defined over a finite
subfield Fq of K of dimension at least equal to trdeg

Fp
K + 1 and a dominant regular

map τ : G −→ Y such that

τ ◦�m = Fr ◦ τ , (1·1)

where F is the usual Frobenius endomorphism of Y induced by the field automorphism
x �→ xq.

1·5. Discussion of our proof

Our proof of Theorem 1·3 follows the general strategy we employed in [12] to treat the
case of algebraic tori; however, there are significant complications due to the more complex
structure of the endomorphism ring of a semiabelian variety compared with the power of the
multiplicative group GN

m. In particular, Sections 3 and 6 contain technical difficulties which
are significantly more delicate than any of the arguments necessary for the case of tori.

Since each regular self-map � of a semiabelian variety G is a composition of a transla-
tion with a group endomorphism of G (see [16, theorem 2]), one needs to understand the
arithmetic dynamics associated with a group endomorphism of G. Using the fact that G is a
split semiabelian variety allows us to understand better the dynamics associated to a group
endomorphism of G; in particular, extending the current proof to the case of non-split semi-
abelian varieties would be significantly more difficult. This is not surprising since even the
case of the Zariski dense orbit conjecture in characteristic 0 was significantly more difficult
for non-split semiabelian varieties as opposed to the case of abelian varieties (or tori); see
the new technical ingredients one needed to introduce in [13] to treat general semiabelian
varieties compared to the case of abelian varieties treated in [14].

Furthermore, the case of semiabelian varieties not defined over Fp is significantly more
complicated. Indeed, in either characteristic (0 or p), in order to treat the Zariski dense orbit
conjecture in the case of semiabelian varieties G defined over an algebraically closed field
K endowed with some dominant regular self-map �, one considers a point α ∈ G(K) and
then notes that its orbit O�(α) is contained in some finitely generated subgroup � ⊂ G(K).
If O�(α) is not Zariski dense, then its Zariski closure V is a proper subvariety of G; a key
step is exploiting the precise structure of the intersection V(K) ∩ �. So, it is essential for one
to have a clear picture for the structure of the intersection between a proper subvariety of
G with a finitely generated subgroup of G(K); this is something that Faltings [6] and Vojta
[22] provided if K has characteristic 0, while in the case of prime characteristic p, Moosa
and Scanlon [21] provide a precise description under the additional assumption that G is
defined over Fp. If G is some arbitrary abelian variety defined over a field of characteristic
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p (with nontrivial trace over Fp), then Moosa and Scanlon [20] provide a more complicated
description, which is not easy to exploit for our particular arithmetic dynamical question.

1·6. Organisation of the paper

In Section 3 we show that it suffices to prove Theorem 1·3 when G is a product of simple
semiabelian varieties:

G =
r∏

i=1

Cki
i , (1·2)

for some positive integers ki, where the Ci’s are non-isogenous simple semiabelian vari-
eties (see Section 3, especially Lemmas 3·5, 3·6 and 3·8 and Theorem 3·10). In particular,
our reduction requires a very careful analysis of the dynamics not only of group endomor-
phisms of a split semiabelian variety, but also of finite-to-finite correspondences, as defined
in Section 2·3. This last complication was not encountered when one deals with the case of
tori (see [12]).

Then the rest of our proof is dedicated to proving Theorem 3·10 in the case G is of the
form (1·2) (i.e., G is reduced, according to Definition 2·3). Since the group endomorphisms
of a reduced semiabelian variety G is isomorphic to a product of matrix rings

∏r
i=1 Mki,ki(Ei),

where Ei := End(Ci) is a subring of a (possibly) skew field, then in Section 2 we present sev-
eral useful facts regarding skew fields and the rings Ei above which appear as endomorphism
rings for some simple semiabelian variety defined over Fp. Also, in Section 2, we present
several other useful technical facts to be used later in our proofs, such as the F-structure the-
orem of Moosa–Scanlon for the intersection of a subvariety with a finitely generated group
(see [20, 21] and also [7]). In Section 4, we prove Theorem 3·10 in the case� is a unipotent
group endomorphism of G. In Section 6 we prove Theorem 3·10 in the case when � is a
group endomorphism whose eigenvalues for its induced action on each Cki

i (see (1·2)) are
powers of the Frobenius elements from the endomorphism rings of each Ci. This last case
is the instance when alternative (c) from Conjecture 1·2 occurs and therefore, it requires a
very careful analysis (significantly more in-depth than what was needed in the case G was
an algebraic torus). Sections 5 and 7 are dedicated to proving a couple of mixed cases for
Theorem 3·10, which are technical ingredients for finishing the proof of our main result in
Section 8.

2. Technical background

In this Section we gather the various technical background results we need from the theory
of matrices over skew fields (see Section 2·1) and the theory of semiabelian varieties (see
Sections 2·2 to 2.5).

2·1. Matrices over skew fields

Fact 2·1. Let K be a skew field with centre k and A ∈ Mn(K) be a matrix with a minimal
polynomial equal to (x − α)r for some α ∈ k and r ∈N. Then, there exist an invertible matrix
P ∈ Mn(K) such that

P−1AP = Jα,r1

⊕
· · ·

⊕
Jα,rm ,

where Jα,s is the s-by-s Jordan canonical matrix having unique eigenvalue α and its
only nonzero entries away from the diagonal being the entries in positions (i, i + 1) (for
i = 1, . . . , s − 1), which are all equal to 1.
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Proof. This is a consequence of the Jordan normal form theorem (see [4, theorem 8·3·6,
and the discussion on pages 382 and 383]).

Fact 2·2. Let K be a skew field. Suppose that A ∈ Mn(K) is a matrix with minimal poly-
nomial p(x) = p1(x)p2(x) over k where p1, p2 ∈ k[x] and p1 and p2 are coprime. There exists
an invertible matrix P ∈ Mn(K) such that P−1AP = A1

⊕
A2 where the minimal polynomial

of A1 and A2 over k are p1 and p2, respectively.

Proof. The proof is identical as in the case when K is a (commutative) field.

2·2. Semiabelian varieties

We recall that a semiabeian variety G defined over an algebraically closed field L is an
algebraic group variety, which is an extension of an abelian variety A by a torus GN

m:

1 −→GN
m −→ G −→ A −→ 1. (2·1)

We say that G is split if the short exact sequence of algebraic groups from (2·1) splits. In this
case, G is isogenous to a product of simple semiabelian varieties (i.e., semiabelian varieties
which contain no proper semiabelian varieties).

As previously noted (see [16]), any regular self-map on a semiabelian variety G is a com-
position of a group endomorphism of G with a translation map τβ (where τβ (x) = x + β for
each x ∈ G).

Definition 2·3. We define a split semiabelian variety G to be reduced if G is
isomorphic to

r∏
i=1

Cki
i , (2·2)

where k1, . . . , kr ∈N and C1, . . . , Cr are simple semiabelian varieties that are pairwise non-
isogenous.

2·3. Correspondences on semiabelian varieties

For a semiabelian variety G, a correspondence or finite-to-finite map is a dominant map
ϕ ∈ 1/m · End(G) for some m ∈N. In other words, there exists a positive integer m such that
composing the multiplication-by-m map [m]G on G with ϕ yields a well-defined, dominant
endomorphism of G. Clearly, for each point α ∈ G, we have that ϕ(α) consists of at most
m2 dim (G) points, which all differ by a torsion point of G of order dividing m.

2·4. Almost commutative diagrams

We call an almost commutative diagram, a diagram of the following form:

(2·3)

where G and G′ are semiabelian varieties, g : G′ −→ G is an isogeny, 	 : G′ −→ G′ is
a group endomorphism, while � : G −→ G is a correspondence such that there exists a
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positive integer m0 for which

[m0]G ◦ g ◦	 = [m0]G ◦� ◦ g. (2·4)

In particular, we have that [m0]G ◦� is a well-defined, regular endomorphism of G.
Furthermore, letting ĝ : G −→ G′ be an isogeny such that

ĝ ◦ g = [m]G′ and g ◦ ĝ = [m]G,

for some positive integer m divisible by m0, we obtain:

[m]G ◦�= g ◦	 ◦ ĝ. (2·5)

Furthermore, since m0 divides m, we have that [m]G ◦� from (2·5) is a well-defined endo-
morphism. In particular, we see that we can take m0 := m in equation (2·4) and thus,
� ∈ 1/m · End(G) is defined through equation (2·5).

2·5. Some technical definitions and notation relevant to our proofs

We will also employ the following notation regarding the endomorphisms of a (simple)
semiabelian variety.

Notation 2·4. In this paper, for a simple semiabelian variety C defined over Fp, there
exists a finite subfield Fq of Fp such that:

(1) C is defined over Fq; and

(2) each group endomorphism of C is also defined over Fq.

So, the (group) endomorphisms of C defined over Fp belong to a ring End(C) = End
Fp

(C).

Following the notation of Milne [19], we let End0 := End(C) ⊗Z Q; then LC := End0(c) is
a skew field (all of whose elements are algebraic over Q). We identify End(C) with a given
subring EC of LC; when there is no confusion, we will drop the index C from our notation.

Finally, we let F be the Frobenius endomorphism of C corresponding to the field Fq and
we denote by FC its image in EC.

Fact 2·5. With the same convention as in Notation 2·4 for C, EC, LC and FC, we have
that LC is a skew field whose center kC contains FC (see [19, chapter 2]).

Next definition is motivated by condition (c) in Theorem 1·3.

Definition 2·6 (NFP matrices). Let C be a simple semiabelian variety along with the
convention from Notation 2·4 for EC, LC and FC. For any n ∈N, a matrix A ∈ Mn,n(LC) is
called an NFP (No Frobenius Power) matrix whenever the minimal polynomial P(x) of A
over Q (FC) has no roots that are multiplicatively dependent with respect to FC (i.e., no root
λ of P(x) satisfies λm = Fk

C for some integers m and k, not both equal to 0).

2·6. The intersection of a subvariety of a semiabelian variety defined over a finite field with a
finitely generated subgroup

We conclude this technical background section with stating the F-structure theorem of
Moosa–Scanlon for the intersection of a subvariety of an Fq-semiabelian variety G with a
finitely generated subgroup of G(K) (where K is some arbitrary algebraically closed field
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containing Fq). In order to state Theorem 2·8 (which is an essential ingredient for our
proofs), we need first to introduce the notion of F-sets defined by Moosa–Scanlon [21]. The
Frobenius F acting on G is the endomorphism induced by the usual field homomorphism
given by x �→ xq for each x ∈ K.

Definition 2·7. With the above notation for G, q, K and F, let � ⊆ G(K) be a finitely
generated Z[F]-module.

(a) By a sum of F-orbits in � we mean a set of the form

C(γ , α1, . . . , αm; k1, . . . , km) :=
⎧⎨
⎩γ +

m∑
j=1

Fkjnj(αj) : nj ∈N0

⎫⎬
⎭⊆ �,

where γ , α1, . . . , αm are some given points in G(K) and k1, . . . , km are some given
positive integers.

(b) An F-set in � is a set of the form C + �′ where C is a sum of F-orbits in �, and
�′ ⊆ � is a subgroup, while in general, for two sets A, B ⊂ G(K), A + B is simply the
set {a + b : a ∈ A, b ∈ B}.

We note that since we allow the base points ai be outside �, we can use the slightly simpler
definition of groupless F-sets involving sums of F-orbits rather than using the F-cycles (see
[21, remark 2·6], and also the extension proven in [7]). We also refer to [5, section 2·2] for
a more in-depth discussion of the structure of F-sets.

THEOREM 2·8 (Moosa–Scanlon S [21]). Let G be a semiabelian variety defined over Fq,
let Fq ⊂ K be an algebraically closed field, let V ⊂ G be a subvariety defined over K and
let �⊂ G(K) be a finitely generated subgroup. Then V(K) ∩ � is a finite union of F-sets
contained in �.

Remark 2·9. Furthermore, according to [21, remark 2·6], if � is a finitely generated Z[F]-
submodule of G(K), then the F-sets appearing in the intersection V ∩ � from Theorem 2·8
are of the form C(γ , α1, . . . , αm; k1, . . . , km) + �′ (see Definition 2·7) where for some
positive integer �, we have that

� · γ , � · α1, . . . , � · αm ∈ �.

Finally, in our proof, we prefer to use the notation

(α1, . . . , αm; k1, . . . , km) :=
⎧⎨
⎩

m∑
j=1

Fkjnj(αj) : nj ∈N0

⎫⎬
⎭

for a sum of F-orbits (for given points αj ∈ G(K) and positive integers kj).

3. Reducing Theorem 1·3 to the case of reduced split semiabelian varieties

In this Section we show that it suffices to prove Theorem 1·3 when G is a reduced semi-
abelian variety (see Theorem 3·10). We start by recalling the setup from Theorem 1·3. We
have an algebraically closed field K of positive transcendence degree over Fp and we have a
split semiabelian variety G defined over Fp.
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Let 	 : G −→ G be a dominant regular self-map. Then 	 := τβ ◦ψ , where ψ : G −→ G
is a dominant group endomorphism and τβ : G −→ G is the translation-by-β map on G (for
some point β ∈ G(K)). Then for each n ∈N, we have that

	n = τ∑n−1
j=0 ψ

j(β) ◦ψn. (3·1)

The group endomorphism ψ is integral over Z (see [5, section 2·1]); so, we denote by gψ
the minimal monic polynomial with integer coefficients for which gψ (ψ) = 0. Since ψ is
dominant, then each root of gψ is nonzero.

3·1. Reduction to the case the roots of gψ are not roots of unity of order greater than 1

We first note the following reduction in Theorem 1·3.

PROPOSITION 3·1. In order to prove Theorem 1·3 for the dynamical system (G,	), it
suffices to prove Theorem 1·3 for the dynamical system (G,	n) for some n ∈N.

Proof. It is clear that if condition (c) holds for an iterate of	 then it also holds for	. The
fact that if conditions (a) and (b) hold for an iterate of 	 then they also hold for 	 follows
from [2, lemma 2·1].

After replacing 	 by a suitable iterate (see Proposition 3·1 and also formula (3·1)) we
may assume without loss of generality that the roots of the minimal polynomial of ψ (over
Z) that are roots of unity are actually all equal to one.

3·2. Writing the minimal polynomial of ψ as a product of two coprime polynomials with special
properties

Let g := gψ ∈Z[x] be the minimal polynomial for the endomorphism ψ . As explained in
the previous section, we may assume that each root of g is either equal to 1 or not a root of
unity.

We let s ∈N0 be the order of 1 as a root of g(x). We write h1(x) := (x − 1)s; then we can
write g(x) := h1(x) · h2(x) for some polynomial h2(x) with integer coefficients whose roots
are not roots of unity. Furthermore, h1(x) and h2(x) are coprime polynomials.

3·3. Splitting the action of 	 to an action on a product of two special semiabelian varieties

We continue with the notation for h1(x) and h2(x) from Section 3·2 and we let G1 :=
h2(ψ)

(
G
)

and G2 := h1(ψ)
(
G
)
. Then G1 and G2 are both connected algebraic subgroups of

G (note that either G1 or G2 may be the trivial group). Since h1 and h2 are coprime, then
there exist polynomials with integer coefficients Q1(x) and Q2(x) along with some positive
integer �0 such that

Q1(x) · h1(x) + Q2(x) · h2(x) = �0,

which means that G1 and G2 are complementary subgroups of G, in the sense that G =
G1 + G2, while G1 ∩ G2 is finite (consisting only of points of order dividing �0). Thus, for
each x ∈ G one can find x1 ∈ G1 and x2 ∈ G2 such that x = x1 + x2; even though x1 and x2

are not uniquely defined by x, since G1 ∩ G2 consists only of points of order dividing �0, we
conclude that the isogeny ι : G −→ G1 × G2 given by

x �−→ (�0x1, �0x2) is well-defined. (3·2)
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Furthermore, ψ induces endomorphisms of both G1 and G2; call them ψ1, respectively
ψ2. In addition,

the minimal polynomial of ψ1 is h1(x) = (x − 1)s, (3·3)

while the minimal polynomial of ψ2 is h2(x). (3·4)

Since G1 + G2 = G, then there exist β1 ∈ G1(K) and β2 ∈ G2(K) such that β1 + β2 = β.
Furthermore, according to (3·2), regardless of our choice of (β1, β2) ∈ G1 × G2 for which
β1 + β2 = β, we have that the pair (�0β1, �0β2) is unchanged.

Now, we define 	1 : G1 −→ G1 and 	2 : G2 −→ G2 given by

	i(x) =ψi(x) + �0βi for i = 1, 2. (3·5)

Then, using the isogeny ι (see (3·2)) along with the definition of 	1 and 	2 (see (3·5)), we
have that the following diagram commutes

(3·6)

3·4. Reduction of the action of ψ1 to an endomorphism of a reduced split semiabelian variety

Since G1 is a semiabelian subvariety of G, then also G1 is a split semiabelian variety and
must be isogenous to a semiabelian variety

G′
1 :=

r∏
i=1

Cki
i , (3·7)

where the Ci’s are non-isogenous simple semiabelian varieties. More precisely, we have an
isogeny

π : G1 −→ G′
1 (3·8)

and another isogeny

π̂ : G′
1 −→ G1 (3·9)

along with some positive integer m1 such that

π ◦ π̂ = [m1]G′
1
, π̂ ◦ π = [m1]G1 . (3·10)

Consider ϕ′
1 ∈ End(G′

1) ⊗Q given by

ϕ′
1 := 1

m1
π ◦ψ1 ◦ π̂ . (3·11)

Then ϕ′
1 corresponds to a direct sum A1 ⊕ · · · ⊕ Ar of matrices in

r∏
i=1

Mki

(
End(Ci)

0
)

.

Furthermore, since the minimal polynomial of each Ai over Z is of the form (x − 1)si for
some integer si ≤ s (see (3·3)), then each Ai is a unipotent matrix. So, using Fact 2·1, there
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exist matrices Pi ∈ Mki(End(Ci)0) such that PiAiP
−1
i is of the form

Bi =
�i⊕

j=1

J
1,m(i)

j

for some �i ∈N and some positive integers m(i)
j such that

�i∑
j=1

m(i)
j = ki.

This means (see Section 2·4) that there must exist σ , σ̂ : G′
1 −→ G′

1 such that

σ ◦ σ̂ = σ̂ ◦ σ = [m′
1]G′

1
(3·12)

for some m′
1 ∈N and

ϕ1 = 1

m′
1
σ ◦ ϕ′

1 ◦ σ̂ , (3·13)

where ϕ1 is the endomorphism corresponding to B1 ⊕ · · · ⊕ Br.

3·5. Reducing to the case 	2 is a group endomorphism

Now, since the minimal polynomial of ψ2 (which is h2(x), according to (3·4)) does not
have any roots that are equal to one, then we have that ψ2 − idG2 is an dominant group
endomorphism of G2 and therefore, we can find z ∈ G2(K) such that(

ψ2 − idG2

)
(z) = �0β2. (3·14)

So, letting τ : G2 −→ G2 be the translation-by-z map, then (3·14) yields that

ψ2 := τ ◦	2 ◦ τ−1 is an endomorphism of G2. (3·15)

3·6. Reducing the dynamical system on G to a simpler dynamical system on G′
1 × G2

We let ν := σ ◦ π and using (3·10), (3·11), (3·12) and (3·13), we get that

ν ◦ψ1 = ϕ1 ◦ ν. (3·16)

We let �1 : G′
1 −→ G′

1 given by �1(x) = ϕ1(x) + ν(�0β1). Since 	1 : G1 −→ G1 is given by
	1(x) =ψ1(x) + �0β1 (see (3·5)), then we conclude that

ν ◦	1 =�1 ◦ ν. (3·17)

So, letting g1 := (ν, τ ) and also using (3·15) and (3·17), then we get the next commutative
diagram

(3·18)
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3·7. Deconstructing the action of ψ2 on G2 using correspondences

Since G2 is a semiabelian subvariety of a split semiabelian variety, then also G2 is
isogenous to a reduced split semiabelian variety

G′
2 :=

r′∏
i=1

(
C′

i
)k′i . (3·19)

Moreover, one can choose the components C′
i so that for any 1 ≤ i ≤ r′ and 1 ≤ j ≤ r, C′

i is
isogenous to Cj if and only if C′

i = Cj. In other words, the simple semiabelian components
of G′

1 and G′
2 are either equal or they are non-isogenous. So, we have isogenies

π ′ : G2 −→ G′
2, π̂ ′ : G′

2 −→ G2 (3·20)

along with some positive integer n1 such that

π ′ ◦ π̂ ′ = [n1]G′
2
, π̂ ′ ◦ π ′ = [n1]G2 . (3·21)

Now, consider ϕ′
2 ∈ End(G′

2) ⊗Q given by

ϕ′
2 := 1

n1
π ′ ◦ (ψ2) ◦ π̂ ′. (3·22)

Then ϕ′
2 is a finite-to-finite map (or correspondence), i.e., it sends any finite subset of G′

2

into another finite subset of G′
2. Also, we see that ϕ′

2 can be represented naturally in

r′∏
i=1

Mk′i,k′i

(
1

n1
Di

)
, (3·23)

where Di := End(C′
i), while Di/n1 means that we allow denominator n1 for each entry in

the corresponding matrices. We also fix an embedding of each Q(FC′
i
) (for i = 1, . . . , r)

into Q.

3·8. Linearising the action of ϕ′
2 on G′

2

The action of ϕ′
2 ∈ End(G′

2) ⊗Q corresponds to a direct sum of matrices

Ãϕ′
2

:= A′
1 ⊕ · · · ⊕ A′

r′ ∈
r′∏

i=1

Mk′i,k′i

(
1

n1
Di

)
.

3·9. The minimal polynomial of Ãϕ′
2

Using equations (3·21) and (3·22), we see that for each n ∈N, we have that

(ϕ′
2)n := 1

n1
π ′ ◦ (ψ2)n ◦ π̂ ′ (3·24)

and therefore, the minimal polynomial for Ãϕ′
2

(which is the matrix in End(G′
2) ⊗Q corre-

sponding to ϕ′
2) is the same as the minimal polynomial of ψ2 as an endomorphism of G′

2.
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Furthermore, using (3·15) along with (3·4), we conclude that the minimal polynomial for
Ãϕ′

2
is h2(x).

Remark 3·2. Equation (3·24) also yields that for each x ∈ G′
2, we have that for any n ∈N

and for any two points y, z ∈ (ϕ′
2)n(x) (i.e., for any two points y and z associated to x by the

correspondence (ϕ′
2)n), we have that

y − z ∈ G′
2[n1] (i.e., it is a torsion point of order dividing n1). (3·25)

3·10. Separating the roots of h2(x)

As shown in the previous Section, we know that the minimal polynomial of the matrix
Ãϕ′

2
is h2(x) and since h2(x) ∈Z[x] is a monic polynomial, we conclude that

each root of h2(x) is integral over Z. (3·26)

Using Proposition 3·1, we can replace 	 by a suitable iterate (which leads to replacing
ϕ′

2 by a corresponding iterate and therefore, replacing each matrix A′
i by its suitable power),

so that we may assume that the roots of the minimal polynomial of each A′
i over Q

(
FC′

i

)
are either a power of FC′

i
or multiplicatively independent with respect to FC′

i
. Furthermore,

writing each such multiplicatively dependent root of the minimal polynomial of A′
i as F

n(i)
j

C′
i

for some integer n(i)
j (where 1 ≤ j ≤ si for some si ∈N0), we note that the exponents n(i)

j must
be positive integers because we know the roots of h2(x) are not roots of unity and also, we
know that these roots must be integral over Z, according to (3·26).

3·11. Splitting the action of Ãϕ′
2

into a suitable direct product

Using Facts 2·1 and 2·2 along with the notation from the previous section regarding the

roots of each minimal polynomial of A′
i as being either of the form F

n(i)
j

C′
i

for some n(i)
j ∈N

(where 1 ≤ j ≤ si) or being multiplicatively independent with respect to FC′
i
, there must exist

matrices P′
i ∈ Mk′i

(
End(C′

i)0
)

such that

P′
iA′

i
(
P′

i
)−1 = B1,i

⊕
B2,i, (3·27)

where each B1,i is a Jordan matrix of the form

B1,i :=
si⊕

j=1

J
F

n(i)
j

C
′
i

,�(i)
j

,

where the �(i)
j ’s are positive integers and the entries of each B2,i lie inside Di/�2 for some

�2 ∈N. At the expense of replacing �2 by a suitable multiple, we may also assume that
the entries of each Pi

′ belong also to Di/�2. Moreover, for every i = 1, . . . , r′ the minimal
polynomial of B2,i over Q(FC′

i
) has no roots that are multiplicatively dependent with respect

to FC′
i
.
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3·12. From linear maps to endomorphisms and finite-to-finite maps

Using the block decomposition given by (3·27), there exists a natural rearrangement of
the simple components of G′

2 such that:

(i) p : G′
2

∼→ G′
3 × G′

4 is the isomorphism corresponding to this rearrangement of the
simple components of G′

2;

(ii) there exists an endomorphism ϕ2 of G′
3 corresponding to

⊕r′
i=1 B1,i; and

(iii) there exists a finite-to-finite map ϕ3 on G′
4 corresponding to

⊕r′
i=1 B2,i.

Let λ : G′
2 −→ G′

2 be the endomorphism corresponding to
(
�2P′

1
)⊕ · · · ⊕ (

�2P′
r
)
. If we let

g2 :=
(

idG′
1
, p ◦ λ ◦ π ′

)
, then we obtain the following diagram

(3·28)

Combining (3·28) with (3·18) and (3·6), then we get the following diagram

(3·29)

We note that neither (3·29) nor (3·28) are commutative diagrams since in both cases, the
bottom map is only a correspondence (i.e., a finite-to-finite map). On the other hand, both
those diagrams are almost commutative, as we will explain next (we refer next to diagram
(3·29), but the same argument applies also to diagram (3·28)). So, we let

G′ := G′
1 × G′

3 × G′
4 and also, let � := (�1, ϕ2, ϕ3)

and note that there exists �2 ∈N such that [�2] ◦� is a well-defined regular morphism of G′.
Thus, due to our definition of the maps from the diagram (3·29), we get that for each x ∈ G,
we have that

(h ◦	)(x) − (� ◦ h)(x) ∈ G′[�2], (3·30)

since for any point y ∈ G′, we have that �(y) consists of finitely many points of the form
z + ξ , for some z ∈ G′ and ξ ∈ G′[�2].

Remark 3·3. In terms of notation, in (3·30) and also later on, for a point y ∈ G′, we let
�(y) be any of the finitely many points corresponding to y in the finite-to-finite map �. As
previously noted, any two points in �(y) differ by an �2th torsion point of G′.

Furthermore, in light of Remark 3·2, a bit more is true: for any n ∈N, we have that [�2] ◦
�n is a regular self-map on G′ and so, for each x ∈ G, we have that (see also the convention
from Remark 3·3) (

h ◦	n) (x) − (
�n ◦ h

)
(x) ∈ G′[�2]. (3·31)
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3·13. The dynamics of finite-to-finite maps

Our goal is to show that in order to prove Theorem 1·3 for the dynamical system (G,	),
it suffices to prove Theorem 1·3 for the dynamical system given by the action of the finite-
to-finite map � on G′ = G′

1 × G′
3 × G′

4. In order to show this, we first present some general
facts regarding the dynamics of the finite-to-finite map � : G′ −→ G′.

Definition 3·4. Let G′ be a semiabelian variety and let � : G′ −→ G′ be a finite-to-finite
map, i.e., a map of the form � := τγ ◦ ϕ, where τγ is the translation-by-γ map on G′ (for
a given point γ ∈ G′) and ϕ ∈ End(G) ⊗Q (which means that there exists �1 ∈N such that
[�1] ◦� is a well-defined regular self-map on G′).

Let x ∈ G′; we say that the sequence of points {xn}n≥0 ⊂ G′ is an orbit of x under � if
x0 = x and for each n ≥ 0, we have that xn+1 ∈�(xn) (note that �(xn) consists of finitely
many points of G, which differ only by a torsion point of order dividing �1).

We recall the almost commuting diagram (3·29):

(3·32)

in which case we have that there exists some positive integer �2 such that for each x ∈ G, we
have (see also Remark 3·3)

(g ◦	 −� ◦ g) (x) ∈ G′[�2]. (3·33)

Also, very important for our setting is the fact that G′ = G′
1 × G′

3 × G′
4 and that also� is a

split map, i.e.,�= (�1, ϕ2, ϕ3) in which�1 is a regular self-map of the semiabelian variety
G′

1, and ϕ2 is a group endomorphism of G′
3, while ϕ3 is a finite-to-finite map on G′

4.
In the next Sections we prove that each one of the conclusions (A)-(C) from Theorem 1·3

can be inferred to (G,	) once they are known for (G′,�).

3·14. Condition (a) from Theorem 1·3 transfers from � to 	

With the notation as in the previous sections (including Definition 3·4), we prove the
following result.

LEMMA 3·5. If there exists a K-point with a Zariski dense orbit in G′ = G′
1 × G′

3 × G′
4

under the action of (�1, ϕ2, ϕ3), then there exists a K-point with a Zariski dense orbit in G
under the action of 	.

Proof. So, we assume there exists a K-point x ∈ G′ with a Zariski dense orbit {xn}n≥0 ⊂
G′(K). We let y ∈ G(K) such that g(y) = x and we claim that O	 (y) is Zariski dense in G.
Indeed, for each n ∈N, using (3·31), we have that

g
(
	n(y)

)− xn ∈ G′[�2]. (3·34)

So, letting g̃ := [�2]G′ ◦ g be the composition of g with the multiplication-by-�2 map on G′,
we obtain a finite regular map g̃ : G −→ G′. Equation (3·34) yields that
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g̃
(
	n(y)

)= [�2](xn) for each n ≥ 1 (3·35)

and since {xn} ⊂ G′ is Zariski dense, then also the sequence {[�2](xn)} ⊂ G′ is Zariski dense.
But then equation (3·35) yields that the orbit O	 (y) must be Zariski dense in G since g̃ is a
finite map.

This concludes our proof of Lemma 3·5.

3·15. Condition (b) from Theorem 1·3 transfers from � to 	

LEMMA 3·6. Assume there exists a non-constant rational function f : G′
1 −→ P1 such

that

f ◦�1 = f . (3·36)

Then there exists a non-constant rational function f1 : G −→ P1 such that f1 ◦	 = f1.

Proof. Let � : G′
1 × G′

3 × G′
4 −→ G′

1 be the projection map onto G′
1. By the diagram

(3·29) (see also (3·32)) we must have

� ◦ h ◦	 =�1 ◦� ◦ h. (3·37)

Then letting f1 := f ◦� ◦ h (which is still a non-constant rational function since � ◦ h is a
dominant morphism), we have that

f1 ◦	 = f1, (3·38)

as desired.

Remark 3·7. It is important to note that we will prove that if condition (b) holds for the
dynamical system (G′,�), then it actually holds for (G′

1,�1) (as stated in Lemma 3·6),
which allows us to transfer the same conclusion to the dynamical system (G,	).

3·16. Condition (c) from Theorem 1·3 transfers from � to 	

We show that the aforementioned transfer of condition (c) from Theorem 1·3 from
the dynamical system (G′,�) to the dynamical system (G,	) holds assuming we estab-
lish a slightly more precise version of condition (c) in the case G′ = G′

1 × G′
3 × G′

4 and
�= (�1, ϕ2, ϕ3); so, with the above notation, we prove the following result.

LEMMA 3·8. Let G, G′, �2,�,	, g be as in diagram (3·32) and equation (3·33). Assume
there exist n0 ∈N, there exists a semiabelian variety Z of dimension larger than trdeg

Fp
K

defined over a finite subfield Fq of K equipped with the Frobenius endomorphism F : Z −→ Z
corresponding to Fq, and there exists a group homomorphism τ : G′ −→ Z such that the
following diagram

(3·39)

is almost commuting, i.e., for each x ∈ G′(K), we have that (see also Remark 3·3)
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τ ◦�n0

)
(x) − (F ◦ τ )(x) ∈ Z[�2]. (3·40)

Then condition (c) of Theorem 1·3 holds for (G,	).

Remark 3·9. In our proof of Theorem 1·3 for the dynamical system(
G′

1 × G′
3 × G′

4, (�1, ϕ2, ϕ3)
)

,

we will show that when condition (c) holds for this dynamical system, then actually there
exists a semiabelian variety Z defined over a finite field, along with a dominant group
homomorphism τ1 : G′

3 −→ Z such that we actually have:(
τ1 ◦ ϕn0

2

)
(x) − (F ◦ τ1)(x) ∈ Z[�2],

for each x ∈ G′
3. Then letting τ := τ1 ◦�, where� is the projection of G′

1 × G′
3 × G′

4 on the
second factor yields the diagram (3·39) and equation (3·40) from Lemma 3·8.

However, for our proof of Lemma 3·8 we do not require the extra information given above
that the homomorphism τ from Lemma 3·8 factors through the projection map �.

Proof of Lemma 3·8. Equation (3·33) and diagram (3·32) yield that for any x ∈ G(K), we
have (

g ◦	n0
)

(x) − (
�n0 ◦ g

)
(x) ∈ G′[�2]. (3·41)

Composing with τ on the left of the equation (3·41) and noting that τ : G′ −→ Z is a group
homomorphism, we get that for each x ∈ G(K), we have(

τ ◦ g ◦	n0
)

(x) − (
τ ◦�n0 ◦ g

)
(x) ∈ Z[�2]. (3·42)

On the other hand, equation (3·40) applied to the point g(x) ∈ G′(K) yields that(
τ ◦�n0

)
(g(x)) − (F ◦ τ) (g(x)) ∈ Z[�2]. (3·43)

So, combining equations (3·42) and (3·43) yields(
τ ◦ g ◦	n0

)
(x) − (F ◦ τ ◦ g) (x) ∈ Z[�2]. (3·44)

We let τ̃ := [�2]Z ◦ τ ◦ g, which is a dominant group homomorphism G −→ Z. Equation
(3·44) yields that (

τ̃ ◦	n0
)

(x) = (F ◦ τ̃ ) (x),

for each x ∈ G(K), and thus, the following diagram is commutative:

(3·45)

as desired in the conclusion of Lemma 3·8.
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3·17. Theorem 1·3 for the simplified dynamical system (G′,�)

Using Lemmas 3·6, 3·5 and 3·8 we obtain that Theorem 1·3 follows from proving its
conclusion for the dynamical system(

G′
1 × G′

3 × G′
4, (�1, ϕ2, ϕ3)

)
,

as described by the following Theorem.

THEOREM 3·10. Let K be an algebraically closed field of positive transcendence degree
over Fp, let G = G0 × G1 × G2 be a product of reduced split semiabelian varieties defined
over Fp, where for each j = 0, 1, 2, we have:

Gj :=
r∏

i=1

C
kj,i
i

for some integers r and kj,i, along with some simple semiabelian varieties Ci such that Ci

and Ci′ are non-isogenous for i �= i′. Note that we are allowing the integers ki,j to possibly

be equal to zero in which case C
ki,j
i is equal to the trivial group. We let β ∈ G0(K) and also

let ϕ0 ∈ End(G0) be a group endomorphism corresponding to a direct sum of unipotent
matrices

B0,1 ⊕ B0,2 ⊕ · · · ⊕ B0,r, (3·46)

where each B0,i ∈ Mk0,i,k0,i(End(Ci)) is a direct sum of unipotent Jordan canonical matrices
(note that B0,i could possibly be a 0-by-0 matrix, i.e., it may be absent from the direct sum
(3·46) if k0,i = 0) of the form

J
1,i(j)0,1

⊕
J

1,i(j)0,2−i(j)0,1

⊕
· · ·

⊕
J

1,i(j)0,�j
−i(j)0,�j−1

,

where �j ∈N and i0,1, . . . , i0,�j are positive integers such that

0< i0,1 < i0,2 < · · ·< i0,�j = k0,j.

We let �1 := τβ ◦ ϕ0, i.e., the composition of ϕ0 with the translation-by-β map on G0.
We let ϕ1 ∈ End(G1) be a group endomorphism corresponding to a direct sum of

matrices

B1,1 ⊕ B1,2 ⊕ · · · ⊕ B1,r,

where each B1,j ∈ Mk1,j,k1,j(End(Cj)) is a direct sum of Jordan canonical matrices of the
form:

J
F

n
(j)
1

Cj
,i(j)1,1

⊕ J
F

n
(j)
2

Cj
,i(j)1,2−i(j)1,1

⊕ · · · ⊕ J
F

n
(j)
sj

Cj
,i(j)1,sj

−i(j)1,sj−1

in which FCj is the image in End(Cj) of the Frobenius corresponding to the semiabelian Cj,

while sj, n(j)
1 , . . . , n(j)

sj ∈N and also, i(j)1,1, . . . , i(j)1,sj
are positive integers such that

0< i(j)1,1 < i(j)1,2 < · · ·< i(j)1,sj
= k1,j,

for each j = 1, . . . , r. (Again, it is possible for B1,j to be a 0-by-0 matrix when k1,j = 0.)
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We let ϕ2 : G2 −→ G2 be a finite-to-finite map corresponding to a direct sum of
matrices

B2,1 ⊕ B2,2 ⊕ · · · ⊕ B2,r2 ,

where each B2,i ∈ Mk2,i,k2,i((1/m) · End(Ci)) for some given m ∈N. Furthermore, we assume
that each matrix B2,i is either a 0-by-0 matrix whenever k2,i = 0, or it is NFP (according to
Definition 2·6).

We let � := �1 × ϕ1 × ϕ2 be the given correspondence on G = G0 × G1 × G2. Then at
least one of the following statements must hold:

(a) there exists a point α ∈ G(K) such that an orbit of α under� (see also the convention
from Definition 3·4 regarding the orbit for a finite-to-finite map) is Zariski dense
in G;

(b) there exists a non-constant rational function f : G0 −→ P1 such that f ◦�1 = f ;

(c) there exists a semiabelian variety Z defined over a finite subfield Fq of K, endowed
with the Frobenius endomorphism F : Z −→ Z corresponding to Fq, such that

(i) dim(Z)> trdeg
Fp

K; and
(ii) there exists a dominant group homomorphism τ : G −→ Z and there exist positive

integers �0 and n0 such that for each x ∈ G(K), we have(
τ ◦�n0

)
(x) − (F ◦ τ) (x) ∈ Z[�0],

i.e., the following diagram is almost commutative:

(3·47)

The remaining Sections are devoted to proving Theorem 3·10, which in turn yields our
main result (Theorem 1·3).

4. The unipotent case

In this Section we prove a special case of Theorem 3·10, i.e., with the notation as in
Theorem 3·10, the semiabelian varieties G1 and G2 are trivial. So, we are dealing now
with the unipotent case (see (3·46)). Also, to simplify our notation later, we introduce the
following convention: for a simple semiabelian variety C and some k ∈N, each group endo-
morphism ϕ ∈ End(Ck) is identified with a k-by-k matrix Q whose entries are in End(C) and
so, for a point γ ∈ Ck, we denote

ϕ(γ ) := γQ. (4·1)

Also, in order to emphasise the fact that γ ∈ Ck corresponds to a k-tuple (γ1, . . . , γk) ∈ Ck,
we often employ the notation �γ to denote the point γ ∈ Ck. So, in particular, the translation-
by- �γ map on Ck is denoted by τ �γ . Finally, for a k-tuple of endomorphisms

�ϕ := (ϕ1, . . . , ϕk) ∈ (End(C))k, (4·2)
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we let

�γ �ϕ :=
k∑

i=1

ϕi(γi); (4·3)

we will use the notation (4·2) and (4·3) for an arbitrary semiabelian variety C (not necessarily
simple).

Before proving Proposition 4·3, we first recall the definition of upper asymptotic density
of a subset of non-negative integers.

Definition 4·1. Given a subset U of the set of non-negative integers, the upper asymptotic
density of U is given by

lim sup
m→∞

# {0 ≤ n ≤ m : n ∈ U}
m

.

Remark 4·2. Upper asymptotic densities will appear frequently in the rest of the paper. So,
from now on, for the sake of simplifying our notation, we will refer to the upper asymptotic
density of some subset U ⊆N0 simply as density of U and also, denote it by d(U).

PROPOSITION 4·3 Let G =∏r
i=1 Cki

i be a reduced split semiabelian variety (i.e., the Ci’s
are simple non-isogenous semiabelian varieties defined over Fp). Let K be an algebraically

closed field, which is transcendental over Fp and let �βi ∈ Cki
i (K) for i = 1, . . . , r. Let

� : G −→ G be given by

(�x1, . . . , �xr) �−→
( �β1 + �xQ1

1 , . . . , �βr + �xQr
r

)
, (4·4)

where Qi are ki-by-ki matrices with entries in Mki,ki(End(Ci)). Moreover, assume that for

0 ≤ j ≤ r, Qj := J
1,i(j)1

⊕
J

1,i(j)2 −i(j)1

⊕ · · ·⊕ J
1,i(j)�j

−i(j)�j−1
(where 1 ≤ i(j)1 < i(j)2 < · · ·< i(j)�j

= kj)

and �βj := (β(j)
1 , . . . , β(j)

kj
) ∈ C

kj
j (K). Then, the following statements are equivalent:

(i) there is a non-constant rational function f : G −→ P1 such that f ◦�= f ;

(ii) there is no α ∈ G(K) whose orbit is Zariski dense in G(K);

(iii) there exists 1 ≤ j ≤ r such that β(j)
i1

, . . . , β(j)
i�j

are linearly dependent over End(Cj).

Proof. As noted already in [1, 3, 18], we have that (i)⇒(ii).
Now, in order to prove that (ii)⇒(iii), it suffices to show that if for each j = 1, . . . , r, we

have that

β
(j)

i(j)1

, β(j)

i(j)2

, . . . , β(j)

i(j)�j

are are linearly independent over End(Cj),

then we can find a point in G(K) with a Zariski dense orbit.
We let Fq be a finite subfield of K with the property that each Cj is defined over Fq. For

each j = 1, . . . , r, we denote by FCj ∈ End(Cj) the Frobenius endomorphism corresponding
to the field Fq. Also, we denote by FG the corresponding Frobenius endomorphism for the
semiabelian variety G; when there is no possibility of confusion, we drop the index and
simply denote the Frobenius endomorphism by F. Furthermore, we let Z[F] be the ring of
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operators (consisting of polynomials in the Frobenius endomorphism with integer coeffi-
cients) acting on any semiabelian variety defined over Fq (in our proof, Z[F] will act on G

and also on each Ci and Cki
i ).

After conjugating � with a suitable translation (which does not change the conclusion of
our result, according to [2, lemma 3·1]), we may assume without loss of generality that for
every 1 ≤ j ≤ r

(
β

(j)
1 , . . . , β(j)

kj

)
=
(

1, . . . , 1, β(j)

i(j)1

, 1, . . . , 1, β(j)

i(j)�j

)
, (4·5)

i.e., βk = 1 unless k = ij for some j = 1, . . . , �j (this is similar to what we used also in the
proof of [12, proposition 3·10]). For every 1 ≤ j ≤ r we choose a point

�αj :=
(
α

(j)
1 , . . . , α(j)

i(j)1 −1
, 1, α(j)

i(j)1 +1
, . . . , α(j)

i(j)2 −1
, 1, . . . , α(j)

i(j)�j
−1

, 1

)
, (4·6)

such that α(j)

i(j)1

, . . . , α(j)

i(j)1 −1
, β(j)

i(j)1

, α(j)

i(j)1 +1
, . . . , α(j)

i(j)�j
−1

, β(j)

i(j)�j

are linearly independent over End(Cj).

Now, for every 1 ≤ i ≤ r let ϕi : Cki
i −→ Cki

i be the endomorphism corresponding to the

matrix Qi and �i : Cki
i −→ Cki

i be the endomorphism given by τ �βi
◦ ϕi.

Note that any point �x ∈ G can be written as (�x1, . . . , �xr) where �xi ∈ Cki
i . Define ϕ : G −→ G

as ϕ := (ϕ1, . . . , ϕr). Next, we let

Pϕ(x) = xm + am−1xm−1 + · · · + a1x + a0 (4·7)

be the minimal polynomial of ϕ over Z; since ϕ is a unipotent group endomorphism, then we
actually know that Pϕ(x) = (x − 1)m. (The only relevant information for our proof regarding
Pϕ(x) is its degree m.) We also let

�α := (�α1, . . . , �αr) ∈ G(K)

and also �β :=
( �β1, . . . , �βr

)
∈ G(K), while we let

�ρ =
(
�α, ϕ(�α), . . . , ϕm−1(�α), �β, ϕ( �β), . . . , ϕm−1( �β)

)
,

and for every 1 ≤ i ≤ r, we let

�ρi =
(
�αi, ϕi(�αi), . . . , ϕ

m−1
i (�αi), �βi, ϕi( �βi), . . . , ϕ

m−1
i ( �βi)

)
. (4·8)

The orbit of �α under � consists of points of the following form:

O�(�α) =
{
ϕn(�α) +

n−1∑
i=1

ϕi( �β) : n ∈N0

}
.

We claim that the orbit of �α under � is Zariski dense. We argue by contradiction, and
therefore assume that its Zariski closure V is a proper subvariety of G.

We let � ⊂ G be the finitely generated Z[F]-module consisting of all elements of the
form �v · �ρ, where �v ∈Z[F]2m (where Z[F] is the Z-module spanned by the Frobenius oper-
ator which acts on any variety Y defined over Fq). Clearly, we have that O�(�α) ⊆ �.
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By [21, theorem B] (see also Theorem 2·8 and Section 2·6), we know that V ∩ � is a union
of finitely many sets of the form

U := �γ +(�η1, . . . , �ηt; δ1, . . . , δt) + H, (4·9)

(for some t ∈N), where there exists some positive integer m2 (see Remark 2·9) such that

m2 · γ , m2 · η1, . . . , m2 · ηt ∈ �, (4·10)

the δj’s are positive integers, H is a subgroup of � and

(�η1, . . . , �ηt; δ1, . . . , δt) :=
⎧⎨
⎩

t∑
j=1

Fδjnj · �ηj : nj ∈N0 for j = 1, . . . , t

⎫⎬
⎭ .

Because O�(�α) is contained in finitely many sets of the form (4·9), then there must exist
a given set U of the form (4·9) for which the following subset of N0:

S = {
n ∈N0 : �n(�α) ∈ U

}
has positive density d(S).

The algebraic closure of H must be an algebraic group H contained in the stabilizer of
the variety W, which is the Zariski closure of U. Since V is a proper subvariety and W ⊆ V ,
then H must also be a proper algebraic subgroup of G. So, there must exist vectors �σi =
(σ (i)

1 , . . . , σ (i)
ki

) ∈ End(Ci)ki , not all zero, such that

(�εi)
�σi = 1 for each (ε1, . . . , εr) ∈ H, and 1 ≤ i ≤ r (see 4·3). (4·11)

Let n ∈ S; so, �n(α) ∈ U (see (4·9)). Equation (4·10) yields that

m2 · γ = �c · �ρ and m2 · ηi = �bi · �ρ for each i = 1, . . . , t,

where �c, �b1, . . . , �bt ∈Z[F]2m and so,

m2 ·�n(α) =
⎛
⎝�c +

t∑
j=1

Fδjnj �bj

⎞
⎠ · �ρ + �un (4·12)

for some nonnegative integers nj and some �un ∈ H. So, combining (4·12) with (4·11) and
(4·8) yields that

(m2 ·�n
i (�αi))

�σi =
⎛
⎝
⎛
⎝�c +

t∑
j=1

Fδjnj �bj

⎞
⎠ · �ρi

⎞
⎠ �σi

. (4·13)

On the other hand, we know that �n
i (�αi)=

( �βi

)(∑n−1
j=0 Qj

i

)
+ (�αi)

(Qn
i ). Since not all the

vectors �σ1, . . . , �σr are equal to zero we have �σs �= 0 for some 1 ≤ s ≤ r. We also compute:

Qn
s =

⎛
⎜⎜⎜⎜⎝

1
(n

1

) · · · ( n
i(s)
1 −1

)
0 1 · · · ( n

i(s)
1 −2

)
...

...
. . .

...
0 0 · · · 1

⎞
⎟⎟⎟⎟⎠
⊕

· · ·
⊕

⎛
⎜⎜⎜⎜⎝

1
(n

1

) · · · ( n
i(s)
�s

−i(s)
�s−1−1

)
0 1 · · · ( n

i(s)
�s

−i(s)
�s−1−2

)
...

...
. . .

...
0 0 · · · 1

⎞
⎟⎟⎟⎟⎠ (4·14)
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and so,

Qn−1
s + · · · + id =

⎛
⎜⎜⎜⎜⎝

n
(n

2

) · · · ( n
i(s)
1

)
0 n · · · ( n

i(s)
1 −1

)
...

...
. . .

...
0 0 · · · n

⎞
⎟⎟⎟⎟⎠
⊕

· · ·
⊕

⎛
⎜⎜⎜⎜⎝

n
(n

2

) · · · ( n
i(s)
�s

−i(s)
�s−1

)
0 n · · · ( n

i(s)
�s

−i(s)
�s−1−1

)
...

...
. . .

...
0 0 · · · n

⎞
⎟⎟⎟⎟⎠ .

(4·15)

Therefore, using (4·13) along with formulas (4·14) and (4·15), we obtain that for each n ∈ S,
we have

m2 ·
( �βs

)(∑n−1
j=0 Qj

s

)t· �σs + m2 · (�αs)(
Qn

s )
t·�σs =

⎛
⎝
⎛
⎝�c +

r∑
j=1

Fδjnj �bj

⎞
⎠ · �ρs

⎞
⎠�σs

. (4·16)

Now, both sides in (4·16) consist of a End(Cs)-linear combination of

α
(s)
1 , . . . , α(s)

i(s)
1 −1

, β(s)

i(s)
1

, α(s)

i(s)
1 +1

, . . . , α(s)

i(s)
2 −1

, β(s)

i(s)
2

, α(s)

i(s)
2 +1

, . . . , α(s)

i(s)
�s

−1
, β(s)

i(s)
�s

(4·17)

and since the ks elements of Cs(K) from (4·17) are linearly independent over End(Cs), then it
means that the coefficient of each α(s)

i and each β(s)

i(s)
j

appearing in the left-hand side of (4·16)

must match the corresponding coefficient of the α(s)
i , respectively of β(s)

i(s)
j

appearing in the

right-hand side of (4·16).

Now, since �σs :=
(
σ

(s)
1 , . . . , σ (s)

ks

)
is nonzero, then there is some 1 ≤ k ≤ �s such that the

tuple

(
σ

(s)

i(s)
k−1+1

, . . . , σ (s)

i(s)
k

)
is nonzero (where we denoted i0 := 0 for convenience). We use

equations (4·14) and (4·15) to compute the coefficient of βik appearing in the left-hand side
of (4·16) and then comparing it with the coefficient of βik from the right-hand side of (4·16),
we get

m2

(
σ

(s)

i(s)
k−1+1

·
(

n

i(s)
k − i(s)

k−1

)
+ σ

(s)

i(s)
k−1+2

·
(

n

i(s)
k − i(s)

k−1 − 1

)
+ · · · + σ

(s)

i(s)
k

·
(

n

1

))

= τ0 +
r∑

j=1

τj · F
δjnj
Cs

, (4·18)

for some endomorphisms τ0, . . . , τr in End(Cs) (which are independent of n and instead,
they only depend on the coordinates of the vectors �c, �b1, . . . , �br and the entries of the vec-
tor �σs). Now, note that End(Cs) ⊗Q(FCs) is a finite-dimensional Q(FCs)-vector space with

basis B = {ψ1, . . . ,ψh}. Since the tuple
(
σ

i(1)
k−1+1

, . . . , σ
i(1)
k

)
is nonzero, then there must exist

1 ≤ h0 ≤ h such that the ψh0 th coordinates of σ
i(1)
k−1+1

, . . . , σ
i(1)
k

with respect to the basis B
are not all equal to zero. The coefficient of ψh0 in the left-hand side of equation (4·18) is
equal to

P(n) := m2 ·
i(s)
k −i(s)

k−1∑
j=1

u
i(s)
k−1+j

·
(

n

i(s)
k − i(s)

k−1 + 1 − j

)
, (4·19)
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where P ∈Q[x] is non-constant and u
i(s)
k−1+j

is the ψh0 th coordinate of σ
i(s)
k−1+j

. So, equations

(4·19) and (4·18) yield that each element n ∈ S must satisfy an equation of the form:

P(n) = c0 +
r∑

j=1

cjF
δjnj
Cs

, (4·20)

for some nj ∈N0, where the ci’s are theψh0 th coordinates of τ0, τ1, . . . , τr. Because P ∈Z[x]
is non-constant (while the δj’s are positive integers and the cj’s are given), [10, theorem 1·1]
yields that d(S) = 0, therefore contradicting our assumption that S has positive density.
Hence, indeed O�(α) must be Zariski dense in G which shows the implication (ii)⇒(iii).

Finally, in order to prove that (iii)⇒(i), we know that there exist endomorphisms

σ1, . . . , σ�j ∈ End(Cj) which are not all equal to zero and
∑�j

k=1 σk

(
β

(j)

i(j)k

)
= 0. Let N :=

k1 + · · · + kr and L = k1 + · · · + kj−1 and consider the morphism f : G −→ Cj given by

(x1, . . . , xN) �→
�j∑

k=1

σk

(
x

i(j)k +L

)
,

where we represented each element x ∈ G =∏r
i=1 Cki

i as (x1, . . . , xN). Then f is clearly
a non-constant group homomorphism (and thus, a dominant homomorphism since Cj

is a simple semiabelian variety), as not all of the σi’s are equal to zero; furthermore,
f ◦�= f . So, if χ : Cj −→ P1 is any non-constant rational function, then χ ◦ f : G −→ P1

would be a non-constant rational which is invariant under �. This concludes our proof for
Proposition 4·3.

5. A mixed case

In this Section, we extend Proposition 4·3 by allowing also a non-unipotent part in the map
� : G −→ G (where G is a semiabelian variety defined over Fp). Actually, in this special
case, we consider even the case when � is only a finite-to-finite map; this result will be
instrumental in deriving the general conclusion from Theorem 3·10.

PROPOSITION 5·1. Let G := G1 × G2, where

G1 :=
r∏

i=1

Cki
i , G2 :=

r∏
i=1

Ck′i
i ,

and C1, . . . , Cr are non-isogenous simple semiabelian varieties defined over Fp. (Note that
we are allowing k1, . . . , kr, k′

1, . . . , k′
r to be equal to zero keeping in mind that C0

i represents
the trivial group.) Let K be an algebraically closed field of positive transcendence degree
over Fp. For every j = 1, . . . , r, let Qj be a unipotent kj-by-kj matrix in Jordan canonical
form, i.e.,

Qj := J
1,i(j)1

⊕ J
1,i(j)2 −i(j)1

⊕ · · · ⊕ J
1,i(j)sj −i(j)sj−1

,

where 1 ≤ i(j)1 < i(j)2 < · · ·< i(j)sj = kj, and let �βj :=
(

1, . . . , 1, β(j)

i(j)1

, 1, . . . , 1, β(j)

i(j)sj

)
∈ C

kj
j (K).

We let
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�γj :=
(
γ

(j)
1 , . . . , γ (j)

i(j)1 −1
, 1, γ (j)

i(j)1 +1
, . . . , γ (j)

i(j)2 −1
, 1, γ (j)

i(j)2 +1
, . . . , γ (j)

i(j)sj −1
, 1

)
∈ C

kj
j (K)

and let �αj :=
(
α

(j)
1 , . . . , α(j)

k′j

)
∈ C

k′j
j (K). Assume the following elements of Cj(K) are

linearly independent over End(Cj):

γ
(j)
1 , . . . , γ (j)

i(j)1 −1
, β(j)

i(j)1

, γ (j)

i(j)1 +1
, . . . , γ (j)

i(j)sj −1
, β(j)

i(j)sj

. (5·1)

Also, assume that the α(j)
i ’s (the coordinates of �αj) are linearly independent from the elements

from (5·1) over End(Cj), i.e., letting �j and �j be the subgroups of Cj(K) spanned by the

action of the elements of End(Cj) on the elements from (5·1) and on the α(j)
i ’s, respectively,

we must have �j ∩�j = {0} for every 1 ≤ j ≤ r.

Let �1 : G1 −→ G1 be the regular map defined by

(�x1, . . . , �xr) �−→
( �β1 + �xQ1

1 , . . . , �βr + �xQr
r

)
.

Let �2 be a finite-to-finite map from G2 to G2 corresponding to matrices Q′
1, . . . , Q′

r where
Q′

i ∈ Mk′i(End0(Ci)) for i = 1, . . . , r and suppose that we have the next almost commutative
diagram

(5·2)

where G′ is a split semiabelian variety,	 ′ is a group endomorphism of G′ and g′ : G′ −→ G2

is an isogeny. Let �α := (�α1, . . . , �αr) and �γ := ( �γ1, . . . , �γr). Assume that for some given orbit
{yn}n≥0 of �α under �2, then for any positive density subset S ⊆N0, the set {yn : n ∈ S} is
Zariski dense in G2. Then

{(
�n

1( �γ ), yn
)

: n ∈ S
}

is Zariski dense in G.

Proof. So, we let S ⊆N0 be a positive density subset.
We recall that since diagram (5·2) is almost commutative (see also Sections 2·3 and 2.4),

then it means that there exists some positive integer �2 such that for each x ∈ G′, we have
that (

g′ ◦	 ′) (x) − (
�2 ◦ g′) (x) ∈ G2[�2]. (5·3)

At the expense of replacing �2 by a multiple of it, we may also assume that given ĝ′ : G2 −→
G′, we also have that

g′ ◦ ĝ′ = [�2]G2 and ĝ′ ◦ g′ = [�2]G′ . (5·4)

Equations (5·3) and (5·4) yield that

[�2] ◦�2 = g′ ◦	 ′ ◦ ĝ′. (5·5)

In particular, equation (5·5) yields that

[�2] ◦�n
2 = g′ ◦ (	 ′)n ◦ ĝ′ for each n ∈N. (5·6)
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Next, we consider the following almost commutative diagram

(5·7)

where g := (idG1 , g′) and 	 := (�1,	 ′). Choose �α0 ∈ G2 such that

[�2]G2(�α0) = �α (5·8)

and let �x0 := ( �γ , �α0). Let

O = {(
g ◦	n ◦ ĝ

)
(�x0) : n ∈ S

}⊂ (G1 × G2) (K),

where ĝ := (idG1 , ĝ′). Using (5·6), (5·7) and (5·8), it suffices to prove that O is Zariski
dense in G1 × G2. So, we assume otherwise and let V be the Zariski closure of O; then V is
a proper subvariety of G1 × G2.

Since 	 ′ ∈ End(G′) is integral over Z, combined with the fact that the Frobenius endo-
morphism F : G′ −→ G′ (corresponding to Fq) is also integral over Z (inside End(G′)), and
furthermore F commutes with g and g′ (since F is in the center of End0(G′)), we conclude
that

� :=
{(

n∑
i=0

ai
(
g ◦	 i ◦ ĝ

)
(�x0)

)
: n ∈N0 and ai ∈Z[F]

}
(5·9)

is a finitely generated Z[F]-submodule of G1 × G2 = G, which contains O. So, using
Theorem 2·8 and arguing identically as in the proof of Proposition 4·3, we have that V ∩�
is a finite union of sets of the form

U := �λ+(�η1, . . . , �ηs; δ1, . . . , δs) + H, (5·10)

where there exists some positive integer m such that

m · �λ, m · �η1, . . . , m · �ηs ∈�, (5·11)

while the δj’s are positive integers and H is a subgroup of �. Because O is entirely con-
tained in the union of finitely many sets as the one from (5·10), at the expense of replacing
S with a subset of positive density, there must exist some set U as in (5·10) containing(
g ◦	n ◦ ĝ

)
(�x0) for all integers n in S. Since we assumed that V is a proper subvariety of G,

then the Zariski closure of H must be a proper algebraic subgroup of G; so, there must exist
an endomorphism σ : G −→ G such that H ⊆ ker (σ ).

We let L be the degree of the minimal (monic) polynomial P	 with integer coefficients
for which P	 (	) = 0 in End(G1 × G′). Then we let

�ρ :=
(

(g ◦ ĝ),
(
g ◦	 ◦ ĝ

)
, . . . ,

(
g ◦	L−1 ◦ ĝ

))
and

�ρ(�x) :=
(

(g ◦ ĝ)(�x),
(
g ◦	 ◦ ĝ

)
(�x), . . . ,

(
g ◦	L−1 ◦ ĝ

)
(�x)

)
,

for every x ∈ G. Note that any element in � must be a linear combination of the coordinates
of �ρ(�x0) over Z[F]. So, using equation (5·11), there exist vectors �u0, �u1, . . . , �us ∈Z[F]L such
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that

m · �ηi = �ui · �ρ(�x0) for each i = 1, . . . , s and m · �λ= �u0 · �ρ (�x0) .

So, for each n ∈ S, using that
(
g ◦	n ◦ ĝ

)
(�x0) ∈ U along with equation (5·10), we must have

some some non-negative integers ni (for i = 1, . . . , s) such that

σ
(
m
(
g ◦	n ◦ ĝ

)
(�x0)

)= σ

((
�u0 · �ρ +

s∑
i=1

Fniδi(�ui · �ρ)

)
(�x0)

)
. (5·12)

Due to the way the coordinates of �x0 are chosen we know that there does not exist any
non-trivial endomorphism of G1 × G2 that vanishes at �x0. Therefore, we must have

σ
(
m
(
g ◦	n ◦ ĝ

))= σ

(
�u0 · �ρ +

s∑
i=1

Fniδi(�ui · �ρ)

)
(5·13)

for every n ∈ S (where the integers ni’s depend on n). Now, the group endomorphism σ

corresponds to some matrix P whose rows are of the form �v1 ⊕ �v2 where �v1 ∈∏r
i=1 End(Ci)ki

and �v2 ∈∏r
i=1 End(Ci)k′i . We know that m

(
g ◦	n ◦ ĝ

)
corresponds to matrices

mQn
1, . . . , mQn

r , (m�2)(Q′
1)n, . . . , (m�2)(Q′

r)n (see 5·6)

for some fixed positive integer �2.
If �v1 is a nonzero vector, using our hypothesis that the β(j)

ik
’s and the γ (j)

k ’s are linearly inde-

pendent over End(Cj), while the α(j)
k ’s are linearly independent over End(Cj) with respect to

the β(j)
ik

’s and the γ (j)
k ’s, and arguing exactly as in the proof of Proposition 4·3 (see equations

(4·18), (4·19) and (4·20)) we get that there exists some non-constant polynomial P0, there
exists some s ∈ {1, . . . , r}, and there exist c0, c1, . . . , cr ∈Q

(
FCs

)
such that for each n ∈ S,

there are non-negative integers nj such that

P0(n) = c0 +
r∑

j=1

cjF
δjnj
Cs

. (5·14)

Since S has positive density, this yields a contradiction to the conclusion of [10,
theorem 1·1]. Therefore, for any row of the matrix P of the form �v1 ⊕ �v2, we must have
�v1 = 0; this holds for any endomorphism that kills all of the elements of H. So, if we
let H be the Zariski closure of H, then we must have H = G1 × H2 where H2 is an
algebraic subgroup of G2. So, letting W be the Zariski closure of U in G, then its sta-
bilizer must contain H and therefore, it contains G1 (seen as a subgroup of G1 under
the natural embedding �x �→ �x ⊕ �0G2); i.e., for each �ε1 ∈ G1 and each �μ ∈ W, we have that(
�ε ⊕ �0G2

)
+ �μ ∈ W. Hence W = G1 × Z, for some subvariety Z ⊆ G2. However, Z must

contain each
(
g′ ◦ (	 ′)n ◦ ĝ′) (�α0) for n ∈ S. Using equations (5·6) and (5·8) we must have(

g′ ◦ (	 ′)n ◦ ĝ′) (�α0) − yn ∈ Z[�2].

By our hypothesis, {yn}n∈S is Zariski dense in G2 and therefore,{(
g′ ◦ (	 ′)n ◦ ĝ′) (�α0) : n ∈ S

}
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must actually be Zariski dense in G2, which yields that Z = G2. Thus, W = G and indeed O
must be Zariski dense in G.

Now, using the fact that (5·7) is almost commutative along with (5·6), we have that

g
(
	n(ĝ(�x0))

)− (�n
1( �γ ), yn) ∈ G[�2]. (5·15)

So, letting g̃ := [�2]G ◦ g be the composition of g with the multiplication-by-�2 map on G,
we obtain a finite regular map g̃ : G1 × G′ −→ G. Equation (5·15) yields that

g̃
(
	n(ĝ(�x))

)= [�2]G(�n
1( �γ ), yn) for each n ≥ 1 (5·16)

and since
{(

g ◦	n ◦ ĝ
)
(�x0) : n ∈ S

}
is Zariski dense, then also the sequence{(

g̃ ◦	n ◦ ĝ
)
(�x0) : n ∈ S

}
is Zariski dense in G. But then equation (5·16) yields that {(�n

1( �γ ), yn) : n ∈ S} must be
Zariski dense in G since [�2]G is a finite map. This concludes our proof of Proposition 5·1.

6. The case of group endomorphisms whose eigenvalues are powers of the Frobenius
element in the endomorphism ring

The next result provides the conclusion in Theorem 3·10 in the case we have a group
endomorphism of a split reduced semiabelian variety, whose corresponding eigenvalues are
powers of the Frobenius element in the endomorphism ring.

PROPOSITION 6·1. Let K be an algebraically closed field of characteristic p with transcen-
dence degree d ≥ 1 over Fp, and let G be a reduced split semiabelian variety, i.e.,

G :=
r∏

i=1

Cki
i ,

where the Ci’s are non-isogenous simple semiabelian varieties defined over some finite
subfield Fq ⊂ K, while the ki’s are positive integers. We let F : G −→ G be the Frobenius
endomorphism of G associated to the finite field Fq; also, for each i = 1, . . . , r, we let FCi ∈
End(Ci) be the corresponding Frobenius for each semiabelian variety Ci. Let � : G −→ G
be a dominant group endomorphism corresponding to matrices Qi ∈ Mki,ki(End(Ci)) for
1 ≤ i ≤ r. Assume that each matrix Qj is a Jordan canonical matrix of the form:

J
Fn

(j)
1 ,i(j)1

⊕ J
Fn

(j)
2 ,i(j)2 −i(j)1

⊕ · · · ⊕ J
F

n
(j)
sj ,i(j)sj −i(j)sj−1

, (6·1)

where 1 ≤ i(j)1 < i(j)2 < · · ·< i(j)sj = kj, and sj, n(j)
� are positive integers (for 1 ≤ j ≤ r and

1 ≤ �≤ sj).
Then one of the following statements must hold:

(a) there exists �α = (�α1, . . . , �αr) ∈ G(K) where �αi ∈ Cki
i for each 1 ≤ i ≤ r, whose orbit

under � is Zariski dense in G. Furthermore, given any finitely generated submodules
�1, . . . , �r where �i ⊂ Ci(K) is an End(Ci)-submodule for every 1 ≤ i ≤ r, one can
choose �α ∈ G(K) such that:
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(i) the subgroup spanned by the action of the elements of End(Ci) on α(1)
i , . . . , α(ki)

i
(the coordinates of �αi) has trivial intersection with �i for every 1 ≤ i ≤ r; and

(ii) for any subset S of positive integers with positive density we have {�n(α) : n ∈ S}
is Zariski dense in G.

(b) there exist 1 ≤ j1 ≤ · · · ≤ j� ≤ r, and u1, . . . , u� satisfying 1 ≤ uk ≤ sjk for every 1 ≤
k ≤ �, such that the pairs (jk, uk) are distinct and we have:

n(j1)
iu1

= · · · = n(j�)
iu�

,

along with
∑�

t=1 dim
(
Cjt

)
> d.

Proof. In our proof, by convention, we let i(j)0 = 0 for each 1 ≤ j ≤ r.
If conclusion (b) holds then we are done. So, assume from now on, that conclusion (b)

does not hold. In particular, we have some finitely generated subgroups �i as in conclusion
(a) from Proposition 6·1.

Each component Cj of G is embedded in PNj (with coordinate axes labeled xi for 1 ≤
i ≤ Nj + 1) for some Nj ∈N. We let dj := dim(Cj) for every j = 1, . . . , r; without loss of
generality, we assume each Cj projects dominantly onto the first dj coordinates of PNj , i.e.,
the projection

(
x1 : x2 · · · : xNj+1

) �→ (
x1 : x2 : · · · : xdj : xNj+1

)
induces a dominant rational

map πj : Cj ��� Pdj .
We let

P = {
(j, �) : 1 ≤ j ≤ r, 1 ≤ �≤ sj

}
,

be a totally ordered set with the usual lexicographical order. We can partition P by the sets

Pn =
{

(j, �) : 1 ≤ j ≤ r, 1 ≤ �≤ sj, n(j)
� = n

}
(6·2)

and we extend the lexicographic order on each Pn.
Let {t1, . . . , td} ⊂ K be an arbitrary algebraically independent set over Fp (i.e., a transcen-

dence basis for K/Fp).
For every j = 1, . . . , r and each �= 1, . . . , sj there must exist a unique n ∈N such that

(j, �) ∈Pn. Letting (j1, �1), . . . , (ju, �u) be all the pairs in Pn that are smaller than (j, �), with
respect to the lexicographical order imposed on P , we can define

S�,j := dj1 + · · · + dju , (6·3)

where S�,j is defined to be equal to zero whenever (j, �) is the smallest pair in Pn. We
also let

tk,�,j := tS�,j+k (6·4)

for every 1 ≤ k ≤ dj (and each (j, �) ∈P). Note that since condition (b) is not met we must
have S�,j + k ≤ d for every possible choice of �, j, k which means that tk,�,j is well-defined.
Indeed, the fact that (j, �) along with each (jt, �t) for 1 ≤ t ≤ u are contained in Pn (where
the pairs (jt, �t) are all the pairs contained in Pn smaller than (j, �)) means that

n(j)
� = n(j1)

�1
= · · · = n(ju)

�u
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and so, our assumption that condition (b) from Proposition 6·1 does not hold yields that

dj + dj1 + · · · + dju ≤ d,

as desired.
Next, for each j = 1, . . . , r, and for each S := S�,j (for some 1 ≤ �≤ sj), we choose a point

α
(S)
j ∈ Cj(K) (note that πj is a dominant map and

(
tS+1 : tS+2 : · · · : tS+dj : 1

)
is a generic point

for Pdj/Fp) such that:

πj

(
α

(S)
j

)
:= (

tS+1 : tS+2 : · · · : tS+dj : 1
)

. (6·5)

Then for each j = 1, . . . , r and for each �= 1, . . . , sj, we let

α�,j := α
(S�,j)
j . (6·6)

Also, recalling that tk,�,j := tS�,j+k for each j = 1, . . . , r, each �= 1, . . . , sj and each k =
1, . . . , dj, then we see that

πj
(
α�,j

)= (
t1,�,j : t2,�,j : · · · : tdj,�,j : 1

)
. (6·7)

These points α�,j satisfy the following two conditions:

(1) given any distinct pairs (�1, j1), . . . , (�u, ju) (for some u ∈N) such that

n(j1)
�1

= n(j2)
�2

= · · · = n(ju)
�u

,

(i.e., they all belong to the same part Pn in the partition of P), we have that{
t1,�1,j1 , . . . , tdj1 ,�1,j1 , t1,�2,j2 , . . . , tdj2 ,�2,j2 , . . . , t1,�u,ju , . . . , tdju ,�u,ju

}
(6·8)

is an algebraically independent set over Fp since the above tk,�u,ju’s are distinct ele-
ments of the transcendence basis for K/Fp due to the definition (6·4) along with
the fact that the sums S�v,jv are all distinct for v = 1, . . . , u (and furthermore, if the
pair

(
jv1 , �v1

)
is smaller than the pair

(
jv2 , �v2

)
, then S�v2 ,jv2

≥ S�v1 ,jv1
+ djv1

due to
definition (6·3));

(2) for any given 1 ≤ j ≤ r and any distinct points

α�1,j, . . . , α�u,j for some u ≥ 1,

we have that these points are linearly independent over End(Cj). Indeed, since these
points are distinct (which is equivalent, due to equation (6·7), with the fact that the
sums S�v,j are distinct for v = 1, . . . , u), we have that each α�v,j is the generic point of
the simple semiabelian variety Cj in a different algebraically closed subfield Kv,j ⊂ K.
Furthermore, letting - without loss of generality - S�u,j be the largest sum among the
sums S�v,j (for v = 1, . . . , u), then we have that Ku,j is not contained in the compositum
of the fields Kv,j for 1 ≤ v< u. So, any linear dependence relation between the points
α�v,j of the form

u∑
v=1

ψv(α�v,j) = 0 (6·9)
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for some ψ1, . . . ,ψu ∈ End(Cj) would force that ψu = 0. Then repeating the same
reasnoning to the remaining (u − 1) distinct points α�v,u (for 1 ≤ v< u) yields that
indeed the only possibility for equation (6·9) to hold is when each endomorphism ψv

is the trivial one.

Moreover, since Cj(K) ⊗Z Q is an infinite dimensional Q-vector space, while End(Cj) is a
finite Z-module and also, each �j is a finitely generated End(Cj)-module, one can choose
the elements {t1, . . . , td} so that the following condition is also satisfied:

(3) for each j = 1, . . . , r, the End(Cj)-submodule spanned by the action of the elements
of End(Cj) on αi,j (for 1 ≤ i ≤ sj) has trivial intersection with �j.

We construct the point

�α := ( �α1, . . . , �αr) ∈ G(K),

where for each j = 1, . . . , r,

�αj = ( α1,j, . . . , α1,j︸ ︷︷ ︸
i(j)1 times

, α2,j, . . . , α2,j︸ ︷︷ ︸
i(j)2 − i(j)1 times

, . . . , αsj,j, . . . , αsj,j︸ ︷︷ ︸
i(j)sj − i(j)sj−1 times

) ∈ C
kj
j (K). (6·10)

Then, condition (i) from conclusion (a) in Proposition 6·1 is satisfied by our choice for
�α ∈ G(K) (see property (3) above). Next we prove that also condition (ii) in conclusion (a)
holds for the orbit of �α under �, i.e., in particular, we prove that its orbit O�(�α) is Zariski
dense in G.

So, we let S0 ⊆N be a set of positive density, and we will prove that

T�,S0,�α := {
�n(�α) : n ∈ S0

}
is Zariski dense in G. (6·11)

Suppose for the sake of contradiction that this is not the case. Let V be the Zariski closure
of the set T := T�,S0,�α from (6·11). We let � ⊂ G be the finitely generated Z[F]-module
consisting of all elements of the form σ (α), where σ is in End(G); clearly, T ⊆ �. Note
that � is indeed finitely generated as End(G) is a finitely generated module over Z. By
Theorem 2·8 (see also Section 2·6), we know that V ∩ � is a union of finitely many F-sets
(just as in equation (4·9); see also equation (6·12) below). Because T is contained in finitely
many sets of the form

U := �γ +(�η1, . . . , �ηt; δ1, . . . , δt) + H, (6·12)

then there must exist a given set U of the form (6·12) for which the following subset of N0:

S1 = {
n ∈ S0 : �n(�α) ∈ U

}
has positive density d(S1). Furthermore, we know that there exists some positive integer m
such that

m · γ , m · η1, . . . , m · ηt ∈ �, (6·13)

while the δj’s are positive integers, H is a subgroup of � and (as before), we have the set

(�η1, . . . , �ηt; δ1, . . . , δt) :=
⎧⎨
⎩

t∑
j=1

Fδjnj · �ηj : nj ∈N0 for j = 1, . . . , t

⎫⎬
⎭ ,

where F : G −→ G is the Frobenius endomorphism corresponding to the field Fq.
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The algebraic closure of H must be an algebraic group H contained in the stabiliser of
the variety W, which is the Zariski closure of U. Since V is a proper subvariety and W ⊆ V ,
then H must also be a proper algebraic subgroup of G. So, there must exist vectors �σi =
(σ (i)

1 , . . . , σ (i)
ki

) ∈ End(Ci)ki (for each i = 1, . . . , r), not all the vectors �σi being trivial, such
that the following equation holds: given any point (�ε1, . . . , �εr) ∈ H, we have that

(�εi)
�σi = 1 for each i = 1, . . . , r. (6·14)

Using equation (6·13) along with the fact that � is the cyclic End(G)-module generated
by �α, we get that

m · γ = τ (α) and m · ηi = τi(α) for each i = 1, . . . , t,

where τ , τ1, . . . , τt ∈ End(G) and so,

m ·�n(�α) =
(
τ (�α)+

t∑
j=1

Fδjnj
(
τj (�α)

) )+ �υn (6·15)

for some nonnegative integers nj and some �υn ∈ H.

For each i = 1, . . . , r, we let �i := �∣∣Cki
i

, which induces an endomorphism of Cki
i . On

the other hand, for τ and also for τj (for 1 ≤ j ≤ t), we let τ (i), respectively τ (i)
j represent

the restriction τ∣∣Cki
i

, respectively (τj)∣∣Cki
i

which induce endomorphisms of Cki
i for each i =

1, . . . , r. Finally, we use F(i) to denote the Frobenius action on Cki
i for each i = 1, . . . , r.

Combining (6·15) with (6·14) yields that for each i = 1, . . . , r, we have:

(m ·�n
i (�αi))

�σi =
((
τ (i)(�αi) +

t∑
j=1

(
F(i)

)δjnj
(τ (i)

j (�αi))
)) �σi

. (6·16)

On the other hand, according to our hypothesis from Proposition 6·1, we know that
�n

i (�αi) = (�αi)Qn
i and so, for each k = 1, . . . , r we have:

Qn
k =

sk⊕
j=1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

F
n·n(k)

j
Ck

(n
1

)
F

(n−1)·n(k)
j

Ck
· · · ( n

i(k)
j −i(k)

j−1−1

)
F

(
n−i(k)

j +i(k)
j−1+1

)
·n(k)

1

Ck

0 F
n·n(k)

j
Ck

· · · ( n
i(k)
j −i(k)

j−1−2

)
F

(
n−i(k)

j +i(k)
j−1+2

)
·n(k)

j

Ck

...
...

. . .
...

0 0 · · · F
n·n(k)

j
Ck

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (6·17)

where (as before) we use the convention that i(k)
0 = 0.

Next we employ the following technical Lemma.

LEMMA 6·2. Let u ∈ {1, . . . , r}. Suppose now that some coordinate σ (u)
v of �σu is nonzero.

Then it must be that v = i(u)
�−1 + 1 for some �= 1, . . . , su.

Proof of Lemma 6·2. We argue by contradiction and therefore, assume there exists some
coordinate v �= i(u)

�−1 + 1 (for each �= 1, . . . , su) such that σ (u)
v �= 0.
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We let � ∈ {1, . . . , su} be the unique integer for which we have

i(u)
�−1 < v ≤ i(u)

� . (6·18)

Using condition (2) regarding the linear independence over End(Cu) of the distinct points
αj,u, we must have that the coefficient (seen as an element of End(Cu)) of α�,u on the
right hand side and respectively, on the left-hand side of equation (6·16) must be equal.
This means that there must exist c, b1, . . . , br ∈ End(Cu) and polynomials P1, . . . , Psu with
coefficients in End0(Cj) such that

F
n·n(u)

1
Cu

P1(n) + · · · + F
n·n(u)

su
Cu

Psu(n) = c +
t∑

i=1

biF
δini
Cu

, (6·19)

for every n ∈ S. In the left-hand side of equation (6·19), we collect the terms corresponding
to the same value n(u)

i (as we vary i ∈ {1, . . . , su}) and so, we obtain a new equation:

Fn·γ1
Cu

R1(n) + · · · + Fn·γk
Cu

Rk(n) = c +
t∑

i=1

biF
δini
Cu

, (6·20)

where γ1, . . . , γk (for some k ∈N) are all the distinct n(u)
i (as we vary i ∈ {1, . . . , su}), while

R1(n), . . . , Rk(n) are polynomials with coefficients in End0(Cu).

Claim 6·3. There exists w ∈ {1, . . . , k} such that the polynomial Rw(n) is not constant.

Proof of Claim 6·3. First of all, since we assumed that the entry σ (u)
v in �σu is nonzero and

v �= i(u)
h−1 + 1 for h = 1, . . . , su, then using our definition of � as in (6·18), we get that the

polynomial

P�(n) is nonconstant. (6·21)

Now, using conditions (1) and (2) satisfied by the points αj,u, it means that whenever αj,u =
α�,u, we must also have that

n(u)
j �= n(u)

� . (6·22)

Equation (6·22) yields that when we collect terms in equation (6·19) and derive equation
(6·20), for the unique w ∈ {1, . . . k} for which γw = n(u)

� , we actually have that Rw(n) = P�(n).
Then equation (6·21) provides the desired conclusion in Claim 6·3.

Now, note that End0(Cu) is a vector space over Q[FCu]. So, considering a basis for the
Q[FCu]-vector space End0(Cu) (using the same argument from the proof of Proposition 4·3,
as employed before equation (4·20)), we may assume without loss of generality that
c, b1, . . . , br and the coefficients of the polynomials Rw (for w = 1, . . . , k, as in equation
(6·20)) are all contained in Q[FCu] which is a (commutative) field and can be viewed as a
subset of C. This contradicts [9, theorem 1·2], which provides an upper bound for all positive
integers n ≤ N for which there exist some ni ∈Z such that

un =
t∑

i=1

dia
ni ,
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where a, c1, . . . , ct ∈C∗ and {un} is a linear recurrence sequence whose characteristic roots
are not all simple and equal to powers of a. Indeed, the upper bound from [9, theorem 1·2]
is of the form O

(
log (N)t

)
, while our hypothesis is that the set of n satisfying the equation

(6·20) for some n1, . . . , nt ∈N0 would have positive density. This concludes our proof of
Lemma 6·2.

Therefore, Lemma 6·2 yields that for any σ that kills all the elements in H, all the coor-
dinates of σ other than σ (j)

1 , σ (j)

i(j)1 +1
, . . . , σ (j)

i(j)sj−1+1
(for j = 1, . . . , r) must be zero. This implies

that V ∼=
(∏r

i=1 Cki−si
i

)
× Z, where Z is a subvariety of

∏r
i=1 Csi

i containing the elements

(Fn·n(1)
1 (α1,1), . . . , Fn·n(1)

s1 (αs1,1), . . . , Fn·n(r)
1 (α1,r), . . . , Fn·n(r)

sr (αsr ,r)).

Furthermore, for each j = 1, . . . , r, we consider the first dj coordinates in PNi of the points

Fn·n(j)
� (α�,j) (for 1 ≤ �≤ sj), i.e., we let:

TN,�,j :=
(

tq
N

1,�,j, tq
N

2,�,j, . . . , tq
N

dj,�,j

)
∈Adj(K), (6·23)

where we recall the definition of tk,�,j from (6·4).
Since the dimension of

∏r
i=1 Csi

i is equal to e := ∑r
i=1 sidi, and because we assumed that

Z is a proper subvariety of
∏r

j=1 C
sj
j , then there must exist a nonzero polynomial Q with

coefficients in K that vanishes on(
T

n·n(1)
1 ,1,1

, . . . , T
n·n(r)

sr ,sr ,r

)
∈AD(K), (6·24)

for every n ∈ S (see also the definition of TN,�,j from (6·23)). So, for each j = 1, . . . , r and
for each 1 ≤ i ≤ sj, we let �xi,j be a vector with dj entries in K; then Q ∈ K[�x1,1, . . . , �xsr ,r] is a
nonzero polynomial given by

Q(�x1,1, . . . , �xsr ,r) =
∑

�v1,1,...,�vsr ,r

c�v1,1,...,�vsr ,r · �x�v1,1
1,1 · · · · · �x�vsr ,r

sr ,r ,

where c�v1,1,...,�vsr ,r ∈ K and �vi,j ∈Zdj for every j = 1, . . . , r and i = 1, . . . , sj. Next we let

T = {
td,i,j : 1 ≤ j ≤ r, 1 ≤ i ≤ sj, 1 ≤ d ≤ dj

}
,

where the elements of T are not counted with repetition (i.e., the cardinality of T may be
less than e). Then we may assume without loss of generality that c�v1,1,...,�vsr ,r are polynomials

in Fp[T] (because any algebraic relation between the points from (6·24) must already occur
over Fp[T]).

Let D be the maximum (total) degree of the polynomials c�v1,1,...,�vsr ,r . For any t̃ ∈ T we let

degt̃ (P) denote the degree of t̃ in P ∈ Fp[T].
Now, since the elements in T are all algebraically independent (according to our

choice for tk,i,j satisfying conditions (1)-(2) from above), then the fact that Q van-

ishes at
(

T
n·n(1)

1 ,1,1
, . . . , T

n·n(r)
sr ,sr ,r

)
, means that for each n ∈ S, there exist distinct vectors

�v1,1, . . . , �vsr ,r and �v′
1,1, . . . , �v′

sr ,r such that for each t ∈ T, we have that
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degt̃

⎛
⎜⎜⎝c�v1,1,...,�vsr ,r ·

∏
1≤j≤r
1≤i≤sj

T
�vi,j

n·n(j)
i ,i,j

⎞
⎟⎟⎠= degt̃

⎛
⎜⎜⎝c�v′1,1,...,�v′sr ,r

·
∏

1≤j≤r
1≤i≤sj

T
�v′i,j

n·n(j)
i ,i,j

⎞
⎟⎟⎠ . (6·25)

At the expense of replacing S with an infinite subset (actually, even a subset of positive
density), we may actually assume that equation (6·25) holds for all n ∈ S.

Next, for each j = 1, . . . , r and each i = 1, . . . , sj and for each t̃ ∈ T, we let �u(t̃)
i,j ∈Zdj be

a vector whose kth entry is either equal to 1 or to 0, depending on whether tk,i,j = t̃, or not.
Also, we let �wi,j := �vi,j − �v′

i,j for each j = 1, . . . , r and each i = 1, . . . , sr. Then equation
(6·25), along with the fact that the degrees of the polynomials c�v1,1,...,�vsr ,r and c�v′1,1,...,�v′sr ,r

are

bounded by D, we get the following inequality for each n ∈ S and for each t̃ ∈ T:∣∣∣∣∣∣∣∣
∑

1≤j≤r
1≤i≤sj

qn·n(j)
i ·

(
�u(t̃)

i,j · �wi,j

)∣∣∣∣∣∣∣∣≤ D. (6·26)

We let γ (t̃)
i,j ∈Z be the dot product of the vectors �u(t̃)

i,j · �wi,j. So, the inequality (6·26) yields
that ∣∣∣∣∣∣∣∣

∑
1≤j≤r
1≤i≤sj

qn·n(j)
i · γ (t̃)

i,j

∣∣∣∣∣∣∣∣≤ D. (6·27)

Since (�v1,1, . . . , �vsr ,r) �= (�v′
1,1, . . . , �v′

sr ,r) there must exist some 1 ≤ j ≤ r and some 1 ≤ i ≤ sj

such that �wi,j �= �0. So, there exists 1 ≤ d ≤ dj such that the dth coordinate of �wi,j is non-zero.
If we let t̃ = td,i,j, then we see that equation (6·27) becomes∣∣∣∣∣∣

∑
1≤e≤E

ωeqn·κe

∣∣∣∣∣∣≤ D, (6·28)

where ω1, . . . ,ωE are non-zero integers and κ1, . . . , κE are distinct positive integers. Indeed,

due to condition (1) we know that γ (t̃)
i,j and γ (t̃)

i′,j′ can be non-zero if and only if n(j)
i �= n(j′)

i′ . But,

due to the fact that κ1, . . . , κE are distinct positive integers it is clear that the left-hand side
of (6·28) must go to infinity as n approaches infinity which is a contradiction. Therefore,
O�(�α) is Zariski dense in G which concludes our proof of Proposition 6·1.

7. A split case

Before proving the main result of this Section (which is Theorem 7·3), we start with
a technical Lemma regarding simple semiabelian varieties; actually, Lemma 7·1 could be
formulated solely using subrings of skew fields which are integral over their center, but
since its natural setting is the case of endomorphisms of simple semiabelian varieties, we
prefer to formulate our result in this context.

LEMMA 7·1. Let D be some simple semiabelian variety defined over a finite field Fq, let
F be the Frobenius endomorphism of D corresponding to the field Fq, let N, r ∈N, let �v be an
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N-by-1 vector with entries in End(D), let δ1, . . . , δr ∈N, and let A, B1, . . . , Br, C be N-by-N
matrices with entries in End(D) such that A is invertible and moreover, it is an NFP matrix
(see Definition 2·6). If there exists an infinite subset S ⊆N with the property that for each
n ∈ S, there exist n1, . . . , nr ∈N0 such that

An�v = C�v +
r∑

i=1

FniδiBi�v, (7·1)

then �v must be the zero vector. Similarly, if there exists an infinite subset S ⊆N with the
property that for each n ∈ S, there exist n1, . . . , nr ∈N0 such that

�vTAn = �vTC +
r∑

i=1

Fniδi�vTBi, (7·2)

then �v must be the zero vector.

Remark 7·2. Note that equations (7·1) and (7·2) are not equivalent since if A and B are two
matrices over a non-commutative ring, then (AB)T is not necessarily equal to BTAT . Having
said that, a strategy that proves the first part of Lemma 7·1, also proves the second part.

Proof. We let FD be the image of the Frobenius in the endomorphism ring of D; we embed
Q[FD] into C.

As noted in Remark 7·2, the proof for the two parts is similar, so we will only prove the
first part. Suppose that v is non-zero and there is an infinite subset S ⊆N with the property
that for each n ∈ S, there exists n1, . . . , nr ∈N0 such that equation (7·1) holds. Letting

P(λ) = λL + aL−1λ
L−1 + · · · + a1λ+ a0

be the minimal polynomial of A over Q[FD] we see that for every n

An =
L−1∑
�=0

a(�)
n

(
A�
)

, (7·3)

where for every �= 0, . . . , L − 1, the sequence
{

a(�)
n

}
n∈N is a linear recurrence with ele-

ments in Q[FD] whose characteristic polynomial has roots that are all multiplicatively
independent with respect to FD (since the roots of the polynomial P are all multiplicatively
independent with respect to FD). Therefore, if we let �u� := A��v for every �= 0, . . . , L − 1,
then we must have

L−1∑
�=0

a(�)
n �u� = C�v +

r∑
i=1

Fniδi
D Bi�v. (7·4)

Now consider the finitely generated vector space over Q[FD] generated by the coordinates of
�u0, . . . , �uL−1, C�v, B1�v, . . . , Br�v. Let λ1, . . . , λs be a basis for this vector space. Then, using
equations (7·4), for every 1 ≤ j ≤ s we get N equations of the form

L−1∑
�=0

d�a
(�)
n =

k∑
j=1

cjF
nj
D , (7·5)
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where d�’s and cj’s are all inside Q[FD]. It is clear that for some 1 ≤ j ≤ s, one of its corre-
sponding N equations (which are of the form (7·5)) must be non-trivial, i.e. the left-hand side
of equation (7·5) is not identically equal to zero. This contradicts Laurent’s theorem [17] as
the roots of the characteristic polynomials of a(�)

n are all multiplicatively independent with
respect to FD and so, a nontrivial equation of the form (7·5) cannot be satisfied by infinitely
many positive integers n. This concludes our proof of Lemma 7·1.

The following result is the last technical ingredient that we require in order to derive
Theorem 3·10. In particular, Theorem 7·3 is obtained from Proposition 6·1 in a somewhat
similar fashion as Proposition 5.1 was deduced from Proposition 4.3.

THEOREM 7·3. Let K be an algebraically closed field of positive transcendence degree
over Fp, let G = G1 × G2 be a split semiabelian variety where

G1 =
r∏

i=1

Cki
i , G2 =

r∏
i=1

Ck′i
i , (7·6)

and C1, . . . , Cr are non-isogenous simple semiabelian varieties defined over some finite
subfield Fq ⊂ K. (Note that we are allowing k1, . . . , kr, k′

1, . . . , k′
r to be equal to zero in

which case C0
i represents the trivial group.) Suppose we have the next almost commutative

diagram

(7·7)

where G′ is a split semiabelian variety, 	 is a group endomorphism of G′ and g : G −→ G′
is an isogeny. Moreover, �1 is a dominant group endomorphism of G1 corresponding to
matrices A1, . . . , Ar where Aj ∈ Mkj,kj(End(Cj)) and each Aj is of the form

J
Fn

(j)
1 ,i(j)1

⊕ J
Fn

(j)
2 ,i(j)2 −i(j)1

⊕ · · · ⊕ J
F

n
(j)
sj ,i(j)sj −i(j)sj−1

. (7·8)

Also, we assume that �2 is a finite-to-finite map from G2 to G2 corresponding to matrices

A′
1, . . . , A′

r where A′
i ∈ Mk′i,k′i

(
1
m End(Ci)

)
for some m ∈N. Assume the following conditions

are met:

(i) the matrices A′
1, . . . , A′

r are all NFP matrices;

(ii) n(j)
i ≥ 1 for every 1 ≤ j ≤ r and 1 ≤ i ≤ sj;

(iii) there does not exist 1 ≤ j1 ≤ · · · ≤ j� ≤ r, and i1, . . . , i� satisfying 1 ≤ ik ≤ sjk for
every 1 ≤ k ≤ �, such that the pairs (ik, jk) are distinct and

n(j1)
i1

= · · · = n(j�)
i�

,

and

dim(Cj1) + · · · + dim(Cj�) ≥ trdeg
Fp

K + 1.
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Then, given any finitely generated submodules �1, . . . , �r where �i ⊂ Ci(K) is an End(Ci)-
submodule for every 1 ≤ i ≤ r, there exist �α = (�α1, . . . , �αr) ∈ G1(K) and �β = ( �β1, . . . , �βr) ∈
G2(K) where �αi ∈ Cki

i and �βi ∈ Ck′i
i for every 1 ≤ i ≤ r, such that:

(i) for each i = 1, . . . , r, the End(Ci)-module spanned by

α
(1)
i , . . . , α(ki)

i , β(1)
i , . . . , β(k′i)

i

(which are the coordinates of �αi and �βi) has trivial intersection with �i; and

(ii) for any subset S of positive integers with positive density and any orbit {xn}n≥0 of
(�α, �β) under� := (�1,�2), we have that the subset {xn : n ∈ S} is Zariski dense in G.

Proof. Let �1, . . . , �r be finitely generated submodules where �i ⊂ Ci(K) is an End(Ci)-
submodule for every 1 ≤ i ≤ r. We pick a starting point �x := (�α, �β) for the action of (�1,�2)
on G1 × G2 of the following form:

(i) we pick �αi ∈ Cki
i (K) for every 1 ≤ i ≤ r such that (�αi)1≤i≤r satisfies both conditions

(i)-(ii) from the conclusion of Proposition 6·1 with respect to the finitely generated
subgroups �1, . . . , �r (note that due to conditions (ii)-(iii) of Theorem 7·3 along with
the fact that the eigenvalues of the Jordan blocks in the Jordan canonical form of Ai

are of the form (7·8), statement (a) in Proposition 6·1 must hold); and

(ii) for each i = 1, . . . , r, �βi has its k′
i coordinates linearly independent among themselves

over End(Ci) and also, the End(Ci)-submodule of Ci(K) generated by the coordi-
nates of �βi has trivial intersection with the End(Ci)-submodule spanned by �i and the
coordinates of �αi;

(iii) we let �α := (�α1, . . . , �αr) and �β :=
( �β1, . . . , �βr

)
.

At the expense of replacing m from Theorem 7·3 (for which A′
i ∈ Mk′i,k′i

(
1
m End(Ci)

)
for each

i = 1, . . . , r′) by a multiple of it, then we can find a group homomorphism ĝ : G −→ G′ such
that

ĝ ◦ g = [m]G′ , g ◦ ĝ = [m]G. (7·9)

In particular, we also have

[m]G ◦�= g ◦	 ◦ ĝ. (7·10)

We let

O = {(
g ◦	n ◦ ĝ

)
(�x0) : n ≥ 0

}
,

where �x0 ∈ G1 × G2 is chosen such that [m]G(�x0) = �x. If we let P	 (x) = xL + bL−1xL−1 +
· · · + b0 be the minimal polynomial of 	 over Z then

� :=
{(

L−1∑
i=0

ai
(
g ◦	 i ◦ ĝ

)
(�x0)

)
: a0, . . . , aL−1 ∈Z[F]

}
(7·11)

is a finitely generated Z[F]-module (since the Frobenius F : G −→ G is integral over Z in
End(G)); furthermore, all the points in O are contained in �.
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We let S ⊆N0 be an arbitrary set with positive density; we will prove that the set

OS := {(
g ◦	n ◦ ĝ

)
(�x0) : n ∈ S

}
must be Zariski dense in G. If OS is not Zariski dense, then we let V ⊂ G be its Zariski
closure. Using Theorem 2·8, there must exist a set of the form (4·9) containing infinitely
many elements of OS (see also Section 2·6). So, at the expense of replacing S by a smaller
subset that still has positive density (and thus replacing the set OS with its corresponding
infinite subset), then there exists a set

F := �λ+(�η1, . . . , �ηs; δ1, . . . , δs) + H, (7·12)

containing OS. Now, regarding the set F (see also Remark 2·9), there exists a positive integer
m2 such that

m2 · �λ, m2 · �η1, . . . , m2 · �ηs ∈�, (7·13)

while the δj’s are positive integers and H is a subgroup of�. Since we assumed that OS is not
Zariski dense in G, then V is a proper subvariety of G and in particular, the Zariski closure
of H must be a proper algebraic subgroup of G; so, there must exist an endomorphsim
σ : G1 × G2 −→ G1 × G2 such that σ (�ε) = 0 for every �ε ∈ H.

If we let

�ρ :=
(

(g ◦ ĝ),
(
g ◦	 ◦ ĝ

)
, . . . ,

(
g ◦	L−1 ◦ ĝ

))
,

and

�ρ(�x) :=
(

(g ◦ ĝ)(�x),
(
g ◦	 ◦ ĝ

)
(�x), . . . ,

(
g ◦	L−1 ◦ ĝ

)
(�x)

)
,

for every x ∈ G, then using equation (7·13), for every i = 1, . . . , s there exist vectors
�u0, �u1, . . . , �us ∈Z[F]L such that

m2 · �ηi = �ui · ρ(�x0) for each i = 1, . . . , s and m2 · �λ= �u0 · �ρ (�x0) .

So, for each n ∈ S, using that
(
g ◦	n ◦ ĝ

)
(�x0) ∈F , for every j = 1 . . . , r we must have some

some non-negative integers ni (for i = 1, . . . , r, where the ni’s depend on n) such that

σ
(
m2

(
g ◦	n ◦ ĝ

)
(�x0)

)= σ

((
�u0 · �ρ +

s∑
i=1

Fniδi(�ui · �ρ)

)
(�x0)

)
. (7·14)

Due to the way the coordinates of �x are chosen, we know that there does not exist a nontrivial
endomorphism of G1 × G2 that vanishes at �x. Considering the fact that [m]G(�x0) = �x, we also
deduce that there does not exist any non-trivial endomorphism of G1 × G2 that vanishes at
�x0. Therefore, we must have the following equality taken place inside End(G):

σ
(
m2

(
g ◦	n ◦ ĝ

))= σ

(
�u0 · �ρ +

s∑
i=1

Fniδi(�ui · �ρ)

)
(7·15)

for every n ∈ S. Let the group endomorphism σ correspond to some matrix P whose rows

are of the form �v1 ⊕ �v2 where �v1 ∈∏r
i=1 End(Ci)ki and �v2 ∈∏r

i=1 End(Ci)k′i . Using (7·9)
and (7·10), we know that m2

(
g ◦	n ◦ ĝ

)
corresponds to matrices which are similar to

m2m · An
1, . . . , m2m · An

r , m2m · (A′
1)n, . . . , m2m · (A′

r)n. Now, since each A′
i is an NFP matrix,
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Lemma 7·1 and equation (7·15) yield that for every row �v1 ⊕ �v2 of P we must have �v2 = 0.
This clearly holds for every σ ∈ End(G1 × G2) that kills the elements of H. Therefore, H is
an algebraic group of the form H1 ⊕ G2 for some algebraic subgroup H1 ⊆ G1.

So, the Zariski closure W of the set F (which is itself contained in the Zariski closure of
the set OS) must be of the form W1 ⊕ G2 for some subvariety W1 ⊆ G1 because �1G1 ⊕ G2 is
contained in the stabiliser of W. However, W1 contains all the points �n

1(�α) for n ∈ S. Then
using the fact that S is an infinite subset of N0 along with Proposition 6·1, we conclude that
W1 must be the entire G1. So, actually W must be the entire G1 ⊕ G2 = G, which proves that
for any S ⊂N0 with positive density, the corresponding set OS is Zariski dense in G.

Now, take any orbit {yn}n≥0 ⊂ G(K) of �x. Arguing exactly as in the proof of
Proposition 5·1 we see that since OS is Zariski dense in G then {yn : n ∈ S} must also be
Zariski dense in G.

This concludes our proof of Theorem 7·3.

8. Conclusion for our proof of Theorem 1·3
In this Section we prove Theorem 3·10, which in turn provides the desired conclusion in

Theorem 1·3.

Proof of Theorem 3·10. Let us assume that conditions (b) and (c) do not hold. We will
show that there must exist α ∈ G(K) with a Zariski dense orbit.

Let �β = ( �β1, . . . , �βr) where �βi ∈ C
k0,j
i for every j = 1, . . . , r. At the expense of replacing�

by a conjugate of the form τ−1
�γ ◦� ◦ τ �γ , where τ �γ is a suitable translation map correspond-

ing to a vector, we may assume that �βj := (1, . . . , 1, β(j)

i(j)0,1

, 1, . . . , 1, β(j)

i(j)0,sj

) ∈ C
k0,j
j (K) for every

1 ≤ j ≤ r. Since condition (c) is not met then for every j = 1, . . . , r the β(j)

i(j)0,k

’s must be linearly

independent over End(Cj). Indeed, suppose there exist σ1, . . . , σsj ∈ End(Cj) not all equal to
zero such that

σ1

(
β

(j)

i(j)0,1

)
+ · · · + σsj

(
β

(j)

i(j)0,sj

)
= 0.

If we let � : G −→ C
k0,j
j be the natural projection map onto C

k0,j
j , let f1 : C

k0,j
j −→ Cj be the

map given by(
x1, . . . , x

i(j)0,1−1
, x

i(j)0,1
, x

i(j)0,1+1
, . . . , x

i(j)0,sj
−1

, x
i(j)0,sj

)
�−→ σ1

(
x

i(j)0,1

)
+ · · · + σsj

(
x

i(j)0,sj

)

and f2 : Cj ��� P1 be a non-constant rational map it is clear that �1 is invariant under f :=
f2 ◦ f1 ◦� which contradicts our initial assumption that condition (c) does not hold. So, we
must have that for every j = 1, . . . , r the β(j)

i(j)0,k

’s are linearly independent over End(Cj).

Let

�αQj :=
(
γ

(j)
1 , . . . , γ (j)

i(j)0,1−1
, 1, γ (j)

i(j)0,1+1
, . . . , γ (j)

i(j)0,2−1
, 1, γ (j)

i(j)0,2+1
, . . . , γ (j)

i(j)0,sj
−1

, 1

)
∈ C

k0,j
j (K),
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where the γ (j)
k ’s are linearly independent over End(Cj) and also linearly independent with

respect to the β(j)

i(j)0,k

’s and let

�α1 := (�αQ1 , . . . , �αQr

)
.

For every j = 1, . . . , r let �j be the End(Cj)-submodule of Cj(K) generated by the β(j)

i(j)0,k

’s

and all the γ (j)
k ’s. Since condition (c) is not met, (ϕ1, ϕ2) satisfies the hypotheses of

Theorem 7·3. So, we can find �α2 ∈ (G1 × G2)(K) whose coordinates satisfy conditions (i)-
(ii) from the conclusion of Theorem 7·3 with respect to �1, . . . , �r. In particular, this means
that the coordinates of �α1 (along with the β(j)

i0,k
’s and the γ (j)

k ’s) satisfy the hypotheses of
Proposition 5·1. Hence, the orbit of (�α1 ⊕ �α2) ∈ (G0 × G1 × G2)(K) under (�, ϕ1, ϕ2) must
be Zariski dense in G0 × G1 × G2, as claimed. This concludes our proof of Theorem 3·10.

As shown in Section 3, Theorem 1·3 is a consequence of Theorem 3·10.
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