WIDTH-DIAMETER RELATIONS FOR PLANAR CONVEX SETS WITH LATTICE POINT CONSTRAINTS

Poh W. Awyong and Paul R. Scott
We obtain an inequality concerning the width and diameter of a planar convex set with interior containing no point of the rectangular lattice. We then use the result to obtain a corresponding inequality for a planar convex set with interior containing exactly two points of the integral lattice.

1. Introduction

Let K be a compact, non-empty convex set in E^{2} with minimal width $w(K)=w$ and diameter $d(K)=\delta$. Let K^{o} denote the interior of K and let Γ denote the integral lattice. A number of results are known concerning the relationship between the width and the diameter of a convex set. The following elegant result was obtained by Scott [3].

Theorem 1. If K^{o} contains no point of Γ, then $(w-1)(\delta-1) \leqslant 1$ with equality when and only when K is a triangle of diameter δ and width $w=\delta /(\delta-1)$ (Figure 1).

Figure 1.
Theorem 1 has been extended to sets containing exactly one point of Γ in the interior [4]. The analogous result is:

Theorem 2. If K° contains one point of Γ, then $(w-\sqrt{2})(\delta-\sqrt{2}) \leqslant 2$; the inequality is best possible.

The purpose of this paper is to generalise Theorem 1 to rectangular lattices and to use the result to obtain analogous inequalities for convex sets containing exactly two points of Γ in the interior. Let $\Lambda_{R}(u, v)$ be a rectangular lattice generated by the vectors ($u, 0$) and ($0, v$). We prove the following two pretty results:

[^0]Theorem 3. Suppose that $u \leqslant v$ and that K^{0} contains no point of $\Lambda_{R}(u, v)$. Then $(w-v)(\delta-u) \leqslant u v$; equality is attained when and only when K is a triangle with diameter δ and width $w=\delta v /(\delta-u)$ (Figure 2).

Theorem 4. If K° contains exactly two points of Γ then $(w-2)(\delta-1) \leqslant 2$; equality is attained when and only when K is a triangle with diameter δ and width $w=2 \delta /(\delta-1)$ (Figure 3).

Figure 2.

Figure 3.

2. Three useful lemmas

We shall denote lines by lower case letters: thus x is a line containing the point X of $\Lambda_{R}(u, v)$. Let the slope of x be m_{x} and let $d(Y, x)$ denote the perpendicular distance from the point Y to the line x.

Let K be a set containing no point of $\Lambda_{R}(u, v)$ in its interior. A set for which $(w-v)(\delta-u)$ is as large as possible is called a maximal set. Clearly we may assume that $\delta \geqslant w>v \geqslant u$. We first establish three lemmas which will help us narrow down the possibilities for a maximal set.

We say that a triangle circumscribes a rectangle (or equivalently, a rectangle is inscribed in a triangle) if all vertices of the rectangle lie on the sides of the triangle. Lemma 1 establishes the maximal value of $(w-v)(d-u)$ where K is a triangle circumscribing a fundamental rectangular cell of $\Lambda_{R}(u, v)$. Lemmas 2 and 3 will help us eliminate those cases for which K is not maximal.

Lemma 1. Let K be a triangle circumscribing a fundamental rectangular cell of $\Lambda_{R}(u, v)$. Then $(w-v)(\delta-u) \leqslant u v$ with equality when and only when the side of the rectangular cell having length u lies on the edge of K with length δ (Figure 4).

Proof: Let the vertices of K be X, Y and Z and let \mathcal{C} denote the fundamental rectangular cell inscribed in K. Without loss of generality, let $X Y$ be the side of K containing two vertices of \mathcal{C}. Let $X Y$ have length b and let the altitude from Z to $X Y$ be h.

We first let the side of \mathcal{C} with length u lie on the edge $X Y$. Then the area of K is $(1 / 2) b h(=(1 / 2) w \delta)$. The edges of \mathcal{C} partition K into four regions. The area of K
may therefore be calculated as the sum of the areas of the four component parts (Figure 4).

Figure 4.
Hence

$$
\begin{aligned}
\frac{1}{2} w \delta=\frac{1}{2} b h & =\frac{1}{2}(b-u) v+\frac{1}{2}(h-v) u+u v \\
& =\frac{1}{2}(b v+h u)
\end{aligned}
$$

that is,

$$
w \delta=b h=b v+h u
$$

From the identity $(\alpha+\beta)^{2}=(\alpha-\beta)^{2}+4 \alpha \beta$, we note that the sum of two numbers with a given product is smallest when the difference between them is least. Applying this first to the pair ($b v, h u$) and then to the pair ($\delta v, w u$), and noting that $b v-h u \leqslant$ $\delta v-w u$, we have

$$
b v+h u \leqslant \delta v+w u
$$

We thus have

$$
w \delta \leqslant \delta v+w u
$$

Adding $u v$ to both sides of the inequality gives

$$
(w-v)(\delta-u) \leqslant u v .
$$

Equality is attained here when $X Y=b=\delta$ and $h=w$.
If, on the other hand, the side of length v of \mathcal{C} lies on $X Y$, then by the same argument we obtain $(w-u)(\delta-v) \leqslant u v$. In this case we write

$$
\begin{equation*}
(w-v)(\delta-u)=(w-u)(\delta-v)+(w-\delta)(v-u) \tag{1}
\end{equation*}
$$

Since $u \leqslant v$ and $w<\delta$ for triangles, we have

$$
(w-v)(\delta-u)<(w-u)(\delta-v) \leqslant u v
$$

Hence for circumscribed triangles $K,(w-v)(\delta-u) \leqslant u v$ with equality when and only when the side of \mathcal{C} of length u lies on the edge of K with length δ.

From Lemma 1, we deduce that if K is a maximal set, then $(w-v)(\delta-u) \geqslant u v$.

Lemma 2. Let $A B C D$ be a fundamental rectangular cell of $\Lambda_{R}(u, v)$ labelled in an anticlockwise direction. Let \triangle be a triangle determined by the lines a, b and c with points A, B and C interior to the edges of \triangle and point D exterior to \triangle. Further, let line c containing an edge of \triangle intercept the closed line segment $A D$. Then $(w(\Delta)-v)(d(\Delta)-u)<u v$.

Proof: Let $b . c=P, a . c=Q$ and $a . b=R$. By a suitable rotation of the plane together with a reflection of the set \triangle in the mediator of the segment $A B$, if necessary, we may assume that $m_{b}>m_{c} \geqslant 0$ (see Figure 5).

Suppose first that $\angle Q \leqslant \pi / 2$. Let c make an acute angle $\theta(\neq 0)$ with the line $C D$. Let V be a point on $Q R$ with $B V$ parallel to $P Q$. Then $B V<A B$ and $B V$ is distant $B C \cos \theta<B C$ from $P Q$. We rotate \triangle about B until $P Q$ is parallel to $C D$. Let the rotated triangle be \triangle^{\prime}. Clearly \triangle^{\prime} contains no lattice point in its interior and B is the only lattice point on the boundary of Δ^{\prime}. Hence Δ^{\prime} may be enlarged to a triangle \triangle^{*} inscribing the rectangle $A B C D$. Using Lemma 1,

$$
\begin{equation*}
(w(\triangle)-v)(d(\triangle)-u)<\left(w\left(\Delta^{*}\right)-v\right)\left(d\left(\triangle^{*}\right)-u\right) \leqslant u v \tag{2}
\end{equation*}
$$

Figure 5.
Now suppose that $\angle Q>\pi / 2$. We consider the following two cases:
Case (i): Q lies in the closed rectangle $A B C D$. We show that

$$
(w(\triangle)-v)(d(\Delta)-u)<u v
$$

We first inscribe a rectangle R_{Δ} in \triangle with side lengths $u^{\prime}<u$ and $v^{\prime}=v$ as follows: Let b^{\prime} be a line parallel to b and distant v from b. Since $w>v, b^{\prime}$ intersects Δ in a line segment $M^{\prime} N^{\prime}$ of length $s>0$ (see Figure 6).

Let M and N be the feet of the perpendiculars from M^{\prime} and N^{\prime} to the line b and let R_{Δ} be the rectangle with vertices M, N, N^{\prime} and M^{\prime}. We shall show that $s<u$. Let b^{\prime} intersect the lines $C D$ and $A D$ in the points Z and Y respectively. Clearly $s<Y Z$.

We now consider the following two subcases:
(a) If $A B$ has length u and $B C$ has length v, we take the coordinates of B, Z and Y to be $(u, 0),(x, v)$ and $(0, y)$ respectively. Hence

$$
\text { Area of } \triangle B Z Y=\frac{1}{2} v . Z Y=\frac{1}{2}\left|\begin{array}{lll}
u & 0 & 1 \\
x & v & 1 \\
0 & y & 1
\end{array}\right|
$$

that is,

$$
Z Y=u+(x-u) \frac{y}{v}
$$

Figure 6.

Now since $x<u$, we have $Z Y<u$. We now rotate R_{Δ} so that the edge of R_{Δ} of length s lies on the edge of $A B C D$ of length u and R_{Δ} is contained in the closed rectangle $A B C D$. The same rotation transforms \triangle to Δ^{\prime} say. Clearly \triangle^{\prime} contains no interior lattice points and since $s<u$, at least one of C and D lies in the exterior of \triangle^{\prime}. Hence \triangle^{\prime} may be enlarged to a triangle \triangle^{*} inscribing the rectangle $A B C D$, and (2) applies immediately.
(b) If now $A B$ has length v and $B C$ has length u, we inscribe a rectangle in \triangle with side lengths $u^{\prime}=s$ and $v^{\prime}=v$ as described above. We now let the coordinates of B, Z and Y be $(v, 0),(x, u)$ and $(0, y)$ respectively. Noting that $x<v$, we obtain

$$
Z Y=u+(x-v) \frac{y}{v}<u
$$

By the rotation argument above, we again obtain (2).
CASE (ii): Q lies exterior to the closed rectangle $A B C D$. Let a make an acute angle $\varphi(\neq 0)$ with the line $A D$. Let T be the point on $P Q$ with $B T$ parallel to $Q R$. Now $B T<B C$ and $B T$ is distant $A B \cos \varphi<A B$ from $Q R$. We rotate \triangle clockwise about B until $B T$ lies on the edge $B C$. Let the transformed triangle Δ^{\prime} have vertices
P^{\prime}, Q^{\prime} and R^{\prime} corresponding to points P, Q and R respectively. Then clearly $Q^{\prime} R^{\prime}$ is parallel to $A D$. We note also that points A and C are exterior to $\triangle P^{\prime} Q^{\prime} R^{\prime}$. We can now construct a triangle $\Delta^{\prime \prime}$ with vertices $P^{\prime \prime}, Q^{\prime \prime}, R^{\prime \prime}$ such that line $P^{\prime \prime} Q^{\prime \prime}$ is parallel to $P^{\prime} Q^{\prime}$ and contains the point C, line $Q^{\prime \prime} R^{\prime \prime}$ is coincident with line $A D$ and line $R^{\prime \prime} P^{\prime \prime}$ is coincident with $R^{\prime} P^{\prime}$. Clearly $\triangle P^{\prime \prime} Q^{\prime \prime} R^{\prime \prime}$ is a triangle of the type described in Case (i). Hence

$$
\begin{aligned}
(w(\Delta)-v)(d(\Delta)-u) & =\left(w\left(\Delta^{\prime}\right)-v\right)\left(d\left(\Delta^{\prime}\right)-u\right) \\
& <\left(w\left(\Delta^{\prime \prime}\right)-v\right)\left(d\left(\Delta^{\prime \prime}\right)-u\right) \\
& <u v .
\end{aligned}
$$

This completes the proof of Lemma 2.
Suppose now that K is contained in a triangle satisfying the conditions of Lemma 2. Since $K \subseteq \Delta, w(K) \leqslant w(\Delta)$ and $d(K) \leqslant d(\triangle)$. From Lemma 2, it follows that K is not maximal.

Henceforth we shall use the shorthand notation $L 2(a, b, c)$ to mean:
K is contained in a triangle determined by the lines a, b, c satisfying the
conditions of Lemma 2. Hence K is not maximal.
Lemma 3. Let $A B C D$ be a rectangular cell of $\Lambda_{R}(u, v)$ labelled anticlockwise and let Q be a proper convex quadrilateral determined by lines a, b, c, d, with A, B, C and D interior to the edges of Q on a, b, c and d respectively. Then amongst all convex sets containing no interior lattice points, a set K contained in Q can not be maximal.

Proof: Since $K \subseteq Q$, it suffices to show that Q is not maximal. Let $a . b=X$, $b . c=Y, c . d=Z$ and $d . a=W$ (Figure 7).

Figure 7.

We now recall that the diameter of a polygonal set is the maximum distance between a pair of vertices of the polygon. Suppose first that δ is the length of an edge, $X Y$ say, of Q. Without loss of generality, suppose that W is the vertex of Q furthest from b. Then $w \leqslant d(W, b)$. Let \triangle be the triangle $X Y W$. Clearly $d(\triangle)=X Y$ and so $w(\Delta)=d(W, b)$ and $w \leqslant w(\Delta)$. But since $\Delta \subset Q, w(\Delta) \leqslant w$. Hence $w=w(\triangle)=d(W, b)$. Since \triangle and Q have the same width and diameter, it suffices to show that \triangle is not maximal. Noting that the edge $W Y$ contains no lattice points, \triangle may be enlarged about the point X to $\Delta^{\prime}=\triangle W^{\prime} X Y^{\prime}$ where $W^{\prime} Y^{\prime}$ contains the point D. By a simple variant of Lemma 2,

$$
(w(\triangle)-v)(d(\triangle)-v)<\left(w\left(\Delta^{\prime}\right)-v\right)\left(d\left(\triangle^{\prime}\right)-u\right)<u v .
$$

Hence Δ (and so Q) is not maximal.
We now suppose that δ is the length of a diagonal of Q, $W Y$ say. Let t be the width of Q in a direction perpendicular to $W Y$ (see Figure 8). Since the (minimal) width of Q occurs in a direction perpendicular to an edge of Q (see for example [1]), we have $w<t$. Let $W Y$ make an acute angle θ with $C D$ and let $X Z$ intersect $W Y$ in the point O. Now the area of Q is (1/2)t δ. This area is also obtained by adding the areas of the quadrilaterals $O D W A, O B Y C$ to $O C Z D, O A X B$.

Figure 8.

Suppose first that $A B$ has length u and $B C$ has length v. Then we have

$$
\frac{1}{2} t \delta=\frac{1}{2} v \delta \cos \theta+\frac{1}{2} u t \cos \theta .
$$

Hence

$$
t \delta=(t u+\delta v) \cos \theta \leqslant t u+\delta v
$$

Adding $u v$ to both sides of the inequality and factorising, we have

$$
(t-v)(\delta-u) \leqslant u v .
$$

Since $\boldsymbol{w}<\boldsymbol{t}$, we have

$$
(w-v)(\delta-u)<u v
$$

Hence Q is not maximal.
Now suppose that $A B$ has length v and $B C$ has length u. Repeating the above argument, we obtain the corresponding inequality

$$
(w-u)(\delta-v)<u v
$$

By (1), $(w-v)(\delta-u)<u v$. So again, Q is not maximal.

3. Proof of Theorem 3

We now assume that K is a maximal set. We may assume that $\delta \geqslant w>v \geqslant u$. Let the radius of the largest circle inscribed in K be r. It is shown in [2] that for any convex set K,

$$
(w-2 r) \delta \leqslant 2 \sqrt{3} r^{2}
$$

If $r \leqslant u / 2 \leqslant v / 2$, then

$$
(w-v)(\delta-u)<(w-v) \delta \leqslant(w-2 r) \delta \leqslant 2 \sqrt{3} r^{2} \leqslant 2 \sqrt{3} \cdot \frac{u}{2} \cdot \frac{v}{2}=\frac{\sqrt{3}}{2} u v<u v
$$

Hence K is not maximal. We may therefore assume that K contains a disk \mathcal{D} of radius $r>u / 2$.

By translating K through a suitable lattice vector, we may bring the centre of \mathcal{D} to lie in $0<\boldsymbol{y}<\boldsymbol{v}$. For easier reference, we list the properties of \mathcal{D} as follows:

D1. $r>u / 2$.
D2. The centre of \mathcal{D} lies in $0<y<v$.
Since $w>v, K^{0}$ intercepts one of $y=0$ and $y=v$. Without loss of generality, we may assume that K° intercepts $y=0$. Since K° contains no point of $\Lambda_{R}(u, v)$, we may assume that K^{0} intercepts $y=0$ between two adjacent lattice points. By translating through a suitable lattice vector we may take these points to be $E(0,0)$ and $F(u, 0)$. Let G and H be the points (u, v) and $(0, v)$ respectively. We shall show that K is a triangle with diameter δ and width $w=\delta v /(\delta-u)$ (see for example Figure 2).

From D1 and D2, K^{o} must intercept one of the edges $E H$ and $F G$. Without losing generality, we may assume that K^{o} intercepts $F G$. Hence K lies above a line f with $m_{f}>0$. We now consider the following two cases:

Case 1: K is bounded by $y=v$. By D1 and D2, lines e and f intersect in the halfplane $y<0$ and K is contained in the triangle Δ determined by the lines e, f and $y=v$. Since K° intercepts $E F, m_{e} \neq 0$. If $m_{e}>0$, then H is exterior to \triangle
and $L 2(e, f, g)$. We may now assume that $m_{e}<0$ (possibly infinite). In this case, Δ circumscribes the rectangular cell $E F G H$. By Lemma $1, K$ is maximal when K is the triangle bounded by $y=v$ and the lines e and f with $m_{e}<0$ (possibly infinite) and $m_{f}>0$, and having diameter on the line $y=v$.

Case 2: K crosses the line $y=v$. We again show that K is not maximal. Suppose that K crosses the line $y=v$ between the adjacent lattice points X and Y on the line $y=v$. Without losing generality, we may assume that X and Y are the points $(k u, v)$ and $((k+1) u, v)$ respectively where $k \geqslant 0$. If $k=0$, then $X=H$ and $Y=G$ and we have $m_{g}<0$ and $m_{h} \neq 0$. If $m_{h}>0$ and $m_{e}<0$, then K is contained in a proper convex quadrilateral Q, and by Lemma 3, K is not maximal. If $m_{h}<0$ then $L 2(f, g, h)$ or if $m_{e}>0$ then $L 2(f, g, e)$. Finally, if h has infinite slope, K is contained in a triangle circumscribing the rectangle $E F G H$ with the edge $E H$ of length v on $x=0$. By Lemma $1, K$ is not maximal.

We may therefore assume that $X Y \neq G H$. The set K is therefore bounded by lines x and y with $m_{x}>0$. By D1 and D2, e and f intersect in the halfplane $y<0$ and x and y intersect in the halfplane $y>v$. If $m_{f}>m_{x}>0, K$ is contained in a triangle \triangle determined by lines e, f and x. Let g_{f} denote the line containing G and parallel to f and let π_{H} be the open half plane bounded by g_{f} and containing the point H. Since $w(\Delta)>v>d(G, f), e$ and x intersect in a point Q lying in the intersection of the half planes $y \leqslant v$ and π_{H}. It follows that K is also contained in a triangle Δ^{\prime} determined by lines e, f and g_{x} where g_{x} is a line containing G and parallel to x. Hence $L 2\left(e, f, g_{x}\right)$. If, on the other hand, $m_{x}>m_{f}>0$, then by a similar argument, K is contained in a triangle determined by the lines x, y and w_{f} where w_{f} is the line containing the point $W(k u, 0)$ and parallel to f. Hence $L 2\left(y, x, w_{f}\right)$.

This completes the proof of Theorem 3.

4. Proof of Theorem 4

Let K now be a set satisfying the conditions of Theorem 4. We may assume that the origin O is one of the lattice points. Let $L\left(z_{1}, z_{2}\right)$ denote the other lattice point contained in K^{o}. Without loss of generality, we may assume that $z_{1} \geqslant 0$ and $z_{2} \geqslant 0$. By a reflection about the line $y=x$ if necessary, it suffices to consider the cases for which $z_{1} \geqslant z_{2}$. Since K° contains no other lattice points, the open line segment $O L$ contains no lattice point. Hence we may assume that z_{1} and z_{2} are relatively prime.

If z_{1} and z_{2} are both odd, we consider the sublattice

$$
\Gamma^{\prime}=\{(x, y): x+y \equiv 1 \quad(\bmod 2)\}
$$

Clearly $O \notin \Gamma^{\prime}, L \notin \Gamma^{\prime}$ and K° contains no point of Γ^{\prime}. By Theorem 3, we have

$$
(w-\sqrt{2})(\delta-\sqrt{2}) \leqslant 2
$$

However,

$$
\begin{aligned}
(w-2)(\delta-1)-(w-\sqrt{2})(\delta-\sqrt{2}) & =w(\sqrt{2}-1)+\delta(\sqrt{2}-2) \\
& \leqslant \delta(\sqrt{2}-1)+\delta(\sqrt{2}-2) \\
& =\delta(2 \sqrt{2}-3)<0
\end{aligned}
$$

It follows that $(w-2)(\delta-1)<(w-\sqrt{2})(\delta-\sqrt{2}) \leqslant 2$. Hence K is not maximal. If say, z_{1} is odd and z_{2} is even, we consider the sublattice

$$
\Gamma^{\prime}=\{(x, y): x=n, y=2 m+1, m, n \in Z\}
$$

Clearly $O \notin \Gamma^{\prime}, L \notin \Gamma^{\prime}$ and K° contains no point of Γ^{\prime}. By Theorem 3, we have

$$
(w-2)(\delta-1) \leqslant 2
$$

Equality occurs when and only when K is a triangle with diameter δ and width $w=$ $2 \delta /(\delta-1)$ as shown in Figure 3.

References

[1] P.R. Scott, 'A lattice problem in the plane', Mathematika 20 (1973), 247-252.
[2] P.R. Scott, 'Two inequalities for convex sets in the plane', Bull. Austral. Math. Soc. 19 (1978), 131-133.
[3] P.R. Scott, 'Two inequalities for convex sets with lattice point constraints in the plane', Bull. London Math. Soc. 11 (1979), 273-278.
[4] P.R. Scott, 'On planar convex sets containing one lattice point', Quart. J. Maths. Oxford Ser. (2) 36 (1985), 105-111.

Department of Pure Mathematics
The University of Adelaide
South Australia 5005
Australia
e-mail: pawyong@maths.adelaide.edu.au pscott@maths.adelaide.edu.au

[^0]: Received 2nd August, 1995
 Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/96 \$42.00+0.00.

