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LARGE CHAOS IN SMOOTH FUNCTIONS OF ZERO
TOPOLOGICAL ENTROPY

VICTOR JIMENEZ LOPEZ

For any a 6 [0, 1), examples of C°° functions /„ : [0, 1] —> [0, 1] with zero topo-
logical entropy and possessing a (-scrambled set of Lebesgue measure a are given.
This answers a question posed by Smital.

1. INTRODUCTION

In 1975, the notion of chaos in the sense of Li and Yorke was introduced [9]. An
equivalent and simpler formulation of this concept has been given in [8].

DEFINITION: Let I denote a compact real interval and let / : I —> / be a contin-
uous function. Suppose that there exist 8^0 and S C I with at least two elements
such that for any x, y £ S, x ^ y, and any periodic point p of / :

(i) limsup|/»(*)-

(ii) lkTf|f(x)
(iii) lkrTsup \fn(x)-fn(p)\>6.

n—>oo

(Here fn is the nth iterate of / and a point p £ I is said to be periodic if there
exists a positive integer r such that fr(p) = p; the least integer satisfying this property
is called the period of p.) Then / is said to be chaotic in the sense of Li and Yorke
and 5 is called a scrambled set of / , or (when 6 > 0) a 6-scrambled set.

It can be proved (see for example [6]) that any function possessing a periodic point
with period ^ 2n, n = 0, 1, 2, . . . is chaotic in the sense of Li and Yorke. On the other
hand, recall Sarkovskii's Theorem [16]: Let I be a compact real interval, f: I —* I a
continuous function and order the positive integers as follows: 3 < C 5 < t c 7 . . . <gC2-3<C

2 - 5 < 2 - 7 < C ... < 2 2 - 3 < 2 2 - 5 < 2 2 - 7 < . . . «C . . . < 2 n < . . . < 2 3 < 2 2 < C
2 <C 1. Then if f has a periodic point of period r, it also has a periodic point of period
a for any r <C a. A function with no periodic points of period not a power of 2 (or
equivalently with zero topological entropy; see [1] for definition of topological entropy
and [3, 11] for equivalence) can be chaotic or not [15].
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272 V.J. Lopez [2]

A rather natural question about chaotic functions is whether this chaos can be
"physically" observed. For example (see [5, p.119]) the function / : [—1, 1] —> [—1, 1]
such that f(x) = 1 — ax2, where a = 1.75487... is the root of the equation 1 —
a( l — a) = 0 , satisfies for almost every x

Urn | / n ( * ) - / n ( 0 ) | = 0 ,
n—*oo

where /(0) = 1, / ( I ) - 1 - a, / ( I - a) = 0.
An obvious way to get large chaos is to construct scrambled sets of positive

Lebesgue measure; in fact in the last few years a number of examples with functions
having a scrambled set of positive measure [7,14] or even full measure [4,12] have been
published. Nevertheless, they all are strongly non-differentiable. In [14] the problem
of finding differentiate functions with a finite number of pieces of monotonicity and
generating a scrambled set of positive measure remained open. The aim of this paper
is to give examples of weakly unimodal C°° maps (see below) with scrambled sets of
positive measure; in fact it is possible to obtain such functions with zero topological
entropy. (In [6] it is stated that the function from [14] can be modified to make it of
class C1, but no proof is given. Moreover, that map has positive topological entropy
and is not piecewise monotone.)

Given / = [a, b] and a continuous function / : / — » / , / is said to be weakly uni-
modal (respectively unimodat) if there exists c € (a, 6) such that f/[a, c] is increasing
(respectively strictly increasing) and f/[c, b] is decreasing (respectively strictly decreas-
ing). In [13] examples of weakly unimodal C°° functions with zero topological entropy
and chaotic in the sense of Li and Yorke are given, but nothing is said about the
Lebesgue measure of their scrambled sets. We are going to prove the following

THEOREM. For any a £ [0, 1) there exists a weakly unimodal C°° function fa :
[0, 1] —• [0, 1] with zero topological entropy such that it has a 6-scrambled set of the
Cantor type with Lebesgue measure a for a certain S > 0.

With respect to.the notation, given I, J compact real intervals if>(I; J) — respec-
tively i(>(I; J) — will denote the increasing bijective linear function
— respectively decreasing — mapping I onto J . Lebesgue measure will be represented
by A.

2. SOME AUXILIARY C°° FUNCTIONS

Some C°° functions that will be useful later are given in this section.

LEMMA 1. Let 0 < a, b < 1. Then there exists a function <p = tp(a; b): [0, a] —>
[0, b] of class C°° and strictly increasing such that

¥5(0) = 0, p(a) = b,

Dktp(0) = Dkip{a) = 0 for any k^ 1.
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[3] Large chaos 273

Moreover, for any * ̂  1 there exists /3 t > 0 depending only on k such that

IDVC*)! < ^*6/a* for an7 j = l , 2 , . . . , i f e .

PROOF: Take

fexp{- l / ( l -z 2 )} if x 6 (-1,1),

[ 0 otherwise,

a C°° function, and define

where <p\(x) = J_1<fio(t)<H- Note that (pa = if2/[0, 1] is a strictly increasing C°
function such that

= 0,

Dk<p3{0) = Dh<ps(l) = 0 for any k > 1.

Now <p(x) = b(p3(x/a) is the desired function (choose, for any Jfe ̂  1 ,/3fc > 0 such that

|r>3>3(*)| < ^ t when j = 1, . . . , Jfe and x £ [0, 1]). D

LEMMA 2 . Let 0 < a, b ^ 1, u > 0. Then there exist constants 0 < o0 < a,
0 < bo ^ 6 and a function % — x ( a i u\ &): [0> ao] ~* [0> ̂ o] of class C°° and strictly

increasing such that

X(0) = 0,

£>X(0) = 0, .Dx(ao) = «,
k = 0 for any Jfe ^ 2.

Moreover, for any k ^ 1 there exists /3k > 0 depending only on * such that

\Dj\(*)\ < /W<=* for any j = 1, 2, . . . , * ,

where c = min{a, 6/u}.

PROOF: Consider the function

rx

Xo(*)= /
Jo
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where <p$ is defined in Lemma 1. Denote Xo(l) = £• Observe that

Xo(0 )=0 ,

I>*Xo(O) = Dk
Xo{l) = 0 for any Jfe ̂  2.

If we take oo = min{a, b/(ue)} and 60 = ctoue, obviously 0 < ag ^ a, 0 < 6o ^ 6-
Now it is sufficient to define for any x 6 [0, a]

X{x) -aouxo{x/ao)

(take, for any k ^ 1, j3k > 0 such that |.D5xo(x)| < 0k for any j = 1, 2, . . . , k and

* e [ o , i ) . D

LEMMA 3 . Let 0 < a < 6 < 1 , 0 ^ c < d < 1 f r e s p e c t i v e i y 0 ^ d < c < l ) , u ^
0 , v ^ 0 ("respectiveiy u ^ 0, u ^ 0). Then there exists <f> = <j>(a, b, u, v;c, d): [a, 6] —»
[c, d] (respectively <j) = <j){a, b, u, v; c, d): [a, 6] —> [ti, c]J o/ ciass C°° and strictly
increasing (respectively strictly decreasing) such that

(a) = u, D<l>(b) = v,

Dk<f>{a) = Dk4>{b) = 0 for k>2

(similarly for <j>). Moreover, tor any k ^ 1 t i e r e exists 0k depending only on k such

that

\Di<j>{x)\<0kw/ek {or any j = l,2,...,k,

where e = min{|6 — a | , \d — c\ / | u | , \d— c\/ \v\}, w = m a x { | u | , | v | , \d — c\} (similarly

for </>); we define y/0 — oo and y < oo for any y.

PROOF: We will consider the case 0 ^ a < b < 1, 0 < c < d < 1, u > 0 , v > 0;

in the other situations the proof is similar.

Let p = (b — a ) / 3 , q — (d — c)/3 and consider the functions

X = X(P, M; ?) = [0, Po] -> [0, ?o] and f = x(p, «i g): [0, pi] - • [0, qi].

Take ao = a + po, ô = 6 — p i , Co = c + go > do = d — gi , define y> = <p(bo — ao; do — Co)
and now construct

co - x(«o - x) Xx £ [a, oo];

= ^ Co + tp(x - a0) if x G [o0, &o]j

%x-bo) i f x G [ 6 0 , b].
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Using Lemmas 1 and 2 it is easy to check that <j> is the desired function (take /?* =

3* max{/J,., ]3k} for any k ). D

LEMMA 4 . Let 0 < a, b ^ 1, 0 < u. Then there exists 9 = 0(a, u;b): [0, a] ->
[0, 6] of ciass C°° and strictly increasing such that

0(0) = 0, 0(a) = 6,

D0(a) = M and D6(x) > 0 for any x G [0, a],

Dk0(o) = 0 for any Jfc ̂  2.

PROOF: Modifying suitably the function ips from Lemma 1, it is not difficult to
get a strictly positive C°° function 00: [0, a] -> K such that 60{a) = u, Dk60{0) =
Dk60(a) = 0 for any Jfc ̂  1 and

Jo
0o(t)dt = b.

Of course, 0(x) = J* O0(t)dt is the required function. D

LEMMA 5 . Let I = [a, 6] and J = [c, <f] be compact subintervals of (0, 1). Tien
tiere exists a strictly increasing diffeomorphism h = /i(/; J ) : [0, 1] —> [0, 1] of ciass
C°°, sucA that h/1 = V>(/; J).

P R O O F : It is sufficient to take

0{a,{d-c)/(b-a);c){x) if x 6 [0, a];

*(I\J){x) if xe[a,b};

1 - fl(l - 6, (d - c)/(4 - o); 1 - d)(l - *) if * e [6, 1].

3. ADMISSIBLE FUNCTIONS

A key role in this proof is played by the so called admissible functions.

A continuous function g: [0, 1] —> [0, 1] is said to be admissible (with associated
parameters a, b, c, d) if there exist 0 < a < 6 < c < d < l satisfying the following
conditions:

(i) g(0) = 5(1) = 0. 9{a) - g(b) = c, g(c) = b, g(d) = a;
(ii) g/[Q, a] is strictly increasing, g/[a, b] is constant, g/[b, 1] is strictly de-

creasing;
(iii) g/[c, d] is linear.
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276 V.J. Lopez [6]

LEMMA 6 . Let g be an admissible function with associated parameters a, b, c, d.
Then g has periodic points with periods 1 and 2 but no other periods.

PROOF: Note that ^(0) = 0, g(b) = c, g(c) = b and thus g has periodic points of
periods 1 and 2. On the other hand, let p be a periodic point of g. It is obvious that
p £ [0, a) U [6, c] and since g/[0, a]: [0, a] —> [0, c] is increasing and g/[b, c]: [6, c] —»
[b, c] is decreasing, p can only be a periodic point of period 1 or 2. D

Let g be an admissible function with associated parameters a, b, c, d and let
g~: [0, 1] —> [0, 1] be a continuous function such that g(0) = </(l) = 0. We define
g * g: [0, 1] -» [0, 1] such that

g * g/([0, 1] \ (a, 6)) = g/([0, 1] \ (a, b)) and

g * g/[a, b] = V>([0, 1]; [c, d])ogo ^([o, 6]; [0, 1]).

LEMMA 7 . g *g~ is a well defined continuous function satisfying the following
conditions:

(i) if there exists a periodic point of g *g~ with period r > 1, then r is even

and there exists a periodic point of g with period r /2 ;
(ii) if p is a periodic point of g~ with period s, then -0([O, l];[o, &])(p) is

periodic point of g *g~ with period 2s.

PROOF: It is obvious that g*g~ is a well defined continuous function. By definition,
g*g~([a, b]) C [c, d] and g*g~([c, d]) — [a, b]; hence, there is no periodic point of g*~g in
[a, 6] U [c, d] with odd period. Note also that g * ~g does not have periodic points with
period greater than 2 in [0, o) U (6, c) U (d, 1]. Moreover

(g * 9?l\", b) = (g* g)/[c, d] o ( , * g)/[a, b)

= g/[c, d] o ̂ ([O, 1]; [c, d]) o g o 4>([a, 6]; [0, 1])

= ^([c, d]; [a, 6]) o^([0, l];[c, d]) o j o ^ ( [ a , &];[0, 1])

and then

( 1 ) (ff * 9)2n/[a, b] = ?([0,1]; [a, 6]) o (g)n o ?([„, 6]; [0, 1])

for any n ^ 1.

With this it is easy to verify (i) and (ii). D

We will now introduce some special admissible functions of class C°°. So let o,- —

1/2*, bi = 1 - 3/2*, c,- = 1 - 1/2*"1, di = 1 - 1/2* for any i > 3. Also, take o* = a , / 3 ,
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V = 2 ^ / 3 , c' = bi - 2(bi - ai)/(3 • 2i+1) , <P = k - (bi - a ,) /(3 • 2 i + 1 ) . Until the end
of this section we shall consider i fixed. Then for simplicity we shall write a = a1,
b = b{, c = c\ d= d\ Finally put u = (d - c)/(6 - o), v = (at - bi)/(di - a). We
define an admissible function </,- with associated parameters <n, b{, c,, d{ such that

9i/[0, o ] = ^ ( 0 , o, 0 ,u;0, c);

9i/[b, Oi] = <l>{b, o-i, n, 0; d, CJ);

gi/[bi, Ci] = !i>{bi, a, 0, v;Ci, bi);

gi/[di, 1] = ? ( * , 1, v, 0; Oi, 0).

Observe that gi is a C°° function. Moreover, we have the following

LEMMA 8 . Let k be a positive integer. Then there exist constants K^ > 0,
•dk = 2 • 4* depending only on k such that

\D>9i(x)\ < K*(tffc)*

for any x £ [0, 1] and 1 ^ j ^ k.

PROOF: We will use Lemma 3. Consider fc^l, 1 ^ j ^ k and distinguish the
following cases:

(i) Let x £ [0, a]. Take e = min{a, c/u}, w — max{c, u}. Then e =
1/(3 • 2") and w < 1. Applying Lemma 3 we obtain

(ii) Let x G [a, b]. Then obviously

Dgi{x) < 1 and Djgi(x) - 0 for any j ^ 2.

(iii) Let x £ [6, a,]. Now we take e = min{aj — 6, (c,- — d)/u), w =
max{cj — d, u}. Since we again have e = 1/(3 • 2l) and to < 1,

|£>>s,(z) | </?fc3* (2*)\

(iv) Let x £ [aj, 6,]. Now

D'gi{x) = 0 for any j ^ 1.

(v) Let x £ [6,-, ct-]. As usual let e = min{cj — bi, (ci — bi)/\v\}, w =
max{c,- — bi, \v\}. We have e > 1/4* and to < 2' . Therefore,
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278 V.J. Lopez [8]

(vi) Let x e [ci, di]. Then

\Dgi(x)\ < 2'' and D}'gi{x) = 0 for any j ^ 2.

(vii) Let x G [dj, 1]. Similarly as in (iv) we have

The lemma follows from (i)-(vii). D

At this point we also fix an open interval P included in I3 = [1/24, 1/12] and

consider (po, Pi) = ^(^3i [<*> b])(P)- We define the admissible function g(i;P) as follows

(here q0 = </i(po), 9i = ffi(pi), r0 = p0 + 3(pi - p o ) / 5 , n = Pl - (pi - p o ) / 5 , y =

( n - '•o)/(po - a ) , 2 = (g0 - c)/^ - r0)):

g(i;P)/[0,a\=<j>{0,a,O,y;0,ro);

, p0] = ^([o, p0]; [r0, ri]);

o. ro] =^(?o, r0, y, «;ri, c);

i; P)/[r0, n] = i>{[r0, n ] ; [c, 9o]);

P l ] = ^ ( r i , p i , z, u;q0, 9 l )

Obviously </(i; P) is a C°° function. In addition to this

(5(1; P))2/[a, Vo] = V»([a, Po]; [c, 90]) and

ff(i;^)/[pi,l] = ^([Pi,l];[9i,dl).

With the same notation we can finally construct the admissible C°° function ~§{i\ P)
in the following manner (s0 = Po + (pi -po)/5, si = p0 + 2(pi — po)/5):

k. Po] = i>{\a, po]; [s0) si]);

o, so] =4>(po,so,y, l ; a i , ro) ;

*, P)/l8o, «i] =V"([so, si];K, n]);

r0] =^(«i ,r0 , 1, 2;ri, c);

Now

(5(t; -P))3/[a, Po] = rl>{[a, p0]; [c, q0]) and

(3) s(i;P)/[pi,6]=^(b»i,6];[ft,«fl).

In a similar way as before we have the following
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LEMMA 9 . Let k be a positive integer. Then there exists a constant K.(k;P) > 0
depending only on k and P such that

for any x £ [0, 1] and 1 ^ j ^ k, where i?fc is defined in Lemma 8.

PROOF: TO simplify the notation we shall write g — g(i, P), ~g = g~(i, P). Let
Ao = A(P)/A(/s), Ai = A(Q)/A(Js), where Q is the left connected component of
Is\P, and choose fc^l, l ^ j ^ J f c . First we shall examine g; we shall use y < Ao/Ai,
z < 5/A0.

(i) Let x G [0, a] . Take e = min{a, ro/j/}, w = max{ro, y}. Note that
e ^ min{l / (3 • 2'") , A1/(3A02i)} and w < max{l, \0/\i}, Therefore

\Dlg(x)\ </9fc3*max{l, A0/A1}*+1(2fc)i.

(ii) Let x G [a, po]. Now

Dg(x) < A0/Ai and D'g(x) — 0 for any j ' ^ 2.

(iii) Let x £ [po,»"o]- Take e = min{r0 — po> (c — ri)/y, (c — ri)/z}, w —
max{c — r i , y, z}. It is easy to check that e > l/(2*max{Ao/Ai, 5/Ao}),
w < max{Ao/Ai, 5/Ao}. Then

\Djg(x)\ < p

(iv) Let x G [r0, n ] . Then

< 5/A0 and D'g(x) = 0 for any j ^ 2.

(v) Let z G [fi,Pi]- We must consider e = min{pi — r\, (qi —90)/
z, (?i - 9o)/w}, w = max{9! - g0, z, « } . Using gi - q0 > Ao/(3 • 2'+2)
it follows that e > Ag/(5 • 2*+2) and w < 5/A0, which implies

(vi) Let x G [pi, 1]. Then p(x) = g\{x) and we can use here the results

(ii)-(v) from Lemma 8.

Now we study ~g.
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(vii) Let x £ [0, a]. Reasoning as in (i) it is easy to see that

\D*g{x)\ <0h3
hmax{l, A0/A1}*+1(2*)i.

(viii) Let x £ [a, po]. As in (ii)

Dg(x) < A0/Ai and D'g(x) = 0 for any j ^ 2.

(ix) Let x £ [po,ao]- Take e = min{«o — Po, (r0 — si)/y, r0 — Bi}, W =
max{ro — « i ,y , 1}. We have e ^ min{A0, Ai}/(l5 • 2*) and w ^
max{l, Ao/Ai}. Hence

(x) Let x £ [s0, s i ] . Then

= 1 and Dig(x) = 0 for any j ^ 2.

(xi) Let x £ [si, r0]. Take e = min{ro — si , c — n , (c — r j ) / z } , «; = max{c —
n , 1, z } . Thus e > A0/(5-2*) and w < 5/A0. So

(xii) Let x £ [ro, 1]. Since g~(x) = g(x), we can use (iv)-(vi).

Using (i)-(xu), Lemma 9 is proved. U

4. CONSTRUCTION OF fa

We want to define fa, where a £ [0, 1) is fixed. For this purpose let S C Is be
a Cantor type set of Lebesgue measure a£/24, with £ > 1 and a£ < 1. The problem
will be solved if we define a weakly unimodal C°° function / : [0, 1] —> [0, 1] with
zero topological entropy with 5 a ^-scrambled set for / , since then it is sufficient to
construct (using Lemma 5) an increasing C°° diffeomorphism h: [0, 1] —> [0, 1] mapping
Is linearly onto an interval of length l /£ and consider fa = hofoh~1.

Before we construct / we need some notation. First of all consider J^j - i =
[cii-i, 6,_i] for any i > 3 and by induction let Jitj = V>([0, 1]; [a.j, &>])(./»,j+i) for any
3 ^ j < i — 1; we shall also write Jit s — Ji • We complete with Js — (0, 1]. Observe
that

(4) Ji+i C Ji for any i

and

(5) Ji,m C [am, bm) for any / and m.
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In a similar way let -K",-,;_i = [ci-i, d<-i] for any i > 3 and by induction let Kitj =
V>([0, l]\[cj, dj])(Kitj+i) for any 3 < j < i - 1. We shall write Ki<3 = Ki and
K3 = [0, 1]. As before Ki+i C Ki for any i. It is easy to check (see [17], Section 3)
that

(7) \{Ki) = 1/2<1+JX'

for any t > 3. Thus if we put [7, /j] = f\ J{ (see (4)), then f*-j= U (l - 1/2*) > 0.
i=3 j=l

00

Now write 5 as I3 \ \J Un, where Un are open intervals pairwise disjoint
n=l

and included in Is. Let (VJt)̂ Lj be a sequence containing each interval Un in-
finitely many times. Ak < Bk will denote the connected components of I3 \ Vk and

Define a strictly increasing sequence of greater than 3 odd numbers (ik)k
x>

=1 with
each ik suitably large so that for any i ^ ik

max{Kh, n{k;Vh), n(k;Wk)y9\ 1_
{ ( )*2('+2)(»3)/2 4«

and take the sequence of admissible functions (<7i)"s such that

(i) 9i = Ufa Vk) if i = U for some k;
(ii) ~9i = ff(*; Wk) if i = tjfc + 1 for some k;

(iii) 'gi = gi otherwise.

Then

LEMMA 1 0 . Consider the sequence ( / j )~ 4 such that

fi=9i* (54 * (• • • (ft-i * 9i) • • •))

for any i ^ 4. Then (/»)~4 converges uniformly to a {unction f with zero topological
entropy.

PROOF: The arguments are similar to those made in Sections 4 and 5 from [17].
For this purpose our Lemmas 6 and 7 are also needed. D

5. PROOF OF THE THEOREM

In this last section we shall check that / in Lemma 10 is a weakly unimodal C°°
function and 5 is a ^-scrambled set of / for a suitable 6 > 0. With this, the reasoning
is complete.
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LEMMA 1 1 . / is a weakly unhnodal {unction.

PROOF: Note that either

f/(Ji \ Ji+1) = (V([0, 1]; Ki) o g{ o ^( J<; [0, 1]))/(J; \ Ji+

(9) f/{Ji \ Ji+1) = ty([0, 1]; Ki)ogi0^(Ji; [0, l]))/(Ji \ Ji

according as i is odd or even. Thus //[0, 7] is strictly increasing, f/[f, /i] is constant
and f/[(i, 1] is strictly decreasing, that is, / is weakly unimodal. D

With the same argument as in Lemma 10 we can prove that for any i > 3 the
sequence (^ * (gi+1 * (... (5i+j-i *9i+j) • • -)))~ 1 converges, say to Jt. Then it is
simple to verify that

(10) / = S3 * (ff4 * (• • • (s,-i * 7<) • • •)) f o r a n v » > 3"

LEMMA 12 . For any i ^ 3 we have

i~3)/(Ji \ Ji+i) = (^([0, l]; JO °ai o^(J*; [0, l]))/(J* \ J i +0

if t is odd and

(f2i~*)/(Ji \ Ji+i) = (?([o, 1]; JO °9i°WJi; [0, i]))/(J* \ J.-+0

if i is even.

PROOF: Since the lemma is obvious if i = 3, we can suppose i > 3. Then using
repeatedly (1) and (5) it is easy to show that if g: [0, 1] —> [0, 1] is continuous and such
that p(0) = 5(1) = 0 , then

(g3 *(&*(••• fo-i • 0) • • -)))2 '+ 3M = ^([0,1]; * ) o 5 o 1>(Ji; [o, 1])
if i is odd and

(9, * (g* * (• • • fo-i * 5) • • -)))2I+3/Ji = ?([o, 1]; JO o 5 o ? ( j i ; [0,1])

if z is even. Now the lemma follows from (10) and the fact that fi is equal to "g^ in
J<; [0, 1])( Ji \ Ji+i) or V>( Ji; [0, 1])(/,• \ Ji+i), according as i is odd or even. D

LEMMA 13 . 5 is a 6-scrambled set 0/ / for any 6 < /* — 7.

PROOF: For any t ^ 3 let I< = V"([0,1]; J0((°*> ^ 0 if * i s o d d ^ ^ Jt =
, 1]; Ji)([a\ b{]) if i is even. Of course, /; C J; \ Ji+i •
Using Lemma 12 we shall prove that 5 is a ^-scrambled set of / for any 6 < fi — y.

Note that if i ^ t* and t ^ t^ + 1 for any A then from the definition of gi

(11) /2 <-3/ / i
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Now consider the case i = ik for some fc and let A = ij>(Is;Ii)(Ak), B =
^(/,;/ ,-)(B»). O = 4>(I3;Ii+1)(Ak), D = i>{h;Ii+1){Bh), E = i,(Ia;Ii+2)(Ak),
F = il>(I3;7j+2)(.Bjb). By (2), (3) and the definition of gt when i = ik or i — ik + 1 we
have

(12) / 2 ' " 3 ( x ) < 7 for any x £ A and f'~*/B = tl>(B;D),

and also

(13) / 3 2 ' " 3 M = +(A\C), f'-*IC = V>(C;E), f^/D = j{D;F).
From (12) and (13)

(14) f-^/A = 4{A; E), f-2i~3/B - rj>{B, F).

Since A(/^) —> 0 and i —* oo, it is easy to check that for any x ^ y points of 5,

Finally from (11)-(14) we see that, given x £ S and m ^ 0, it is possible to find
r > 0 and a strictly increasing sequence (/„) of multiples of 2 m such that fln+r(x) < 7
if n is odd and fln+r(x) > fi if n is even. Therefore, for any periodic point p of / , we
have

D
LEMMA 1 4 . f is a C°° function.

PROOF: We shall prove that / is a C°° function by verifying that Dkf{~f) and
Dkf(fj,) exist for any k, since it is evident that / is of class C°° in [0, 1] \ {7, fi}. In
fact we shall examine the situation with 7; for p. the proof is similar.

Firstly, if x £ Jj \ Ji+1, then by (6) and (7)

1

x - 7

Since / (2) = f(y) for any x £ [7, y\, it is clear that .0/(7) exists and that it is equal
to zero.

Now suppose that Dkf(-y) exists for a certain positive integer k. Obviously,
D*/ ( 7 ) - 0. Applying (6), (7), (8), (9) and Lemmas 8 and 9 we have that for any
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ik < i < ik+i - 1 and any x £ J, \ Ji+U \D'f(x)\ < 1/4' for any j = 1, 2, . . . , k.
Hence for any i^ ik and x S J{\ J,+i,

Dkf{x)
x - 7

and so r>fc+1/(7) exists with £>*+1/(7) = 0. D

The theorem follows from Lemmas 10, 11, 13 and 14.

6. FINAL REMARKS

REMARK 1. The idea behind the definition of S is taken from [14]. In the construction
of our function we have used ideas from [17].

REMARK 2. A similar result can be obtained for functions with positive topological
entropy. In fact it suffices to redefine the function / from the Theorem in (7, fi) in
such a way that there exists c £ (7, fi) with /(c) = 1 and / is unimodal. Now / has
a periodic point of period three and therefore has positive topological entropy.

REMARK 3. For functions with zero topological entropy, the theorem offers the best
possible result. Indeed it can be proved (see [2]) that

(i) if / is a C1 function, then it cannot have a scrambled set of full Lebesgue
measure;

(ii) if / is an analytic function with zero topological entropy, then it cannot

be chaotic.

In connection with (ii) and a theorem from [10] about the non-existence of wander-
ing intervals for C2 functions without flat points, we conjecture that if / is an analytic
function then it cannot have scrambled sets with positive Lebesgue measure.
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