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Abstract We study the spectrum of periodic Jacobi matrices. We concentrate on the case of slowly
oscillating diagonal terms and study the behaviour of the zeros of the associated orthogonal polynomials
in the spectral gap. We find precise estimates for the distance from single eigenvalues of truncated
matrices in the spectral gap to the diagonal entries of the matrix. We include a brief numerical example
to show the exactness of our estimates.
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1. Introduction

In this paper we study the spectrum of Jacobi matrices, that is, matrices of the form⎛
⎜⎜⎜⎜⎜⎜⎝

b1 a1 0 0 0 · · ·
a1 b2 a2 0 0 · · ·
0 a2 b3 a3 0 · · ·
0 0 a3 b4 a4 · · ·
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

, (1.1)

where bn ∈ R and an > 0 for n ∈ Z
+. We will assume that both supn�0 |an| and

supn�0 |bn| are finite. These matrices are viewed as operators acting on the Hilbert space

l2(Z+) =
{

(fn)∞
n=1

∣∣∣∣ fn ∈ C and
∞∑

n=1

|fn|2 < ∞
}

with the natural norm.
If T is the operator defined by (1.1), we observe that

Tf(n) =

{
an−1fn−1 + bnfn + anfn+1 if n > 1,

b1f1 + a1f2 if n = 1,

751

https://doi.org/10.1017/S0013091505001070 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091505001070


752 C. Mart́ınez

and it is easy to see that T is a bounded operator with norm ‖T‖ � k, where k =
supn�0{|an|+ |bn|+ |an−1|}. It is also clear that T is self-adjoint and hence, Spec(T ) ⊂ R

and, indeed, Spec(T ) ⊂ [−k, k].
There exists a one-to-one correspondence between Jacobi matrices and orthogonal

polynomials. In this case, the orthogonal polynomials associated with T obey the three-
term recurrence relation given by

xpn(x) = an+1pn+1(x) + bn+1pn(x) + anpn−1(x) (1.2)

for n � 1, where p0 ≡ 1 and the an and bn are those which appear in (1.1).
These polynomials are obtained via the Gram–Schmidt process. Let δj be the vector in

l2(Z+) with components δjn = 1 if n = j, or 0 otherwise, and let µ be the spectral mea-
sure. Applying the Gram–Schmidt process to the sequence {xn}, we obtain orthogonal
polynomials pn such that ∫

pn(x)pm(x) dµ(x) = δnm

and such that they satisfy (1.2). We refer the reader to [2] for a more detailed account of
this, but observe that what we have presented here provides all the background needed
for our analysis.

In [1], Simon and Denisov affirmatively answer a question raised by Nevai: is it possible
for the single possible zero of each polynomial pn in a gap (α, β) of the support of dµ to
yield all of the points of (α, β) as limit points as n varies? To do this, they concentrated
on a particular Jacobi matrix with 2-periodic off-diagonal entries. We extend this idea
to consider a wider class of off-diagonal entries and slowly oscillating diagonal entries
and finally extend the methods to general even periods. We also find estimates for the
distance from single eigenvalues in a gap of a truncated matrix to the diagonal elements
of the matrix. Theorems 2.10 and 3.9 are our strongest results in this sense and we refer
the reader to [3], where earlier versions of these results can be found.

2. Jacobi matrices with period 2

In this section we will study matrices of the form⎛
⎜⎜⎜⎜⎜⎜⎝

b1 a 0 0 0 · · ·
a b2 b 0 0 · · ·
0 b b3 a 0 · · ·
0 0 a b4 b · · ·
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

.

In fact, let A be the Jacobi matrix defined by the sequences (an) and (bn), where

a2n−1 = a, a2n = b for n ∈ Z
+,

and (bn) satisfies the conditions given above. We will show that, under certain conditions
imposed on the entries of the matrix, the operator defined by this matrix has a spectral
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gap and that, in this gap, the set of zeros of the associated orthogonal polynomials,
(pn(x)), is dense. Simon and Denisov have shown a particular case of this in [1], where
they have taken the sequence (bn) to be the sequence {0,− 1

2 , 0, 1
2 ,− 3

4 ,− 1
2 ,− 1

4 , 0, 1
4 , 1

2 ,
3
4 ,− 7

8 , . . . } and have set a = 3 and b = 1.
Before presenting our most general result in this sense, we include the following par-

ticular case, which is more general than the example found in [1], as we believe it makes
our arguments and presentation easier to follow.

Let us consider a more general sequence, (γn)∞
n=1, in place of (bn)∞

n=1. In fact, let
(γn)∞

n=1 = (sinnω)∞
n=1 with 0 < ω < 1. This sequence oscillates infinitely many times

between −1 and 1 and does so in such a way that each oscillation takes longer and longer
as x → ∞.

Consider now the Jacobi matrix B, given by

a2n−1 = a

a2n = b

bn = γn

⎫⎪⎬
⎪⎭ for n ∈ Z

+, (2.1)

with a > b and |a − b| = 2. The latter condition serves only to make calculations more
simple. In reality what we require is |a − b| = 2r, where r is the supremum of the bn.

We need the following results.

Lemma 2.1. Let B0 be the Jacobi matrix obtained by replacing the diagonal entries
of B with 0, and let B∞ be the doubly infinite matrix that coincides with B0 on Z

+ and
which is extended in a similar way to Z. Then

Spec(B∞) = [−(b + a),−|b − a|] ∪ [|b − a|, b + a].

Proof. Consider the equation B∞f = λf , where f = (fn)n∈Z ∈ l2. Spec(B∞) coin-
cides with the set of λ for which this equation has a bounded solution. These bounded
functions are of the form f2n = αe−inθ and f2n+1 = βe−inθ, where θ ∈ R and α, β ∈ C.

Thus, if we consider such an f , we have that

(B∞f)2n = bf2n+1 + af2n−1 and (B∞f)2n+1 = af2n+2 + bf2n

and thus we obtain the following equations:

λαe−inθ = bβe−inθ + aβe−i(n−1)θ,

λβe−inθ = aαe−i(n+1)θ + bαe−inθ,

or, equivalently,
λ

b + aeiθ =
β

α
=

b + ae−iθ

λ

and hence λ2 = a2 + b2 + 2ab cos θ, so

|b − a| � |λ| � b + a
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provides the required solutions, and thus

Spec(B∞) = [−(b + a),−|b − a|] ∪ [|b − a|, b + a].

�

Corollary 2.2. Spec(B0) coincides with Spec(B∞) except for possible eigenvalues in
the gap (−|b − a|, |b − a|).

Proof. This follows from the fact that Ess Spec(B0) = Ess Spec(B∞). �

We now analyse when such eigenvalues exist. We claim that if a > b, then B0 has no
eigenvalues in the gap.

Lemma 2.3. If λ is an eigenvalue of B0, then so is −λ.

Proof. Consider the unitary operator U defined by (Uf)n = (−1)n−1fn for f = (fn) ∈
l2(Z+). It is easy to see that U−1B0U = −B0 and our claim follows. �

Corollary 2.4. B0 has only one possible eigenvalue in (−|b − a|, |b − a|).
Theorem 2.5. The point spectrum of B0 contains 0 if and only if b > a.

Proof. The result follows when considering B0(fn) = 0, as we obtain that

f2n = 0,

f2n+1 = −
(

a

b

)n

f1.

�

We are now in a position to deal with the spectrum of our original matrix B.

Theorem 2.6. If 0 is not an eigenvalue of B0, then

Spec(B) = [−(b + a) − 1,−|b − a| + 1] ∪ [|b − a| − 1, b + a + 1];

on the other hand, if 0 is an eigenvalue of B0, then

Spec(B) = [−(b + a) − 1,−|b − a| + 1] ∪ {δ} ∪ [|b − a| − 1, b + a + 1]

for some δ ∈ R.

Proof. If 0 is not an eigenvalue of B0, then

Spec(B0) = [−(b + a),−|b − a|] ∪ [|b − a|, b + a]

and since ‖B − B0‖ = 1 it follows that Spec(B) ⊂ [−1, 1] + Spec(B0). And now, as the
closure of

⋃
{βn : n ∈ Z

+} + Spec(B0) is contained in Spec(B), we have that

Spec(B) = [−(b + a) − 1,−|b − a| + 1] ∪ [|b − a| − 1, b + a + 1].

On the other hand, if 0 is an eigenvalue of B0, the result follows by considering the effect
of compact perturbations on single eigenvalues. �
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We are now ready to prove the following result.

Theorem 2.7. We have

(i) Spec(B) = [−(b + a) − 1,−|b − a| + 1] ∪ [|b − a| − 1, b + a + 1], and

(ii) {x ∈ (−1, 1) | qn(x) = 0 for some n} is dense in [−1, 1], where (qn(x)) are the
orthogonal polynomials associated with B.

Proof. The first claim follows from the above results. In order to prove our second
claim we will consider a particular case first; take ω = 1

2 .
We have that (γn)∞

n=1 = (sinn1/2)∞
n=1 and we need to estimate the size of

‖(B(j) − γjI)ϕj‖2

‖ϕj‖2 =
∑j−1

m=0 |γm − γj |2|ϕm,j |2∑j−1
m=0 |ϕm,j |2

, (2.2)

where ϕj is the vector(
1, 0,

(
− a

b

)
, 0,

(
− a

b

)2

, 0, . . . ,

(
− a

b

)j−1)

and B(n) is the n × n matrix obtained by taking the first n rows and columns of B, as
we know that the zeros of qn(x) are the eigenvalues of B(n) (see [4]).

Taking into account the recurrence relation that the orthogonal polynomials have to
satisfy at 0, i.e.

q2n+1 = 0 for all n and q2n(0) =
(
− a

b

)n

, (2.3)

it is easy to see that (B0(j))ϕj = 0 whenever j is odd, and for any such j let us take
(B(j) − γnI)ϕj .

We will now split (2.2) into two sums,∑j−1
m=0 |γm − γj |2(a/b)2m∑j−1

m=0(a/b)2m
=

∑i−1
m=0 |γm − γj |2(a/b)2m∑j−1

m=0(a/b)2m
+

∑j−1
m=i |γm − γj |2(a/b)2m∑j−1

m=0(a/b)2m
,

and our task now is to find an appropriate index i. Let 0 < ε < 1.
For j odd, let i = j − [jε] and consider the first of these two sums. We obtain∑i−1

m=0 |γm − γj |2(a/b)2m∑j−1
m=0(a/b)2m

� 4
(a/b)2i − 1
(a/b)2j − 1

= 4
(a/b)2(j−[jε]) − 1

(a/b)2j − 1
≈ 4(a/b)−2[jε],

which tends to zero rapidly as a negative power of a/b.
Now, as |sin x − sin y| � |x − y| for all real numbers x and y, we have that∑j−1

m=i |γm − γj |2(a/b)2m∑j−1
m=0(a/b)2m

=
∑j−1

m=i |sin m1/2 − sin j1/2|2(a/b)2m∑j−1
m=0(a/b)2m

�
∑j−1

m=i |m1/2 − j1/2|2(a/b)2m∑j−1
m=0(a/b)2m
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and we need to observe that |m1/2 − j1/2| = |m − j|/|m1/2 + j1/2|. Hence, it follows that

∑j−1
m=j−[jε] |m1/2 − j1/2|2(a/b)2m∑j−1

m=0(a/b)2m
=

∑j−1
m=j−[jε] |m − j|2/|m1/2 + j1/2|2(a/b)2m

((a/b)2j − 1)/(a/b)2j
.

We note that |m1/2 − j1/2| maximizes for m = j − [jε] and hence we consider the term

|(j − [jε]) − j|2
|(j − [jε])1/2 + j1/2|2 =

[jε]2

|(j − [jε])1/2 + j1/2|2 . (2.4)

We obtain j1/2 � (j − [jε])1/2 + j1/2 � 2j1/2 and thus

j−1∑
m=j−[jε]

|m − j|2
|m1/2 + j1/2|2

(
a

b

)2m

�
j−1∑

m=j−[jε]

[jε]2

|(j − [jε])1/2 + j1/2|2

(
a

b

)2m

�
j−1∑

m=j−[jε]

[jε−1/2]2
(

a

b

)2m

= [jε−1/2]2
j−1∑

m=j−[jε]

(
a

b

)2m

.

In other words,∑j−1
m=j−[jε] |m1/2 − j1/2|2(a/b)2m∑j−1

m=0(a/b)2m
� [jε−1/2]2

∑j−1
m=j−[jε](a/b)2m∑j−1

m=0(a/b)2m

= [jε−1/2]2
(a/b)2j − (a/b)2(j−[jε])

(a/b)2j − 1

and hence, for 0 < ε < 1
2 , this tends to zero as j → ∞. We thus see that {x ∈ (−1, 1) |

qn(x) = 0 for some n} is dense in [−1, 1], as the zeros of (qn(x)) are the eigenvalues
of B(n).

We now consider the general case (γn)∞
n=1 = (sinnω)∞

n=1 with ω < 1. We have that∑j−1
m=0 |γm − γj |2(a/b)2m∑j−1

m=0(a/b)2m
=

∑i−1
m=0 |γm − γj |2(a/b)2m∑j−1

m=0(a/b)2m
+

∑j−1
m=i |γm − γj |2(a/b)2m∑j−1

m=0(a/b)2m
,

and for the first of these two sums we have∑i−1
m=0 |γm − γj |2(a/b)2m∑j−1

m=0(a/b)2m
� 4

(a/b)2i − 1
(a/b)2j − 1

≈ 4
(

a

b

)2(i−j)

.

If we take i = j − [log j], again for j odd, then

∑j−1
m=0 |γm − γj |2(a/b)2m∑j−1

m=0(a/b)2m
≈ 4

(
a

b

)−[log j]

.
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To deal with the second sum we observe that, for 0 < m � j,

jω − mω =
∫ j

m

ωxω−1 dx � ω(j − m)mω−1,

and as j − [log j] � 1
2j we have that

jω − mω � ω[log j]( 1
2j)ω−1 = 21−ωω[log j]jω−1

for m = j − [log j].
Now,

∑j−1
m=j−[log j] |γm − γj |2(a/b)2m∑j−1

m=0(a/b)2m
�

∑j−1
m=j−[log j] |jω − mω|2(a/b)2m∑j−1

m=0(a/b)2m

� 21−ωω[log j]jω−1

∑j−1
m=j−[log j](a/b)2m∑j−1

m=0(a/b)2m

and hence, as 0 < ω < 1, this tends to zero as j → ∞.
Thus, as the zeros of (qn(x)) are precisely the eigenvalues of Bn, we see that {x ∈

(−1, 1) | qn(x) = 0 for some n} is dense in [−1, 1]. �

Corollary 2.8. For odd j, B(j) has an eigenvalue, λj , close to γj . In fact,

|λj − γj | = O([log j]jω−1).

We now present the following more general result.

Theorem 2.9. Let f : R → [−1, 1] be a function that oscillates infinitely many times
between 1 and −1 and such that f ′(x) → 0 as x → ∞. Consider the sequence (ρn)∞

n=1,
defined by

ρ1 = f(1), ρ2 = f(2), . . . , ρn = f(n), . . . ,

and consider the Jacobi matrix C with

a2n−1 = a, a2n = b, bn = ρn for n ∈ Z
+,

where a > b and |a − b| = 2. Then

Spec(C) = [−(b + a) − 1,−|b − a| + 1] ∪ [|b − a| − 1, b + a + 1]

and {x ∈ (−1, 1) | rn(x) = 0 for some n} is dense in [−1, 1], where (rn(x)) are the
orthogonal polynomials associated with C.

Proof. The claim about the spectrum of C follows directly as before from Theorem 2.6
and thus we just need to prove the density result.
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For any j ∈ N, let δr = sup{|f ′(s)| : r � s � j}. By hypothesis, if we consider large j,
δr decreases to zero when we consider r sufficiently large, and by the mean-value theorem
we obtain

|ρm − ρj | � |m − j| sup{|f ′(s)| : m � s � j}
= |m − j|δm.

Now, let εr = max{δr, 1/rα}, for 0 < α < 1, which again tends to zero as r → ∞.
From this definition of εr we see that j − [ε−α

j/2] � 1
2j and we will use this fact to

estimate ∑j−1
m=0 |ρm − ρj |2(a/b)2m∑j−1

m=0(a/b)2m
.

To do so, we again consider the following two sums:

∑j−1
m=0 |ρm − ρj |2(a/b)2m∑j−1

m=0(a/b)2m
=

∑i−1
m=0 |ρm − ρj |2(a/b)2m∑j−1

m=0(a/b)2m
+

∑j−1
m=i |ρm − ρj |2(a/b)2m∑j−1

m=0(a/b)2m
,

where, as in the previous cases, i depends on j.
In fact, let i = j − [ε−α

j/2]. Then

∑i−1
m=0 |ρm − ρj |2(a/b)2m∑j−1

m=0(a/b)2m
� 4

∑i−1
m=0(a/b)2m∑j−1
m=0(a/b)2m

≈ 4
(

a

b

)−2[ε−α
j/2]

,

which tends to zero as j → ∞.
Now, to estimate the size of

∑j−1
m=i |ρm − ρj |2(a/b)2m∑j−1

m=0(a/b)2m
,

we observe that∑j−1
m=i |ρm − ρj |2(a/b)2m∑j−1

m=0(a/b)2m
�

∑j−1
m=i |m − j|2ε2

m(a/b)2m∑j−1
m=0(a/b)2m

�
∑j−1

m=i |i − j|2ε2
i (a/b)2m∑j−1

m=0(a/b)2m

� [ε−α
j/2]

2ε2
j−[ε−α

j/2]

∑j−1
m=j−[ε−α

j/2]
(a/b)2m

∑j−1
m=0(a/b)2m

� [ε−α
j/2]

2ε2
j/2

≈ ε
2(1−α)
j/2 ,

which also tends to zero as j → ∞, and hence the required result follows. �
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Table 1. |λj | > 0.9

j λj |λj − sin(j1/2)|

23 −0.995 14 0.001 39
61 0.997 03 0.002 01

123 −0.995 93 0.000 43
201 0.999 15 0.000 04
299 −0.999 75 0.000 17

Table 2. |λj | < 0.1

j λj |λj − sin(j1/2)|

23 −0.995 14 0.001 39
61 0.997 03 0.002 01

123 −0.995 93 0.000 43
201 0.999 15 0.000 04
299 −0.999 75 0.000 17

Summarizing these results, we obtain the following theorem, which not only gives a
rate of convergence of the eigenvalues of C(j) in (−1, 1) in terms of |f ′(x)| (which tends
to zero as x → ∞), but allows us to see that the error is particularly small for j such
that f is almost stationary in the interval (i, j).

Theorem 2.10. Let λj be the single eigenvalue of C(j) in the interval (−1, 1). Then,
using the notation introduced in the proof of Theorem 2.9, we have that

|ρj − λj | � 4
(

a

b

)−2[ε−α
j/2]

+ ε
2(1−α)
j/2

for odd j.

Tables 1 and 2 show a sample of the results obtained by testing this theorem numer-
ically for the matrix B defined in (2.1) with a = 3 and b = 1, where λj is the single
eigenvalue of B(j) in the interval (−1, 1). Table 1 shows values of |λj | > 0.9 where the
error is minimal and Table 2 shows values of |λj | < 0.1 where the error is maximal.

Having presented these results, it is worth noting that, although throughout this section
we have restricted ourselves to the study of matrices of period 2, many of our results
hold in the more general case. We devote the next section to this case.

3. Jacobi matrices with general even periods

To deal with the general case, we observe that there is an intrinsic difference between
even and odd periods. Jacobi matrices with odd periods fall slightly outside the context
we wish to work in, as their spectrum contains an odd number of bands and, given
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that it is symmetrical about the origin, this implies that the origin is an element of the
spectrum. We will thus restrict our study to matrices with even periods, but first we
prove the following general theorem. This allows us to show that, even though we are
dealing with rank 2 perturbations, given the nature of the problem, they will produce at
most one eigenvalue in each gap. Note that such eigenvalues still occur in pairs, i.e. if λ is
an eigenvalue, then so is −λ. This result (which we state formally as our next theorem)
is true owing to the nature of tri-diagonal matrices and it does not in fact depend on the
periodicity of the matrices.

Theorem 3.1. Let M∞ be a doubly infinite tri-diagonal self-adjoint matrix and let
M0 be the restriction of M∞ to Z

+; in other words M0 is of the form⎛
⎜⎜⎜⎜⎜⎜⎝

b1 a1 0 0 0 · · ·
a1 b2 a2 0 0 · · ·
0 a2 b3 a3 0 · · ·
0 0 a3 b4 a4 · · ·
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

.

If we let P denote the projection onto Z
+, then

M2
0 = PM2

∞P − R,

where R is a rank 1 perturbation. Hence, the restriction of M∞ to M0 can create at most
one eigenvalue per gap.

Proof. The result follows from the direct computation of M2
0 and PM2

∞P . �

Now, given this result, let us proceed with our study of periodic Jacobi matrices.
Consider A0, a Jacobi matrix of period 4 defined as follows:

a4n−3 = a, a4n−2 = b, a4n−1 = c, a4n = d and bn = 0 for n ∈ Z
+,

and, keeping the notation used thus far, let A∞ be the doubly infinite matrix that
coincides with A0 on Z

+.

Lemma 3.2. Spec(A∞) coincides with the set {λ | |p(λ)| � 1}, where p(λ) is the
fourth-order polynomial defined by

p(λ) :=
λ4 − (a2 + b2 + c2 + d2)λ2 + a2c2 + b2d2

2abcd
. (3.1)

We observe that Spec(B∞) consists of at most four bands which lie symmetrically on
the real line with respect to the origin.

Corollary 3.3. Spec(A0) coincides with Spec(A∞) except for the occurrence of one
eigenvalue in each of the gaps.

Theorem 3.4. Given the operator A0, 0 is the only possible eigenvalue in the central
gap and, furthermore, 0 is an eigenvalue of A0 if and only if ac < bd.
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Proof. If we set A0f = 0, then

af2 = 0,

af1 + bf3 = 0,

bf2 + cf4 = 0,

cf3 + df5 = 0,

...

and this implies that f2n = 0. Furthermore, if we set f1 = 1, then

f3 = −a

b
, f5 =

ac

bd
, f7 = −a2c

b2d
, f9 =

a2c2

b2d2 , f11 = −a3c2

b3d2 , . . .

and the result follows. �

Theorem 3.5. If bc < ad,m then −
√

a2 + b2 and
√

a2 + b2 are the eigenvalues of A0

in each of the two lateral gaps.

Proof. This can be worked out easily by solving B0f = ±
√

a2 + b2f as before. �

Let us now assume that 0 is not an eigenvalue of A0.

Theorem 3.6. Let A0 be an operator as defined above, such that zero is not an
eigenvalue and Spec(A0) consists of exactly four bands. Let us denote the central gap
by (−K, K) and let f : R → [−K, K] be a function that oscillates infinitely many times
between the extremes of this gap, and such that f ′(x) → 0 as x → ∞. Consider the
sequence (βn)∞

n=1 defined as follows:

β1 = f(1), β2 = f(2), . . . , βn = f(n), . . . ,

and consider the Jacobi matrix A which coincides with A0 everywhere but on the diago-
nal, where we replace the zeros with the sequence (βn)∞

n=1. Then {x ∈ (−K, K) | pn(x) =
0 for some n} is dense in [−K, K], where (pn(x)) are the orthogonal polynomials associ-
ated with A.

Proof. Consider the orthogonal polynomials of A0 at 0. These polynomials, (pn(x)),
obey the following recurrence relations:

p2n+1 = 0 for all n

and

p4n(0) =
(

ac

bd

)n

, p4n−2(0) = −
(

a

b

)n(
c

d

)n−1

.

The remainder of the proof follows exactly as in that of Theorem 2.9. �

We now state the theorems for the general case.
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Theorem 3.7. Let (an)∞
n=1 be a 2k-periodic sequence for some k ∈ N, and let G0

be the Jacobi matrix with zeros along the diagonal and the sequence (an)∞
n=1 on the

off-diagonals. Then Spec(G0) consists of at most 2k bands together with at most one
eigenvalue in each of the gaps.

For the next result, consider the matrix G0 and suppose that Spec(G0) consists of
exactly 2k bands and zero is not an eigenvalue. Let us again denote the central gap
by (−K, K).

Theorem 3.8. Given G0, let g : R → [−K, K] be a function that oscillates infinitely
many times between −K and K, and such that g′(x) → 0 as x → ∞. Consider the
sequence (ρn)∞

n=1 defined as follows:

ρ1 = g(1), ρ2 = g(2), . . . , ρn = g(n), . . . ,

and the Jacobi matrix G which coincides with G0 everywhere but on the diagonal,
where we replace the zeros with the sequence (ρn)∞

n=1. Then {x ∈ (−K, K) | rn(x) =
0 for some n} is dense in [−K, K], where (rn(x)) are the orthogonal polynomials associ-
ated with G.

Proof. The proof of this result employs the methods used in the proof of Theorem 3.6.
One has only to determine the orthogonal polynomials associated with G0 at zero and
construct an appropriate approximate eigenfunction. The orthogonal polynomials at zero
in this case obey the same type of recurrence relations as before, namely

p2n+1 = 0 for all n

and

p2kn(0) =
(

a1a3 . . . a2k−1

a2a4 · · · a2k

)n

,

p2kn−2(0) = −
(

a1

a2

)n(
a3 . . . a2k−1

a4 · · · a2k

)n−1

,

p2kn−4(0) = −
(

a1a3

a2a4

)n(
a5 · · · a2k−1

a6 · · · a2k

)n−1

,

...

and ϕj = (p0(0), p1(0), . . . , pj−1(0)) produces the required result. �

Finally, we conclude this section by restating this result in terms of the eigenvalues of
the truncated matrices G(j) (the j × j truncations of G).

Theorem 3.9. Let λj be the single eigenvalue of Gj in the interval (−K, K). Then,
given ε > 0, there exists an odd j ∈ N such that |ρj − λj | < ε.
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