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The comparative analysis of modern mathematical models for 3D problems in electron optics is 

presented. The new approach to solve the electron optics problems in three dimensions is presented. It is 

based on the principal ray method suggested by G. Grinberg in 1948. That perspective approach was not 

realized before for full three-dimensional electron optic systems, probably because of the complexity of 

its mathematical apparatus. We describe the analytical technique of the boundary element method 

(BEM) for the field evaluation, and 3-rd order aberration expansion for the trajectory analysis. The first 

version of such computer code “OPTICS-3”, and some results of numerical simulations with this code 

were presented. 
 

Comparative analysis of different numerical models 

The problem formulations in electron optics are very multifarious. It is well common to split them onto 

two main classes: nonlinear self-consistent problems of high-current beams, and precision problems of 

the image electronic devices. First class includes high-powered devices for the energy transformation, 

but second one includes the image transformation instruments. Different physical problems generate the 

set of different mathematical models because of different requirements for the numerical solution. Thus, 

the efficiency of any particular model depends on the features of the physical problem formulation. In 

the paper we provide the comparative analysis of computational efficiency for four mathematical 

models: pseudo viscosity method, “pipe-current” method, aberration approach and principal ray method. 

 

The pseudo viscosity method is the sort of relaxation methods. It is based on use the non-stationary 

algorithm to find the stationary solution as the limit of non-stationary physical process. Normally it is 

formulated as the combination of Maxwell’s solver for the field problems, and “particle-in-cell” (PIC) 

model for the particle dynamics. This method is extremely useful to detect the instability regimes for the 

almost stationary problems, but it is very inefficient for the true stable problems comparing with the 

other methods mentioned above.  

 

The “pipe-current” method (PCM) [1] is the most popular method to simulate the stationary optics of 

high-current relativistic beams. It includes the set of equations for self-consistent problem: field 

equation (Poisson’s equation), motion equation (Lorentz’s equation), and continuity equation for the 

charge and current conservation law. This method has slightly different formulations for laminar and 

non-laminar flows of charged particles. 

 

The aberration approach (AA) is a version of more general perturbation theory applying to the light and 

charge particle optics. The general idea of this method is based on the expansion of the solution for 

trajectories on the set of small parameters of the problem, which gives the main advantages of high 

accuracy and reduces the computation time on many orders comparing the “pipe-current” method. Main 

disadvantage of this approach is that it is applicable for the narrow enough beams only. 
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The principal ray method (PRM) [2] removes the paraxial limitation of the aberration approach, as it 

combines all positive features of the “pipe-current” and of aberration methods in terms of the accuracy 

and efficiency for the solution. It is applicable as for stationary as for non stationary problems, self-

consistent and weak- current image optics also. 

 

The computational efficiency for different methods can be expressed in terms of CPU-time T need to 

solve some typical problem. This time consists of two parts: time of computation for the field evaluation 

Tfield, and time for the particles tracking Tpart. First item depends on the numerical method. Let Nsp is a 

total number of nodes for spatial mesh, and Nsf is a number of nodes for the boundary surface in 

discretization of the problem. Then Tfield ~ Nsp ln Nsp for the Finite Difference Method (FDM) and for 

the Finite Element Method (FEM). The difference is FDM uses the structured mesh, but FEM uses non 

structured mesh, and so the value Nsp is much less for second case. Boundary Element Method (BEM) 

uses spatial mesh covers whole volume of the problem, but the beam volume only. This case the value 

Nsp is much less than for FDM and FEM. In case of FEM the value Tfield ~ Nsf for weak-current 

problem, and Tfield ~ Nsp+ Nsf per one iteration over space charge for high-current problem. All methods 

should multiply the value by Niter for a stationary problem and by Ntime for non-stationary one, where 

Niter is a total number of non linear iterations over space charge, but Ntime is a number of time steps. 

 

The time Tpart ~ Npart * Ntime for the PIC model, where Npart is total number of macro particles. In case 

of the PCM we have Tpart ~ Ntraj * Niter, where Ntraj is a total number of trajectories represent the beam. 

Normally the curvilinear surface of emitter is divided onto Nt by Ns intervals in t- and s- spatial 

directions. We also should make divisions onto Nθ by Nω intervals to take into account the angular 

distributions for polar θ and azimuth ω angles, and onto Nε intervals to take into account the energy 

distribution for emitted particles. Thus, total number of trajectories for PCM model Ntraj = Nt * Ns* Nθ * 

Nω* Nε. The AA model uses the polynomial expansion onto small parameters – initial angles and 

energy. This case the angular and energy distributions are taking into account automatically. The motion 

equation is the second-order differential equation, so Ntraj = 4 for 3D case always. In contrast to PCM 

this case we should integrate numerically as 4 paraxial trajectories as a few coefficients of expansion. 

Total number of those coefficients depends on the order of expansion, and on the number of small 

parameters. The advantage of AA-model comparing the PCM is it can be used as for stationary as for 

non stationary problem (so called “tau-variation method” TVM [3]). Thus, the AA is the fastest 

algorithm. Its efficiency can be 3-4 orders higher comparing with PIC and PCM models. Another 

advantage is the accuracy of AA simulations should be 3-4 orders higher because of analytical 

representation of aberration expansions onto initial small parameters of emission or injection of 

particles. The PRM is just a modification of AA model, when the whole emitter surface is divided onto 

N sub domains to keep the accuracy of aberration expansions in case of wide beams. Typical values for 

N are 1÷7. 

 

Figure 1 and Figure 2 demonstrate the efficiency of different models for simulation of the same diode 

klystron gun with parameters I = 263 A, U = 500 kV. To reach the same accuracy of modeling the PCM 

model used 5 trajectories, 6 iterations on space charge, but PIC model used 3500 macro particles, and 

1200 time steps. The difference in CPU-time is an order of magnitude. 
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Figure 1. PCM+BEM nodels. CPU-time = 5 

min 

Figure 2. PIC+FDM models. CPU-time = 65 

min. 

 

Principal Ray method 

Suggested numerical model is a composition of BEM for the field evaluation and PRM for the trajectory 

analysis. The BEM intensive uses the analytical technique [4] to evaluate the integrals over the surface 

and volume elements formed in discretization of the integral representation for scalar potential φ of 

electric field 
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where  r  - is an observation point, ε0  - is a vacuum permittivity, σ – is surface charge density , but ρ – is 

space charge density. The Green’s function G=1/R, where R – is a distance between an observation 

point and source points s and r . This numerical model was successive used in simulation of X-band 

sheet-beam klystron [5]. 

 

Integral representation (1) has an important advantage in aberration approach for the electron optic 

problems. It takes a possibility to evaluate the arbitrary-order derivatives with no accuracy loss as G is 

an analytical function. 

 

The principal ray method uses the expansion on time variable to represent the off-axis trajectories. We 

assume the beam axis is curvilinear one in general case. The motion equation of charged particle with 

the mass m and charge e in curvilinear coordinate system can be written in the form 
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where  r – is a Cartesian coordinate, τ – is a time-of-flight, U – is an electrostatic potential, v – is a 

velocity of particle, B – is a magnetic induction, g – is a metric tensor, and Greek indices α, β, γ accept 

the values x, y, z. 

 

The 3
rd

 order expansion on an arbitrary small parameter μ has a form 
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 (3) 

Here 0 - is a value of small parameter at the basic trajectory (beam axis) with zero initial velocity, 

upper indices i,j,k = 1,…,n, where n – is a total number of small parameters. The partial derivatives are 
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the aberration coefficients. The sense of small parameters is determined by the emission or injection 

initial conditions. They can be the components of off-axis distance, initial angles or energy, and start 

time of the particles. The equations for the aberration coefficients can be obtained with substitution of 

the expansion (3) to the motion equation (2). Thus, we should integrate numerically small set of 

equations: the motion equation and a set of variation equations for the aberration coefficients instead 

integration of huge number of motion equation for PCM model. This approach can drastically reduce the 

CPU-time of simulation (5-6 orders of magnitude), and keep the precision accuracy of computations. It 

was realized in the code “OPTICS-3” [6]. Figure 3 shows the trajectories for the night-vision device 

consists of the photo cathode, anode, the gap between them, screen, and external magnetic field excited 

with round solenoid. Next Figure 4 shows some 3
rd

-order aberration coefficients as the functions of z-

coordinate: B – spherical aberration, E – distortion, P – chromatic, Q – chromatic-position. The CPU-

time for that simulation was about 2 minutes. 

 

  

Figure 3. Trajectories in electron optical 

converter. 

Figure 4. Some aberration coefficients. 

 

An example of modeling for diode sheet-beam gun of X-band SLAC klystron with using the PCM 

model [7,8] is presented at Figure 5. CPU-time for that simulation was more than 1 hour. These two 

examples convincing demonstrate the comparative efficiency of different numerical models. 

 
Figure 5. Klystron gun simulation with using BEM for the field evaluation, and PCM for the 

trajectory analysis. 
 

Analytical evaluation the integrals over the triangle surface elements 

The integrals for electrostatic potential with linear distribution of charge density over the triangle were 

evaluated by E. Okon and R. Harrington [9] 
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The formulas derived by authors are regular. Unfortunately, authors did not provide the expressions for 

the field gradients. They include the singularities in the vicinity of vertices and edges of triangle. Some 

of these singularities are artificial ones because they are annulated for pairs of triangles connected 

smoothly. The others singularities were analyzed and regularized accurately by V. Ivanov [5], [7]. 

 

Evaluation the integrals over the volume elements. 

Let us consider the non-uniform parallelepiped mesh in Cartesian coordinates }{}{}{ kji zyx   with 

linear approximation for the space charge 
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In order to evaluate the potential 
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we need four moments of space charge 
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where .)()()( 2222 zzyyxxR  The other integrals are obtained by cyclic change of variables 

x,y,z. 
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Similar technique was used by V. Ivanov [10] for 2D linear approximation of space charge in Cartesian 

and cylindrical in 1989. Three-dimensional case for piecewise-constant approximation was studied by 

J.Quang et al. [9].  
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In order to get the field gradient we should differentiate the integrals (7). By this way. For example, for 

the component Ez  we need the following integrals 
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The other integrals are obtained by cyclic change of variables x,y,z. We should pay special attention for 

the singularity problem. Charged cube has singularities in the vicinity of vertices and edges. For linear 

and higher order approximations the singularities for inner vertices and edges are annulated, but they 

exist for outer boundary points and edges. Fortunately, the space charge density tends to zero on the 

beam envelope for high-order approximation, so the singularities are disappear. But singularity problem 

remains for piece-wise constant approximation, which creates a problem in its use for the electron optic 

problems. Detail analysis of approximation errors and convergence were done at [4]. 

 

In general case the space charge approximation with cubic elements can give significant errors for high-

compression beams. Suggested analytical technique can be generalized for general curvilinear mesh 

fitted with the beam envelope, when we can construct the continuous one-to-one map T for curvilinear 

coordinates (u,v,w) to Cartesian ones (x,y,z). This case the integration over curvilinear cells will be 

reduced to evaluation the integrals (6)-(9) with the replacement dwdvduwvu ),,(  to 

,),,( dzdydxJzyx where J – is the Jacobean for the coordinate mapping Т.  
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