ON A METRIC THAT CHARACTERIZES DIMENSION

J. DE GROOT

1. Introduction. Sometimes it is possible to characterize topological properties of a metrizable space M by claiming that a certain (topology-preserving) metric ρ can be introduced in M. For example:

- (α) A metrizable space C is compact, that is, is a compactum, if and only if C is totally bounded¹ in every metric.
- (β) A metrizable space M is separable, if and only if there exists a totally bounded metric in M.
- (γ) A (non-empty) metrizable space M is 0-dimensional (dim M = 0), if and only if there exists a metric ρ in M which satisfies—instead of the triangle axiom—the stronger axiom

1.1
$$\rho(y, z) \leq \max \left[\rho(x, y), \rho(x, z)\right],$$

(that is, every "triangle" in this metric has two equal "sides" and the third "side" is smaller than or equal to the other ones) (see 2, 3).

Nagata (7) gave a characterization of a metrizable space M of dim $\leq n$ (for every non-negative integer n) by means of a certain metric, which he showed to be equivalent with (γ) in the case n = 0. However, this characterization (see §2) is rather complicated. In this note we give another generalization of (γ) which gives a simplification of Nagata's result for arbitrary dimension n, but only for the case of *separable* metrizable spaces, i.e., metrizable spaces with a countable base.

THEOREM. A topological space M is a separable metrizable space of dimension $\leq n$ if and only if one can introduce a totally bounded metric ρ in M satisfying the following condition: for every n + 3 points

$$x, y_1, y_2, y_3, \ldots, y_k, \ldots, y_{n+2}$$

in M there is a triplet of indices i, j, k, such that

1.2
$$\rho(y_i, y_j) \leqslant \rho(x, y_k), \qquad (i \neq j).$$

COROLLARY. A compactum has dimension $\leq n$, if and only if one can introduce a metric ρ , such that for every n + 3 points $x, y_k (k = 1, 2, ..., n + 2)$ the relation 1.2 holds for suitable i, j, k.

Received May 28, 1957.

¹ ϵ -net: A finite number of points p such that the system of ϵ -neighbourhoods cover the space. Totally bounded: there is an ϵ -net for every $\epsilon > 0$. See (1) in general for our terminology. See (4) for dimension theory in separable metrizable spaces and (5; 6) for dimension theory in metrizable spaces.

J. DE GROOT

It has to be observed that condition 1.2 is essentially weaker than the condition which is satisfied by Nagata's metric (7) (see also § 2). Indeed, the ordinary metric of a segment of real numbers is a metric ρ with 1.2 (for the case n = 2), but does not satisfy Nagata's condition.

2. Proof of Theorem. Suppose M is a separable metric space with dim $M \leq n$. Since M is separable, we can embed M, according to a theorem of Hurewicz, in a compactum \overline{M} , such that M is dense in \overline{M} , and

 $\dim M = \dim \overline{M} \leqslant n.$

We introduce in \overline{M} the metric ρ of Nagata (7), which has the following characterizing property: for every $\epsilon > 0$ and for every point $x \in \overline{M}$ the relations²

2.1
$$\rho(U_{\frac{1}{2}\epsilon}(x), y_k) < \epsilon \qquad (k = 1, 2, \dots, n+2),$$

where $U_{\delta}(x)$ is the set of all points p with $\rho(x, p) < \delta$, imply

2.2 $\min_{i\neq j} \rho(y_i, y_j) < \epsilon.$

It is easy to see that this metric ρ in particular satisfies our condition 1.2. Indeed, being given the points x, y_k (k = 1, 2, ..., n + 2), consider all ϵ with

$$\epsilon > \mu = \max_k \rho(x, y_k).$$

For these ϵ , 2.1 obviously holds, so 2.2 holds. Since $\inf \epsilon = \mu$, we have

$$\min_{i\neq j} \rho(y_i, y_j) \leqslant \mu \qquad \qquad \text{q.e.d.}$$

Moreover, the metric ρ in the compact space \overline{M} is necessarily totally bounded. Hence the metric ρ of $M \subset \overline{M}$ is also totally bounded and satisfies 1.2, which we had to prove.

Conversely, let *M* have a totally bounded metric satisfying 1.2. *M* is clearly separable. We shall now prove that dim $M \leq n$.

M can be extended, just as every metric space, to a complete metric space \overline{M} in which M is dense. Every sequence in M has a Cauchy sequence (fundamental sequence) as subsequence, since M is totally bounded under ρ . This Cauchy sequence converges in the complete \overline{M} . Hence \overline{M} is compact and totally bounded under ρ , where ρ now denotes the natural extension of ρ (on M) to \overline{M} . Property 1.2 also holds in this extended metric ρ on \overline{M} . Indeed, suppose it does not hold for a set of certain points $\overline{x}, \overline{y}_k$. Then, since the distance function is continuous, we can determine small neighbourhoods of these points such that 1.2 does not hold for any set of points x, y_k chosen in these neighbourhoods respectively. We can, however, choose these points x, y_k from M, which leads to a contradiction. We shall now prove dim $\overline{M} \leq n$, from which follows dim $M \leq n$.

²The distance of the sets A and B is denoted by $\rho(A, B)$.

Consider an arbitrary finite open covering of \overline{M} . We have to find—according to the Lebesgue definition of dimension—a refinement of this covering of order $\leq n$ (i.e. each point of the refined covering is contained in at most n + 1 elements of it).

Let $\sigma = 2\epsilon$ be a Lebesgue number of the given finite covering of \overline{M} . Choose a maximal set p_1, p_2, \ldots, p_s in \overline{M} such that $\rho(p_i, p_j) \ge \epsilon$ for all i, j with $i \ne j$. This set of points $\{p_i\}$ is an ϵ -net of \overline{M} and the covering

2.3
$$\{U_{\epsilon}(p_i)\}$$
 $(i = 1, 2, \dots, s)$

is a refinement of the given covering. If a point $x \in \overline{M}$ belongs to at least n+2 elements of 2.3, we have $\rho(x, p_i) < \epsilon$ for n+2 different points p_i . Hence, using 1.2, $\rho(p_i, p_j) < \epsilon$ for suitable i, j with $i \neq j$, which is contradictory to the definition of $\{p_i\}$. Hence, the order of 2.3 is $\leq n$, so dim $\overline{M} \leq n$.

3. Questions. The corollary admits an immediate generalization to semicompact³ metrizable spaces, since we can apply in this case the sum theorem of dimension theory (a metric space which is the countable sum of closed subsets of dimension $\leq n$, has dimension $\leq n$), while the proof in the other direction is covered by Nagata's theorem, as mentioned in §2. So, our characterization by means of a metric satisfying 1.2 includes for example *n*-dimensional Euclidean spaces as well.

However, it remains uncertain whether in separable metric spaces M the property dim $\leq n$ can be characterized by a metric satisfying 1.2 only. There might be a possibility that the condition of total boundedness can be omitted in this case, if the condition 1.2 is strengthened in the following way: there is a metric ρ in M which satisfies 1.2 and also, if $\rho(x,y_1) = \rho(x,y_2) = \ldots = \rho(x,y_{n+2})$,

3.1
$$\rho(y_i, y_j) < \rho(x, y_k)$$
, for suitable i, j, k $(i \neq j)$.

However, does there exist such a metric? For n = 0, the answer is in the affirmative (4, §2).

The problem of generalizing the Theorem to metric spaces in general remains unanswered too.

⁸A space is semicompact if it is the sum of a countable number of compact spaces. Every locally compact, separable, metrizable space is semicompact, since such a space can be compactified by one point.

J. DE GROOT

References

- 1. P. Alexandrov and H. Hopf, Topologie (Berlin 1935).
- J. de Groot and H. de Vries, A note on non-archimedean metrizations, Indagationes Math., 17 (1955), 222-224.
- J. de Groot, Non-archimedian metrics in topology, Proc. Amer. Math. Soc., 7 (1956), 948– 953.
- 4. W. Hurewicz, H. Wallman, Dimension Theory (Princeton 1941).
- 5. M. Katětov, On the dimension of non-separable spaces I, Tsjechoslov. Mat. Zj., 2 (77) (1952), 333-368.
- K. Morita, Normal families and dimension theory for metric spaces, Math. Ann., 128 (1954), 350–362.
- J. Nagata, On a relation between dimension and metrization, Proc. Jap. Ac., 32 (1956), 237– 240.

Mathematisch Instituut University of Amsterdam