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1. I n t r o d u c t i o n . Sometimes it is possible to characterize topological 

properties of a metrizable space M by claiming t ha t a certain (topology-

preserving) metric p can be introduced in M. For example: 

(a) A metrizable space C is compact , t ha t is, is a compactum, if and only if 

C is total ly bounded 1 in every metric. 

(£) A metrizable space M is separable, if and only if there exists a total ly 

bounded metric in M. 

(7) A (non-empty) metrizable space M is O-dimensional (dim M = 0), 
if and only if there exists a metric p in M which satisfies—instead of the 
triangle axiom—the stronger axiom 

1.1 p (y, z) < max [p(x, y), p(x} z)], 

( tha t is, every " t r iangle" in this metric has two equal "s ides" and the 
third "s ide" is smaller than or equal to the other ones) (see 2, 3). 

N a g a t a (7) gave a characterization of a metrizable space M of dim < n 
(for every non-negative integer n) by means of a certain metric, which he 
showed to be equivalent with (7) in the case n = 0. However, this characteriz
ation (see §2) is ra ther complicated. In this note we give another generalization 
of (7) which gives a simplification of Naga ta ' s result for arbi t rary dimension 
n, bu t only for the case of separable metrizable spaces, i.e., metrizable spaces 
with a countable base. 

T H E O R E M . A topological space M is a separable metrizable space of dimension 
< n if and only if one can introduce a totally bounded metric p in M satisfying 
the following condition: for every n + 3 points 

x, yu y* 3>3,.. • yk, • • . yn+2 

in M there is a triplet of indices i, j , k, such that 

1.2 p(yu yf) < p(x, yk), (i ^ j). 

COROLLARY. A compactum has dimension < n, if and only if one can intro
duce a metric p, such that for every n + 3 points x, yk(k — 1,2, . . . , n + 2) the 
relation 1.2 holds for suitable i, j , k. 

Received May 28, 1957. 
^-net : A finite number of points p such that the system of e-neighbourhoods cover the space. 

Totally bounded: there is an e-net for every e > 0. See (1) in general for our terminology. 
See (4) for dimension theory in separable metrizable spaces and (5; 6) for dimension theory 
in metrizable spaces. 
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It has to be observed that condition 1.2 is essentially weaker than the 
condition which is satisfied by Nagata's metric (7) (see also § 2). Indeed, the 
ordinary metric of a segment of real numbers is a metric p with 1.2 (for the 
case n = 2), but does not satisfy Nagata's condition. 

2. Proof of Theorem. Suppose M is a separable metric space with 
dim M < n. Since M is separable, we can embed M, according to a theorem 
of Hurewicz, in a compactum M, such that M is dense in M, and 

dim M = dim il? < n. 

We introduce in M the metric p of Nagata (7), which has the following 
characterizing property: for every e > 0 and for every point x 6 M the 
relations2 

2.1 p(Uhe(x),yk) < e (k = 1,2, . . . » + 2), 

where UÔ(X) is the set of all points p with p(x, p) < <5, imply 

2.2 rn'm^jpiy^yj) < e. 

It is easy to see that this metric p in particular satisfies our condition 1.2. 
Indeed, being given the points x, yk (k = 1,2, . . . n + 2), consider all e 
with 

e > M = max/fcp(x, ^ ) . 

For these e, 2.1 obviously holds, so 2.2 holds. 
Since inf e = fx, we have 

m i n ^ p ( y f , ^ ) < /x q.e.d. 

Moreover, the metric p in the compact space M is necessarily totally 
bounded. Hence the metric p of M C M is also totally bounded and satisfies 
1.2, which we had to prove. 

Conversely, let M have a totally bounded metric satisfying 1.2. M is clearly 
separable. We shall now prove that dim M < n. 

M can be extended, just as every metric space, to a complete metric space 
M in which M is dense. Every sequence in M has a Cauchy sequence (funda
mental sequence) as subsequence, since M is totally bounded under p. This 
Cauchy sequence converges in the complete M. Hence M is compact and 
totally bounded under p, where p now denotes the natural extension of p (on 
M) to M. Property 1.2 also holds in this extended metric p on M. Indeed, 
suppose it does not hold for a set of certain points x, yk. Then, since the 
distance function is continuous, we can determine small neighbourhoods of 
these points such that 1.2 does not hold for any set of points x, yk chosen in 
these neighbourhoods respectively. We can, however, choose these points x, yk 

from M, which leads to a contradiction. We shall now prove dim M < n> 
from which follows dim M < n. 

2The distance of the sets A and B is denoted by p(A, B). 
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Consider an arb i t ra ry finite open covering of M. W e have to find—according 
to the Lebesgue definition of dimension—a refinement of this covering of 
order < n (i.e. each point of the refined covering is contained in a t most 
n + 1 elements of i t ) . 

Let a = 2e be a Lebesgue number of the given finite covering of M. Choose 
a maximal set pi, p2, . . . , ps in M such t h a t p{pup3) > e for all i, j with 
i 9e j . This set of points {pi} is an e-net of M and the covering 

2.3 \U.(p,)} ( * = l , 2 , . . . s ) 

is a refinement of the given covering. If a point x £ M belongs to a t least 
n + 2 elements of 2.3, we have p(x,pt) < e for w + 2 different points />*. Hence, 
using 1.2, p(£i, £j) < e for suitable i, j with i ^ j , which is contradictory to 
the definition of {pi}. Hence, the order of 2.3 is < n, so dim M < n. 

3. Q u e s t i o n s , ^ h e corollary admits an immediate generalization to semi-
compact 3 metrizable spaces, since we can apply in this case the sum theorem 
of dimension theory (a metric space which is the countable sum of closed 
subsets of dimension < n, has dimension < n), while the proof in the other 
direction is covered by Naga ta ' s theorem, as mentioned in §2. So, our charac
terization by means of a metric satisfying 1.2 includes for example w-dimen-
sional Euclidean spaces as well. 

However, it remains uncertain whether in separable metric spaces M the 
proper ty dim < n can be characterized by a metric satisfying 1.2 only. There 
might be a possibility t h a t the condition of total boundedness can be omit ted 
in this case, if the condition 1.2 is s trengthened in the following way : there 
is a metric p in M which satisfies 1.2 and also, if p(x,yi) = p(x,y2) = . . . 
= p(x,yn+2), 
3.1 p(yu jj) < p(x, yk), for suitable i,j, k (i ^ j). 

However, does there exist such a metric? For n = 0, the answer is in the 
affirmative (4, §2). 

T h e problem of generalizing the Theorem to metric spaces in general 

remains unanswered too. 

3A space is semicompact if it is the sum of a countable number of compact spaces. Every 
locally compact, separable, metrizable space is semicompact, since such a space can be com-
pactified by one point. 
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