K. Hirata Nagoya Math. J. Vol. 35 (1969), 31-45

SEPARABLE EXTENSIONS AND CENTRALIZERS OF RINGS

KAZUHIKO HIRATA

We have introduced in [9] a type of separable extensions of a ring as a generalization of the notion of central separable algebras. Unfortunately it was unsuitable to call such extensions 'central' as Sugano pointed out in [15] (Example below Theorem 1.1). Some additional properties of such extensions were given in [15]. Especially Propositions 1. 3 and 1. 4 in [15] are interesting and suggested us to consider the commutor theory of separable extensions. Let Λ be a ring and Γ a subring of Λ . When $\Lambda \otimes_{\Gamma} \Lambda$ is a direct summand of a finite direct sum of Λ as a two-sided Λ -module we shall denote it by ${}_{\Lambda}\Lambda \otimes {}_{\Gamma}\Lambda_{\Lambda} < \oplus {}_{\Lambda}(\Lambda \oplus \cdots \oplus \Lambda)_{\Lambda}$ and call Λ an *H*-separable extension of Γ (cf. [9] and [15]). Let \varDelta be a subring of Λ containing the center C of A and let Γ be the centralizer of Δ in $\Lambda, \Gamma = V_{\Lambda}(\Delta) = \Lambda^{4} =$ $\{\lambda \in \Lambda \mid \delta \lambda = \lambda \delta, \ \delta \in \Delta\}.$ If ${}_{\Lambda}\Lambda \otimes_{c} \Delta {}_{\Delta} < \oplus {}_{\Lambda}(\Lambda \oplus \cdots \oplus \Lambda)_{\Delta}$ and Δ is C-finitely generated and projective then Λ is an H-separable extension of Γ and Λ is right Γ -finitely generated and projective. Conversely for such an *H*-separable extension Λ over Γ , if we set $\Lambda' = V_{\Lambda}(\Gamma)$, then ${}_{\Lambda}\Lambda \otimes_{c} {}_{\Lambda'} {}_{\Lambda'} {}_{\prec'} {}_{\prec \oplus} {}_{\Lambda}(\Lambda \oplus \cdots)$ $(\oplus \Lambda)_{A'}$ and Δ' is C-finitely generated and projective. In this way we can give a one to one correspondence between Γ 's and \varDelta 's. A more general situation than H-separable extensions is possible and is symmetric to each other. Let B and Γ be subrings of Λ such that $B \supset \Gamma$. Let $\Lambda = V_{\Lambda}(\Gamma)$ and $D = V_A(B)$. If ${}_BB \otimes_{\Gamma} \Lambda_A < \oplus {}_B(A \oplus \cdots \oplus A)_A$ and B is right Γ -finitely generated and projective then $_{A}A \otimes _{D}\Delta_{A} < \oplus_{A}(A \oplus \cdots \oplus A)_{A}$ and Δ is left Dfinitly generated and projective. Same considerations are possible for Hseparable subextensions. These are treated in §2, 3 and 4. §1 is a continuation of §1 in [9] and the results are applied to the following sections. In \$5 we give some notes on two-sided modules. It is well known that any finitly generated projective module over a commutative ring is a generator (completely faithful) if it is faithful. Let M be a two-sided module over a

Received May 6, 1968

ring R and assume that ${}_{R}M_{R} < \bigoplus_{R} (R \oplus \cdots \oplus R)_{R}$. (It is natural to say such a module 'centrally projective'.) Set $M^{R} = \{m \in M | rm = mr, r \in R\}$. Then if M^{R} is C-faithful, where C is the center of R, then ${}_{R}R_{R} < \bigoplus_{R} (M \oplus \cdots \oplus M)_{R}$.

Throughout this paper we assume that all rings have a unit element, subrings contain this element and modules are unitary.

§1. Continuation of §1 in [9]

Let R be a ring and let A and B be left R-modules respectively. Put $S = \operatorname{End}_{\mathbb{R}}(A)$ and $T = \operatorname{End}_{\mathbb{R}}(B)$. Following to [9] we note that S and T-operate on the right of A and B respectively. Then $\operatorname{Hom}_{\mathbb{R}}(A, B)$ is a left S- and right T-module, and $\operatorname{Hom}_{\mathbb{R}}(B, A)$ is a left T- and right S-module.

THEOREM 1.1. For R-modules A and B the following conditions are equivalent.

(1) $_{R}B < \oplus _{R}(A \oplus \cdots \oplus A).$

(2) $\operatorname{Hom}_R(B, A)$ is S-finitely generated projective and B is isomorphic to $\operatorname{Hom}_S(\operatorname{Hom}_R(B, A), A)$ as an R-module.

(3) $\operatorname{Hom}_{\mathbb{R}}(B, A) \otimes_{S} \operatorname{Hom}_{\mathbb{R}}(A, M) \cong \operatorname{Hom}_{\mathbb{R}}(B, M)$ for any left R-module M.

Proof. By (1. 2) in [9], (1) implies (2). Assume (2). Then since $\operatorname{Hom}_R(B, A)$ is S-finitely generated and projective $\operatorname{Hom}_R(B, A) \otimes_S \operatorname{Hom}_R(A, M) \cong \operatorname{Hom}_R(\operatorname{Hom}_S(\operatorname{Hom}_R(B, A), A), M)$ and by the second condition of (2) the last is isomorphic to $\operatorname{Hom}_R(B, M)$. If we put M = B then (3) implies (1) by (1. 1) in [9].

PROPOSITION 1.2. Assume that $_{R}B < \bigoplus_{R}(A \oplus \cdots \oplus A)$. If A is an S-generator so is B as a T-module.

Proof. By (1. 2) in [9] *B* is isomorphic to $A \otimes_S \operatorname{Hom}_R(A, B)$ as a right *T*-module. Since $S_S < \oplus (A \oplus \cdots \oplus A)_S$ tensoring with $\operatorname{Hom}_R(A, B)$ over *S* we have $\operatorname{Hom}_R(A, B)_T < \oplus (A \otimes_S \operatorname{Hom}_R(A, B) \oplus \cdots \oplus A \otimes_S \operatorname{Hom}_R(A, B))_T \cong (B \oplus \cdots \oplus B)_T$. As $\operatorname{Hom}_R(A, B)$ is a *T*-generator so is *B*.

PROPOSITION 1.3. Assume that both $_{R}B < \oplus _{R}(A \oplus \cdots \oplus A)$ and $_{R}A < \oplus _{R}(B \oplus \cdots \oplus B)$. Then

- (1) $\operatorname{End}_{T}(B) \cong \operatorname{End}_{S}(A)$ as rings.
- (2) A is S-finitely generated projective if and only if B is so as a T-module.
- (3) A is an S-generator if and only if B is so as a T-module.

Proof. (1) By (1. 2) in [9] we have both $B_T \cong A \otimes_S \operatorname{Hom}_R(A, B)_T$ and $A_S \cong \operatorname{Hom}_T(\operatorname{Hom}_R(A, B), B)_S$. Then we have $\operatorname{Hom}_T(B, B) \cong \operatorname{Hom}_T(A \otimes_S \operatorname{Hom}_R(A, B), B) \cong \operatorname{Hom}_S(A, \operatorname{Hom}_T(\operatorname{Hom}_R(A, B), B)) \cong \operatorname{Hom}_S(A, A)$.

(2) Assume that A is S-finitely generated and projective. So $A_S < \bigoplus$ $(S \oplus \cdots \oplus S)_S$. Tensoring with $\operatorname{Hom}_R(A, B)$ over S we have $B_T \cong A \otimes_S$ $\operatorname{Hom}_R(A, B)_T < \bigoplus (\operatorname{Hom}_R(A, B) \oplus \cdots \oplus \operatorname{Hom}_R(A, B))_T$. Since $\operatorname{Hom}_R(A, B)$ is T-finitely generated and projective by (1.5) in [9] so is B. The converse is similar. (3) was proved in (1.2) already.

Remark 1. When the assumptions in (1.3) are fulfiled the category of left (right) S-modules is equivalent to the category of left (right) T-modules ((1.5) in [9]). Therefore Proposition 1.3 is an obvious fact. Furthermore the property 'direct summand' is preserved in the above equivalences. We shall use this fact in §2.

Remark 2. The isomorphism $\operatorname{End}_{r}(B) \cong \operatorname{End}_{s}(A)$ is given as follows. Let $v \in \operatorname{End}_{s}(A)$. Then corresponding $u \in \operatorname{End}_{r}(B)$ is given by the composition $B \cong A \otimes_{s} \operatorname{Hom}_{R}(A, B) \xrightarrow{v \otimes 1} A \otimes_{s} \operatorname{Hom}_{R}(A, B) \cong B$, and so, the isomorphisms stated in (1. 2) in [9] are all $\operatorname{End}_{r}(B) \cong \operatorname{End}_{s}(A)$ -admissible.

§2. Pairs of subrings and their centralizers

Let Λ be a ring and let B and Γ be subrings of Λ such that $B \supset \Gamma$. We consider the case that ${}_{B}B \otimes_{\Gamma}\Lambda_{\Lambda} < \bigoplus {}_{B}(\Lambda \oplus \cdots \oplus \Lambda)_{\Lambda}$. Then $\operatorname{End}_{(B,\Lambda)}(\Lambda,\Lambda)$, left B- and right Λ -endomorphisms of Λ , is isomorphic to the left multiplication of $D = V_{\Lambda}(B) = \Lambda^{B}$, the centralizer of B in Λ , and $\operatorname{Hom}_{(B,\Lambda)}(B \otimes_{\Gamma}\Lambda, \Lambda)$ is isomorphic to $\Lambda = V_{\Lambda}(\Gamma) = \Lambda^{\Gamma}$, the centralizer of Γ in Λ . We have, by (1.2) in [9], $B \otimes_{\Gamma}\Lambda \cong \operatorname{Hom}_{D}({}_{D}\Lambda, {}_{D}\Lambda)$, $b \otimes \lambda \longrightarrow (\delta \longrightarrow b\delta\lambda)$, as left B- and right Λ -modules and Λ is left D-finitely generated and projective. Furthermore we have following isomorphisms.

 $A \otimes_{D} \Delta \cong \operatorname{Hom}_{A}(A_{A}, A_{A}) \otimes_{D} \Delta \cong \operatorname{Hom}_{A}(\operatorname{Hom}_{D}({}_{D}\Delta, {}_{D}A)_{A}, A_{A}) \cong \operatorname{Hom}_{A}(B \otimes_{\Gamma}A_{A}, A_{A}) \cong \operatorname{Hom}_{\Gamma}(B_{\Gamma}, \operatorname{Hom}_{A}(A_{A}, A_{A})) \cong \operatorname{Hom}_{\Gamma}(B_{\Gamma}, A_{\Gamma}).$ The isomorphism of $A \otimes_{D}\Delta$ to $\operatorname{Hom}_{\Gamma}(B_{\Gamma}, A_{\Gamma})$ is given by $\lambda \otimes \delta \longrightarrow (b \longrightarrow \lambda b\delta)$. Therefore this is left A- and right Δ -admissible. If B is right Γ -finitely generated and projective, then ${}_{A}\operatorname{Hom}_{\Gamma}(B_{\Gamma}, A_{\Gamma})_{A} < \bigoplus {}_{A}\operatorname{Hom}_{\Gamma}((\Gamma \oplus \cdots \oplus \Gamma)_{\Gamma}, A_{\Gamma})_{A} \cong {}_{A}(\operatorname{Hom}_{\Gamma}(\Gamma_{\Gamma}, A_{\Gamma}) \oplus \cdots \oplus \Phi)_{A}.$ We have

PROPOSITION 2.1. Let Λ be a ring and let B and Γ be subrings of Λ such

KAZUHIKO HIRATA

that $B \supset \Gamma$. If ${}_{B}B \otimes_{\Gamma}\Lambda_{A} < \oplus {}_{B}(\Lambda \oplus \cdots \oplus \Lambda)_{A}$ then ${}_{B}B \otimes_{\Gamma}\Lambda_{A} \cong {}_{B}\operatorname{Hom}_{D}({}_{D}\mathcal{A}, {}_{D}\Lambda)_{A}$, ${}_{A}\Lambda \otimes_{D} \mathcal{A}_{A} \cong {}_{A}\operatorname{Hom}_{\Gamma}(B_{\Gamma}, \Lambda_{\Gamma})_{A}$ and Δ is left D-finitely generated and projective. If, further, B is right Γ -finitely generated and projective then ${}_{A}\Lambda \otimes_{D}\mathcal{A}_{A} < \oplus {}_{A}(\Lambda \oplus \cdots \oplus \Lambda)_{A}$.

We shall call a subring of a ring Λ be closed if it coincides with its second centralizer in Λ . From the above proposition we have

THEOREM 2.2. There is a one to one correspondence between the set of pairs (B,Γ) of closed subrings of a ring Λ such that $B \supset \Gamma$, $_{B}B \otimes_{\Gamma} \Lambda_{\Lambda} < \bigoplus_{B} (\Lambda \oplus \cdots \oplus \Lambda)_{\Lambda}$ and B is right Γ -finitely generated projective and the set of pairs (Λ, D) of closed subrings of Λ such that $\Delta \supset D$, $_{\Lambda}\Lambda \otimes_{D}\Delta_{\Delta} < \bigoplus_{\Lambda} (\Lambda \oplus \cdots \oplus \Lambda)_{\Lambda}$ and Δ is left D-finitely generated projective.

Now the endomorphism ring of $B \otimes_{\Gamma} \Lambda$ as a (B, Λ) -module is isomorphic to $(B \otimes_{\Gamma} \Lambda)^{\Gamma} = \{\xi \in B \otimes_{\Gamma} \Lambda \mid \tau \xi = \xi \tau, \tau \in \Gamma\}$ and, as is easily seen, it is also isomorphic to $\operatorname{Hom}_{D}({}_{D} \Lambda, {}_{D} \Lambda)$ if ${}_{B}B \otimes_{\Gamma} \Lambda_{\Lambda} < \bigoplus_{B}(\Lambda \oplus \cdots \oplus \Lambda)_{\Lambda}$, where $\Lambda = V_{\Lambda}(\Gamma)$ and $D = V_{\Lambda}(B)$. Contrary to \$1 we consider $B \otimes_{\Gamma} \Lambda$ as a left $(B \otimes_{\Gamma} \Lambda)^{\Gamma}$ -module.

PROPOSITION 2.3. Let $B \supset \Gamma$ be subrings of a ring Λ such that ${}_{B}B \otimes_{\Gamma} \Lambda_{\Lambda}$ $< \bigoplus_{B} (\Lambda \oplus \cdots \oplus \Lambda)_{\Lambda}$ and let $\Delta = V_{\Lambda}(\Gamma)$ and $D = V_{\Lambda}(B)$. Then the following hold.

(1) If $\Gamma_{\Gamma} < \oplus B_{\Gamma}$ then the contraction map $\varphi_{\Delta} : \Lambda \otimes_{D} \Delta \longrightarrow \Lambda$, $\varphi_{\Delta}(\lambda \otimes \delta) = \lambda \delta$, splits as a (Λ, Δ) -homomorphism.

(2) If the contraction map $\varphi_B: B \otimes_{\Gamma} \Lambda \longrightarrow \Lambda$, $\varphi_B(b \otimes \lambda) = b\lambda$, splits as a (B, Λ) -homomorphism then ${}_D D < \bigoplus {}_D \Delta$.

(3) Let C be the center of Λ and define the map $\eta: \Lambda \otimes_{\Gamma} \Lambda \longrightarrow \operatorname{Hom}_{e}(\mathcal{A}, \Lambda)$ by $\eta(x \otimes y)(\delta) = x \delta y$. If $B_{\Gamma} \ll \Lambda_{\Gamma}$ and η is a monomorphism, or if B is right Γ -finitely generated projective, $V_{\Lambda}(V_{\Lambda}(\Gamma)) = \Gamma$ and $\Gamma\Gamma \ll \Gamma\Lambda$, then $V_{\Lambda}(V_{\Lambda}(B)) = B$.

(4) Assume that ${}_{B}\Lambda_{A} < \oplus {}_{B}B \otimes_{\Gamma} \Lambda_{A}$. Then $(B \otimes_{\Gamma} \Lambda)^{\Gamma} < \oplus B \otimes_{\Gamma} \Lambda$ as left $(B \otimes_{\Gamma} \Lambda)^{\Gamma}$ -modules if and only if ${}_{D}\Delta < \oplus {}_{D}\Lambda$.

(5) Assume that $V_A(V_A(\Gamma)) \subset B$. (This is the case when $V_A(V_A(B)) = B$.) If $\Gamma_{\Gamma} \lt \oplus B_{\Gamma}$ or $\Gamma\Gamma \lt \oplus \Gamma A$ then $V_A(V_A(\Gamma)) = \Gamma$.

Proof. (1) Let ψ_B : Hom_{Γ}(B_{Γ} , Λ_{Γ}) $\longrightarrow \Lambda$ be the map defined by $\psi_B(f) = f(1), f \in \text{Hom}_{\Gamma}(B_{\Gamma}, \Lambda_{\Gamma})$. Then the following diagram

is commutative. If $\Gamma_{\Gamma} < \bigoplus B_{\Gamma}$, let $\pi: B \longrightarrow \Gamma$ be the projection and define $\psi'_{B}: \Lambda \longrightarrow \operatorname{Hom}_{\Gamma}(B_{\Gamma}, \Lambda_{\Gamma})$ by $\psi'_{B}(\lambda) = \lambda_{\iota} \circ \pi$ where λ_{ι} is the left multiplication of λ on B. Then ψ'_{B} is a (Λ, Δ) -homomorphism such that $\psi_{B} \circ \psi'_{B} = 1_{\Lambda}$. Therefore φ_{B} splits.

(2) By (2.1) $B \otimes_{\Gamma} \Lambda \cong \operatorname{Hom}_{D}({}_{D} \Lambda, {}_{D} \Lambda)$ and the diagram

is commutative, where $\psi_{\mathcal{A}}(g) = g(1)$, $g \in \operatorname{Hom}_{D}({}_{D}\mathcal{A}, {}_{D}\mathcal{A})$. If $\varphi_{B} \colon B \otimes_{\Gamma} \mathcal{A} \longrightarrow \mathcal{A}$ splits as a (B, Λ) -homomorphism, then there exists $\psi'_{\mathcal{A}} \colon \mathcal{A} \longrightarrow \operatorname{Hom}_{D}({}_{D}\mathcal{A}, {}_{D}\mathcal{A})$ such that $\psi_{\mathcal{A}} \circ \psi'_{\mathcal{A}} = 1_{\mathcal{A}}$. If we let $\psi'_{\mathcal{A}}(1) = \rho$, then $b \circ \rho = \rho \circ b$, $b \in B$ and $\rho(1) = 1$. From this D is a left D-direct summand of \mathcal{A} . We note that $\varphi_{B} \colon B \otimes_{\Gamma} \mathcal{A} \longrightarrow \mathcal{A}$ splits if and only if there exists an element $\sum b_{i} \otimes \lambda_{i} \in B \otimes_{\Gamma} \mathcal{A}$ such that $\sum bb_{i} \otimes \lambda_{i} = \sum b_{i} \otimes \lambda_{i} b$ for $b \in B$ and $\sum b_{i}\lambda_{i} = 1$. Then the projection from \mathcal{A} to D is given by $\delta \longrightarrow \sum b_{i}\delta\lambda_{i}$, $\delta \in \mathcal{A}$.

(3) Assume that $B_{\Gamma} \ll A_{\Gamma}$ and $\eta: \Lambda \otimes_{\Gamma} \Lambda \longrightarrow \operatorname{Hom}_{c}(\mathcal{A}, \Lambda)$ is monomorphic. Let x be in $V_{A}(V_{A}(B)) = V_{A}(D)$ and consider the following commutative diagram

$$0 \longrightarrow A \otimes_{\Gamma} A \xrightarrow{\eta} \operatorname{Hom}_{\mathcal{C}}(\mathcal{A}, A)$$

$$\uparrow \qquad \uparrow$$

$$B \otimes_{\Gamma} A \xrightarrow{\cong} \operatorname{Hom}_{\mathcal{D}}({}_{\mathcal{D}}\mathcal{A}, {}_{D}A)$$

$$\uparrow \qquad \uparrow$$

$$0 \qquad 0$$

Then since $\eta(x \otimes 1)$ may consider as is in $\operatorname{Hom}_{D}({}_{D}\mathcal{A}, {}_{D}\Lambda)$ we have $x \otimes 1 \in B \otimes_{\Gamma}\Lambda$. Therefore $x \in B$, as $B_{\Gamma} < \oplus \Lambda_{\Gamma}$. Next we assume that B is right Γ -projective, $V_{A}(V_{A}(\Gamma)) = \Gamma$ and ${}_{\Gamma}\Gamma < \oplus {}_{\Gamma}\Lambda$. Since B is right Γ -finitely generated and projective, ${}_{\Lambda}\Lambda \otimes_{D} \Delta_{d} < \oplus_{\Lambda}(\Lambda \oplus \cdots \oplus \Lambda)_{d}$ by (2. 1). Therefore if we put $V_{A}(\Delta) = B'$ then $B' \otimes_{\Gamma}\Lambda \cong \operatorname{Hom}_{D}({}_{D}\Delta, {}_{D}\Lambda)$. Since $B \otimes_{\Gamma}\Lambda \cong \operatorname{Hom}_{D}({}_{D}\Delta, {}_{D}\Lambda)$, from the sequence

$$0 \longrightarrow B \longrightarrow B' \longrightarrow B'/B \longrightarrow 0$$

we have $B'/B \otimes_{\Gamma} \Lambda = 0$. As $_{\Gamma} \Gamma < \oplus _{\Gamma} \Lambda$, B'/B = 0 and B = B'.

(4) Since ${}_{B}\Lambda_{A} < \oplus {}_{B}B \otimes_{\Gamma}\Lambda_{A} < \oplus {}_{B}(\Lambda \oplus \cdots \oplus \Lambda)_{A}$ we can use Remark 1 in §1. By (1.1) in [9] we have $(B \otimes_{\Gamma}\Lambda)^{\Gamma} \cong \operatorname{Hom}_{(B,\Lambda)}(B \otimes_{\Gamma}\Lambda, B \otimes_{\Gamma}\Lambda) \cong \operatorname{Hom}_{(B,\Lambda)}(B \otimes_{\Gamma}\Lambda)$

KAZUHIKO HIRATA

 $(\Lambda, B \otimes_{\Gamma} \Lambda) \otimes_{D} \operatorname{Hom}_{(B, \Lambda)} (B \otimes_{\Gamma} \Lambda, \Lambda)$. On the other hand by (1. 2) in [9] $B \otimes_{\Gamma} \Lambda \cong \operatorname{Hom}_{(B, \Lambda)} (\Lambda, B \otimes_{\Gamma} \Lambda) \otimes_{D} \Lambda$. Here we are considering Λ and $B \otimes_{\Gamma} \Lambda$ as left D- and left $(B \otimes_{\Gamma} \Lambda)^{\Gamma}$ -modules respectively. Then $_{(B \otimes_{\Gamma} \Lambda)^{\Gamma}} (B \otimes_{\Gamma} \Lambda)^{\Gamma} < \oplus_{(B \otimes_{\Gamma} \Lambda)^{\Gamma}} B \otimes_{\Gamma} \Lambda$ means that $\operatorname{Hom}_{(B, \Lambda)} (\Lambda, B \otimes_{\Gamma} \Lambda) \otimes_{D} \operatorname{Hom}_{(B, \Lambda)} (B \otimes_{\Gamma} \Lambda, \Lambda) < \oplus_{\Gamma} \operatorname{Hom}_{(B, \Lambda)} (\Lambda, B \otimes_{\Gamma} \Lambda) \otimes_{D} \Lambda$. By Remark 1 in §1, this implies that $_{D} \Lambda \cong \operatorname{Hom}_{(B, \Lambda)} (A, B \otimes_{\Gamma} \Lambda, \Lambda) < \oplus_{D} \Lambda$. The converse is obtained by tensoring with $\operatorname{Hom}_{(B, \Lambda)} (\Lambda, B \otimes_{\Gamma} \Lambda)$ over D.

(5) Let x be in $V_A(V_A(\Gamma)) = V_A(\Delta)$. Since $B \otimes_{\Gamma} A \cong \operatorname{Hom}_D({}_D\Delta, {}_D\Lambda)$ we have $x \otimes 1 = 1 \otimes x$ in $B \otimes_{\Gamma} A$. Assume $B_{\Gamma} = (\Gamma \oplus \Gamma')_{\Gamma}$ and write x = y + z, $y \in \Gamma$, $z \in \Gamma'$. Then $B \otimes_{\Gamma} A = \Gamma \otimes_{\Gamma} A \oplus \Gamma' \otimes_{\Gamma} A$ and $y \otimes 1 + z \otimes 1 = x \otimes 1 = 1 \otimes x \in \Gamma \otimes A$. Therefore $x \otimes 1 = y \otimes 1$ and $x = y \in \Gamma$. The case of $r\Gamma < \oplus rA$ is similar.

Remark 1. η in (3) of (2.3) is a monomorphism (isomorphism) if Λ is H-separable over B. For, then we have $\Lambda \otimes_{\Gamma} \Lambda \cong \Lambda \otimes_{B} B \otimes_{\Gamma} \Lambda < \oplus \Lambda \otimes_{B} \Lambda \oplus \cdots$ $\oplus \Lambda \otimes_{B} \Lambda < \oplus \Lambda \oplus \cdots \oplus \Lambda$ and Λ is H-separable over Γ , and so $\Lambda \otimes_{\Gamma} \Lambda \cong \operatorname{Hom}_{c}(\Lambda, \Lambda)$ (cf. §2 in [9]).

Remark 2. If ${}_{B}\Lambda_{A} < \oplus {}_{B}(B \otimes_{\Gamma}\Lambda \oplus \cdots \oplus B \otimes_{\Gamma}\Lambda)_{A}$ then ${}_{B}\Lambda_{A} < \oplus {}_{B}B \otimes_{\Gamma}\Lambda_{A}$ and the contraction map $B \otimes_{\Gamma}\Lambda \longrightarrow \Lambda$ splits as a (B, Λ) -homomorphism.

PROPOSITION 2.4. Assume that ${}_{B}\Lambda_{A} < \oplus_{B}B \otimes_{\Gamma}\Lambda_{A} < \oplus_{B}(\Lambda \oplus \cdots \oplus \Lambda)_{A}$ and let $\Delta = V_{A}(\Gamma)$ and $D = V_{A}(B)$. Then ${}_{D}D < \oplus_{D}\Lambda$ if and only if ${}_{D}\Delta < \oplus_{D}\Lambda$.

Proof. By (1.3) $V = \operatorname{End}_{D}(A) \cong \operatorname{End}_{r}(B \otimes_{\Gamma} A) = U$ where $T = \operatorname{End}_{(B,A)}(B \otimes_{\Gamma} A) \cong (B \otimes_{\Gamma} A)^{\Gamma}$. If ${}_{D}D < \oplus {}_{D}A$ then A is V-finitely generated and projective. Since $\operatorname{Hom}_{(B,A)}(A, B \otimes_{\Gamma} A)$ is D-finitely generated and projective by (1.2) in [9], $\operatorname{Hom}_{(B,A)}(A, B \otimes_{\Gamma} A) \otimes_{D}A$ is V-finitely generated and projective. Since the isomorphism of U to V is given through the isomorphism $B \otimes_{\Gamma} A \cong$ $\operatorname{Hom}_{(B,A)}(A, B \otimes_{\Gamma} A) \otimes_{D}A$ (Remark 2 in §1) $B \otimes_{\Gamma} A$ is U-finitely generated and projective. On the other hand $U \longrightarrow B \otimes_{\Gamma} A$ defined by $f \longrightarrow f(1 \otimes 1)$, $f \in U$, is epimorphic since B_{l} and A_{r} are in U, and so splits as a U-homomorphism. Therefore $\operatorname{End}_{U}(B \otimes_{\Gamma} A) = \operatorname{End}_{(B,A)}(B \otimes_{\Gamma} A) \cong (B \otimes_{\Gamma} A)^{\Gamma}$ is a direct summand of $B \otimes_{\Gamma} A$ as a $(B \otimes_{\Gamma} A)^{\Gamma}$ -module. So ${}_{D} A < \oplus {}_{D} A$ by (4) in (2.3). The converse is a similar argument. Or, by (2) in (2.3) ${}_{D} D < \oplus {}_{D} A$ and so ${}_{D} D < \oplus {}_{D} A$.

PROPOSITION 2.5. Assume that $_{B}B \otimes_{\Gamma} \Lambda_{A} < \bigoplus_{B} (\Lambda \oplus \cdots \oplus \Lambda)_{A}$ and let $\Delta = V_{A}(\Gamma)$ and $D = V_{A}(B)$. Then for every right Λ -module M, $\operatorname{Hom}_{\Gamma}(B_{\Gamma}, M_{\Gamma}) \cong M \otimes_{D} \Delta$.

If further B is right Γ -finitely generated and projective then $B \otimes_{\Gamma} N \cong \operatorname{Hom}_{D}({}_{D}\mathcal{A}, {}_{D}N)$ for any left Λ -module N.

Proof. Since $B \otimes_{\Gamma} A \cong \operatorname{Hom}_{D}({}_{D} \Delta, {}_{D} \Lambda)$ and Δ is D-finitely generated and projective, we have $\operatorname{Hom}_{\Gamma}(B_{\Gamma}, M_{\Gamma}) \cong \operatorname{Hom}_{\Gamma}(B_{\Gamma}, \operatorname{Hom}_{A}(\Lambda, M)_{\Gamma}) \cong \operatorname{Hom}_{A}(B \otimes_{\Gamma} \Lambda, M) \cong \operatorname{Hom}_{A}(\operatorname{Hom}_{D}({}_{D}\Delta, {}_{D}\Lambda), M) \cong \operatorname{Hom}_{A}(\Lambda, M) \otimes_{D} \Delta = M \otimes_{D} \Delta$. Similarly we have $\operatorname{Hom}_{D}({}_{D}\Delta, {}_{D}\Lambda) \cong \operatorname{Hom}_{D}(\Delta, \operatorname{Hom}_{A}(\Lambda, N)) \cong \operatorname{Hom}_{A}(\Lambda \otimes_{D} \Delta, N) \cong \operatorname{Hom}_{A}(\operatorname{Hom}_{\Gamma}(B_{\Gamma}, \Lambda_{\Gamma}), N) \cong B \otimes_{\Gamma} \operatorname{Hom}_{A}(\Lambda, N) \cong B \otimes_{\Gamma} N$ since B is right Γ -finitely generated and projective.

§3. Separable extensions

In §2 if we take $B = \Lambda$ then we have the condition ${}_{\Lambda}\Lambda \otimes_{\Gamma}\Lambda_{\Lambda} < \oplus {}_{\Lambda}(\Lambda \oplus \cdots \oplus \Lambda)_{\Lambda}$ for a ring Λ and its subring Γ . When this condition holds we have proved that Λ is a separable extension of Γ , that is, the contraction map $\varphi \colon \Lambda \otimes_{\Gamma}\Lambda \longrightarrow \Lambda$, $\varphi(x \otimes y) = xy$, splits as a (Λ, Λ) -homomorphism ((2. 2) in [9]). We shall call such an extension an *H*-separable extension. Let $\Lambda = V_{\Lambda}(\Gamma)$ and C = the center of Λ . Then by (2. 1)

PROPOSITION 3.1. If Λ is an H-separable extension of Γ , then $\Lambda \otimes_{\Gamma} \Lambda \cong$ Hom_c(Δ , Λ), $\Lambda \otimes_{c} \Delta \cong$ Hom_r($\Lambda_{\Gamma}, \Lambda_{\Gamma}$), $\Delta \otimes_{c} \Lambda \cong$ Hom_r($\Gamma\Lambda, \Gamma\Lambda$) and Δ is C-finitely generated and projective. Furthermore, if Λ is right Γ -finitely generated and projective then $\Lambda\Lambda \otimes_{c} \Delta_{d} < \oplus_{A}(\Lambda \oplus \cdots \oplus \Lambda)_{A}$, and, if Λ is left Γ -finitely generated and projective then $_{\Delta}\Delta \otimes_{c} \Lambda_{A} < \oplus_{A}(\Lambda \oplus \cdots \oplus \Lambda)_{A}$.

Remark. We shall show further $\Delta \otimes_c \Delta \cong \operatorname{Hom}_{(\Gamma,\Gamma)}(\Lambda,\Lambda)$ in §4.

PROPOSITION 3.2. Let Λ be an H-separable extension of Γ and let $\Delta = V_{\Lambda}(\Gamma)$ and C = the center of Λ . Then $\Gamma_{\Gamma} < \oplus \Lambda_{\Gamma}$ if and only if the contraction map $\Lambda \otimes_{C} \Delta$ $\longrightarrow \Lambda$ splits as a (Λ, Δ) -homomorphism and $V_{\Lambda}(\Delta) = \Gamma$. Similarly $\Gamma\Gamma < \oplus_{\Gamma}\Lambda$ if and only if $\Delta \otimes_{C}\Lambda \longrightarrow \Lambda$ splits as a (Δ, Λ) -homomorphism and $V_{\Lambda}(\Delta) = \Gamma$.

Proof. The following diagram

$$\begin{array}{ccc} A \otimes_{\mathcal{C}} \mathcal{A} & \stackrel{\iota}{\longrightarrow} & \operatorname{Hom}_{\Gamma}(A_{\Gamma}, A_{\Gamma}) \\ & \searrow & & & \swarrow \\ & & & & & \swarrow \end{array}$$

is commutative where i, φ and ψ are defined as follows: $i(\lambda \otimes \delta)(x) = \lambda x \delta$, $\varphi(\lambda \otimes \delta) = \lambda \delta$ and $\psi(f) = f(1)$ respectively. If $\Gamma_{\Gamma} < \bigoplus \Lambda_{\Gamma}$ then letting π be the projection from Λ to Γ , the map $\psi' \colon \Lambda \longrightarrow \operatorname{Hom}_{\Gamma}(\Lambda_{\Gamma}, \Lambda_{\Gamma}), \psi'(\lambda) = \lambda_{\iota} \circ \pi$, is a (Λ, Δ) -homomorphism and $\psi \circ \psi' = 1_{\Lambda}$. Therefore $\varphi \colon \Lambda \otimes \Delta \longrightarrow \Lambda$ splits as a (Λ, Δ) -homomorphism. That $V_{\Lambda}(\Delta) = \Gamma$ is Proposition 1.2 in [15]. Conversely if there exists $\varphi' \colon \Lambda \longrightarrow \Lambda \otimes_{C} \Delta$ such that $\varphi \circ \varphi' = 1_{\Lambda}$, let $\pi = i \circ \varphi'(1)$. Then $\delta \circ \pi = \pi \circ \delta$ for any $\delta \in \Delta$ and $\pi(1) = 1$. Therefore $\pi(\lambda) \in V_{\Lambda}(\Delta) = \Gamma$ for $\lambda \in \Lambda$ and $\pi(\tau) = \tau$ for $\tau \in \Gamma$, and so $\Gamma_{\Gamma} \subset \Phi \Lambda_{\Gamma}$. Another statement is similar.

PROPOSITION 3. 3. Let Λ be a ring C the center of Λ , Δ a subring of Λ containing C and let $\Gamma = V_{\Lambda}(\Delta)$. If ${}_{\Lambda}\Lambda \otimes_{c}\Delta_{\Delta} < \oplus {}_{\Lambda}(\Lambda \oplus \cdots \oplus \Lambda)_{\Delta}$ then $\Lambda \otimes_{c}\Delta \cong$ $\operatorname{Hom}_{\Gamma}(\Lambda_{\Gamma}, \Lambda_{\Gamma}), \Lambda \otimes_{\Gamma}\Lambda \cong \operatorname{Hom}_{c}(\Delta, \Lambda)$ and Λ is right Γ -finitely generated projective. If ${}_{\Delta}\Delta \otimes_{c}\Lambda_{\Lambda} < \oplus {}_{\Delta}(\Lambda \oplus \cdots \oplus \Lambda)_{\Lambda}$ then $\Delta \otimes_{c}\Lambda \cong \operatorname{Hom}_{\Gamma}({}_{\Gamma}\Lambda, {}_{\Gamma}\Lambda), \Lambda \otimes_{\Gamma}\Lambda \cong \operatorname{Hom}_{c}(\Delta, \Lambda)$ and Λ is left Γ -finitely generated projective.

Proof. This is a special case of (2.1).

From (3. 3) and (2. 3) we can easily prove the following proposition by the same argument.

PROPOSITION 3.4. Let Λ be a ring with the center C, Δ a subring of Λ containing C and let $\Gamma = V_{\Lambda}(\Delta)$. Assume that $\Lambda \Lambda \otimes_{C} \Delta_{\Delta} < \bigoplus \Lambda(\Lambda \oplus \cdots \oplus \Lambda)_{\Delta}$. Then

(1) $_{c}C < \oplus _{c}\Delta$ if and only if Λ is a separable extension of Γ .

(2) If Δ is C-finitely generated and projective then Λ is an H-separable extension of Γ .

(3) If the contraction map $\Lambda \otimes_{C} \Delta \longrightarrow \Lambda$ splits as a (Λ, Δ) -homomorphism then $\Gamma_{\Gamma} \subset \bigoplus \Lambda_{\Gamma}$.

(4) If ${}_{c}\Delta < \oplus {}_{c}\Lambda$ and $\eta : \Lambda \otimes_{c}\Lambda \longrightarrow \operatorname{Hom}_{c}(\Lambda, \Lambda)$ is a monomorphism or if ${}_{c}C < \oplus {}_{c}\Lambda$ and Δ is C-finitely generated projective then $V_{\Lambda}(V_{\Lambda}(\Delta)) = \Delta$.

There is a similar statement for Λ , Δ and C such that ${}_{\Delta}\Delta \otimes_{C} \Lambda_{\Lambda} < \bigoplus_{A} (\Lambda \oplus A)_{A}$.

From (3.1), (3.3) and (3.4) we have the following theorem.

THEOREM 3.5. There is a one to one correspondence between the set of closed subrings Γ 's of a ring Λ such that Λ is H-separable over Γ and Λ is right (left) Γ -finitely generated projective, and the set of closed subrings Λ 's of Λ containing the center C of Λ such that $\Lambda \otimes_{C} \Delta_{\Delta} < \oplus \Lambda(\Lambda \oplus \cdots \oplus \Lambda)_{\Delta} ({}_{\Delta}\Delta \otimes_{C} \Lambda_{\Lambda} < \oplus_{\Delta} (\Lambda \oplus \cdots \oplus \Lambda)_{\Lambda})$ and Δ is C-finitely generated projective.

From (2.3) and (2.4) letting $B = \Lambda$ we have

PROPOSITION 3. 6. Let Λ be a ring with the center C, Γ a subring of Λ .

Assume that ${}_{\Lambda}\Lambda \otimes_{\Gamma}\Lambda_{\Lambda} < \oplus {}_{\Lambda}(\Lambda \oplus \cdots \oplus \Lambda)_{\Lambda}$ and let $T = \operatorname{End}_{(\Lambda, \Lambda)}(\Lambda \otimes_{\Gamma}\Lambda) \cong (\Lambda \otimes_{\Gamma}\Lambda)^{\Gamma}$. Then the following are equivalent.

- (1) $_{c}C < \oplus _{c}\Lambda$.
- (2) $_{T}(\Lambda \otimes_{\Gamma} \Lambda)^{\Gamma} < \oplus _{T} \Lambda \otimes_{\Gamma} \Lambda.$
- (3) $_{c} \Delta < \oplus _{c} \Lambda$.

THEOREM 3.7. Let Λ be a ring with the center C, Γ a subring of Λ . Assume that C is a C-direct summand of Λ . Then there is a one to one correspondence between the set of subrings Γ 's of Λ such that Λ is H-separable over Γ , Λ is right (left) Γ -finitely generated projective and $\Gamma_{\Gamma} < \oplus \Lambda_{\Gamma}(\Gamma\Gamma < \oplus \Gamma\Lambda)$, and the set of subrings Λ 's of Λ containing C such that $\Lambda\Lambda_{\Lambda} < \oplus \Lambda\Lambda \otimes_{C} \Lambda_{\Lambda} < \oplus \Lambda(\Lambda \oplus \cdots \oplus \Lambda)_{\Lambda}$ ($_{\Lambda}\Lambda_{\Lambda} < \oplus _{\Lambda}\Lambda \otimes_{C} \Lambda_{\Lambda} < \oplus _{\Lambda}(\Lambda \oplus \cdots \oplus \Lambda)_{\Lambda}$), and Λ is C-finitely generated projective.

Proof. If $\Gamma_{\Gamma} < \oplus \Lambda_{\Gamma}$ then Γ is closed by (3. 2). If \varDelta satisfies the assumptions of the theorem then \varDelta is closed by (4) of (3. 4). Therefore the theorem follows from (3. 5).

Note that ${}_{\Lambda}\Lambda \otimes_{\mathcal{C}} \Delta_{\mathcal{A}} < \oplus {}_{\Lambda}(\Lambda \oplus \cdot \cdot \cdot \oplus \Lambda)_{\mathcal{A}}$ means that left $\Lambda \otimes_{\mathcal{C}} \Delta^{0}$ -module Λ is a generator where Δ^{0} is the opposite ring of Δ .

PROPOSITION 3.8. Let Λ be a ring with the center C and Γ a subring of Λ . Assume that Λ is an H-separable extension of Γ and let $T = \operatorname{End}_{(\Lambda,\Lambda)}(\Lambda \otimes_{\Gamma} \Lambda)$. Then $\operatorname{End}_{T}(\Lambda \otimes_{\Gamma} \Lambda) \cong \operatorname{Hom}_{C}(\Lambda, \Lambda)$, and Λ is C-finitely generated projective if and only if $\Lambda \otimes_{\Gamma} \Lambda$ is T-finitely generated projective.

Proof. Since ${}_{\Lambda}\Lambda_{\Lambda} < \oplus {}_{\Lambda}\Lambda \otimes_{\Gamma}\Lambda_{\Lambda}$ we can apply (1.3). From (2.5) we have

PROPOSITION 3. 9. Let Λ be an H-separable extension of Γ and let $\Delta = V_{\Lambda}(\Gamma)$ and C the center of Λ . Then for any right (left) Λ -module M (N) $\operatorname{Hom}_{\Gamma}(\Lambda_{\Gamma}, M_{\Gamma})$ $\cong M \otimes_{C} \Delta$ ($\operatorname{Hom}_{\Gamma}(\Gamma\Lambda, \Gamma N) \cong \Delta \otimes_{C} N$). If further Λ is right (left) Γ -finitely generated projective then $\Lambda \otimes_{\Gamma} N \cong \operatorname{Hom}_{C}(\Delta, N)$ ($M \otimes_{\Gamma} \Lambda \cong \operatorname{Hom}_{C}(\Delta, M)$).

§4. Separable subextensions

In this section we shall deal with a ring Λ and its subrings $B \supset \Gamma$ such that B is H-separable over Γ . Since ${}_{B}B \otimes_{\Gamma} B_{B} < \oplus {}_{B}(B \oplus \cdots \oplus B)_{B}$, tensoring with Λ over B there yields ${}_{\Lambda}\Lambda \otimes_{\Gamma} B_{B} {}_{\Lambda}(\Lambda \oplus \cdots \oplus \Lambda)_{B}$ or ${}_{B}B \otimes_{\Gamma} \Lambda_{\Lambda} < \oplus_{B}(\Lambda \oplus \cdots \oplus \Lambda)_{A}$. Therefore all propositions in §2 hold for the da'ta Λ , B and Γ such

that B is H-separable over Γ . We shall study about further properties of them.

Let B^{Γ} be the centralizer of Γ in B and B^{B} the center of B. Then, since B is H-separable over Γ , for any two-sided B-module $M, M^{\Gamma} \cong B^{\Gamma} \otimes_{B^{B}} M^{B}$ by Theorem 1. 2 in [15] where $M^{\Gamma} = \{m \in M \mid \forall m = m \forall, \forall \in \Gamma\}$ and $M^{B} = \{m \in M \mid bm = mb, b \in B\}$. Therefore if we put $\Lambda^{\Gamma} = \Lambda$ and $\Lambda^{B} = D$ then $\Lambda \cong B^{\Gamma} \otimes_{B^{B}} D$.

PROPOSITION 4.1. Let Λ be a ring, B and Γ subrings of Λ such that $B \supset \Gamma$. Let Λ and D be the centralizers of Γ and B in Λ respectively. If B is H-separable over Γ then $\Lambda \otimes_{D} \Lambda \cong \operatorname{Hom}_{(\Gamma,\Gamma)}(B, \Lambda)$ and ${}_{D}D_{D} < \oplus {}_{D}\Lambda_{D} < \oplus {}_{D}(D \oplus \cdots \oplus D)_{D}$. If further B is closed in Λ $(V_{\Lambda}(V_{\Lambda}(B)) = B)$ then $B \otimes_{\Gamma} B \cong \operatorname{Hom}_{(D,D)}(\Lambda, \Lambda)$.

Proof. Since B is H-separable over Γ , $B \otimes_{\Gamma} B \cong \operatorname{Hom}_{B^B}(B^{\Gamma}, B)$ and B^{Γ} is B^{B} -finitely generated and projective. And so B^{B} is B^{B} -direct summand of B^{Γ} . We have $B^{B}_{B^{B}} < \oplus B^{\Gamma}_{B^{B}} < \oplus (B^{B} \oplus \cdots \oplus B^{B})_{B^{B}}$. Tensoring with D over B^{B} this yields $D < \oplus \Delta < \oplus D \oplus \cdots \oplus D$ as two-sided D-modules.

Next, we have $\mathcal{A} \otimes_D \mathcal{A} \cong B^{\Gamma} \otimes_{B^B} D \otimes_D \mathcal{A} \cong B^{\Gamma} \otimes_{B^B} \mathcal{A} \cong B^{\Gamma} \otimes_{B^B} \operatorname{Hom}_{(B,\Gamma)}(B, \mathcal{A})$ $\cong \operatorname{Hom}_{(B,\Gamma)}(\operatorname{Hom}_{B^B}(B^{\Gamma}, B), \mathcal{A}) \quad (B^{\Gamma} \text{ is } B^{B} \text{-finitely generated and projective})$ $\cong \operatorname{Hom}_{(B,\Gamma)}(B \otimes_{\Gamma} B, \mathcal{A}) \cong \operatorname{Hom}_{(\Gamma,\Gamma)}(B, \operatorname{Hom}_{B}(B, B, B, \mathcal{A})) \cong \operatorname{Hom}_{(\Gamma,\Gamma)}(B, \mathcal{A}).$

Last, we assume that B is closed. We have $\operatorname{Hom}_{(D,D)}(\mathcal{A}, \Lambda) \cong \operatorname{Hom}_{(D,D)}(\mathcal{B}, D)$ $(B^{\Gamma}\otimes_{B^{B}}D, \Lambda) \cong \operatorname{Hom}_{B^{B}}(B^{\Gamma}, \operatorname{Hom}_{(D,D)}(D, \Lambda)) \cong \operatorname{Hom}_{B^{B}}(B^{\Gamma}, B)$ as $\operatorname{Hom}_{(D,D)}(D, \Lambda)$ $\cong V_{\mathcal{A}}(D) = B$. Since $B \otimes_{\Gamma} B \cong \operatorname{Hom}_{B^{B}}(B^{\Gamma}, B)$ we have $\operatorname{Hom}_{(D,D)}(\mathcal{A}, \Lambda) = B \otimes_{\Gamma} B$.

COROLLARY 4.2. Let Λ be a ring, B and Γ subrings of Λ such that B is H-separable over Γ . If $\Gamma\Gamma \subset \oplus \Gamma B\Gamma$ then Λ is separable over D, and if $\Gamma B\Gamma \subset \oplus \Gamma (\Gamma \oplus \cdots \oplus \Gamma)\Gamma$ then Λ is H-separable over D.

Proof. We have following commutative diagram

$$\begin{array}{c} \mathcal{\Delta} \otimes_{\mathcal{D}} \mathcal{\Delta} \xrightarrow{\cong} \operatorname{Hom}_{(\Gamma, \Gamma)} (B, \Lambda) \\ \searrow \\ \varphi \\ \mathcal{\Delta} \\ \mathcal{L} \\ \varphi \end{array}$$

where φ is the contraction map and $\psi(f) = f(1)$, $f \in \operatorname{Hom}_{(\Gamma,\Gamma)}(B, \Lambda)$. If $r\Gamma_{\Gamma} < \oplus rB_{\Gamma}$ then, letting π be the projection of B to Γ , $\psi' \colon \Delta \longrightarrow \operatorname{Hom}_{(\Gamma,\Gamma)}(B, \Lambda)$ defined by $\psi'(\delta) = \delta_{\iota} \circ \pi = \delta_{\tau} \circ \pi$ is a two-sided Δ -homomorphism. Therefore Δ is separable over D.

If $rB_{\Gamma} < \oplus r(\Gamma \oplus \cdots \oplus \Gamma)_{\Gamma}$ then $\varDelta \otimes_{D} \varDelta \cong \operatorname{Hom}_{(\Gamma,\Gamma)}(B, \Lambda) < \oplus \operatorname{Hom}_{(\Gamma,\Gamma)}(D, \Lambda)$

 $(\Gamma \oplus \cdots \oplus \Gamma, \Lambda) \cong \operatorname{Hom}_{(\Gamma,\Gamma)}(\Gamma, \Lambda) \oplus \cdots \oplus \operatorname{Hom}_{(\Gamma,\Gamma)}(\Gamma, \Lambda) \cong \Lambda \oplus \cdots \oplus \Lambda.$ Therefore Λ is *H*-separable over *D*.

Proposition 1. 4 in [15] asserts that for a separable subextension B of Γ in an *H*-separable extension Λ of Γ , Λ is an *H*-separable extension of B if Λ , Γ and B satisfy the assumption in Proposition 1.3 in [15]. But the last assumption is not necessary. That is

PROPOSITION 4.3. Let Λ be an H-separable extension of Γ and B a separable subextension of Γ in Λ . Then Λ is H-separable over B and ${}_{D}D_{D} < \bigoplus {}_{D}\Delta_{D}$ where $\Delta = V_{\Lambda}(\Gamma)$ and $D = V_{\Lambda}(B)$.

Proof. Since B is separable over Γ , ${}_{B}B_{B} < \oplus {}_{B}B \otimes_{\Gamma}B_{B}$. Tensoring with Λ over B on both sides, we have ${}_{\Lambda}\Lambda \otimes_{B}\Lambda_{\Lambda} < \oplus {}_{\Lambda}\Lambda \otimes_{\Gamma}\Lambda_{\Lambda}$ and since Λ is H-separable over Γ we have ${}_{\Lambda}\Lambda \otimes_{\Gamma}\Lambda_{\Lambda} < \oplus {}_{\Lambda}(\Lambda \oplus \cdots \oplus \Lambda)_{\Lambda}$. Therefore ${}_{\Lambda}\Lambda \otimes_{B}\Lambda_{\Lambda} < \oplus {}_{\Lambda}(\Lambda \oplus \cdots \oplus \Lambda)_{\Lambda}$. Therefore ${}_{\Lambda}\Lambda \otimes_{B}\Lambda_{\Lambda} < \oplus {}_{\Lambda}(\Lambda \oplus \cdots \oplus \Lambda)_{\Lambda}$ and Λ is H-separable over B. That ${}_{D}D_{D} < \oplus {}_{D}\Lambda_{D}$ has been proved in [15] without further assumptions.

Instead of the assumption ${}_{B}B_{\Gamma} < \bigoplus {}_{B}\Lambda_{\Gamma}$ in Proposition 1. 3 in [15] we can assume that *B* is *H*-separable over Γ or more weakly ${}_{B}B \otimes_{\Gamma}\Lambda_{\Lambda} < \bigoplus {}_{B}(\Lambda \oplus \cdot \cdot \cdot \oplus \Lambda)_{\Lambda}$.

LEMMA 4. Let Λ be a ring, $B \supset \Gamma$ subrings of Λ . If B is H-separable over Γ and $\Gamma_{\Gamma} < \oplus \Lambda_{\Gamma}$ ($\Gamma\Gamma < \oplus \Gamma\Lambda$) then $B_{B} < \oplus \Lambda_{B}$ ($_{B}B < \oplus _{B}\Lambda$).

Proof. Since ${}_{B}B \otimes_{\Gamma}B_{B} < \oplus {}_{B}(B \oplus \cdots \oplus B)_{B}$ tensoring with Λ over B we have ${}_{\Lambda}\Lambda \otimes_{\Gamma}B_{B} < \oplus {}_{\Lambda}(\Lambda \oplus \cdots \oplus \Lambda)_{B}$. If ${}_{\Gamma}\Gamma < \oplus \Lambda_{\Gamma}$ then $B_{B} \cong \Gamma \otimes_{\Gamma}B < \oplus \Lambda \otimes_{\Gamma}B$. Therefore $B_{B} < \oplus (\Lambda \oplus \cdots \oplus \Lambda)_{B}$ and $B_{B} < \oplus \Lambda_{B}$ since Λ is a ring.

LEMMA 4.5. Assume that Λ is H-separable over Γ and that B is an H-separable subextension of Γ in Λ . If $\Gamma_{\Gamma} < \oplus \Lambda_{\Gamma}$ or $\Gamma\Gamma < \oplus \Gamma\Lambda$ then $V_{\Lambda}(V_{\Lambda}(B)) = B$.

Proof. By (4.3) Λ is *H*-separable over *B*, and by (4.4) $B_B < \oplus \Lambda_B$ or ${}_{B}B < \oplus {}_{B}\Lambda$. Therefore by Proposition 1.2 in [15] $V_A(V_A(B)) = B$.

Let R be a ring, M a two-sided R-module. If $_RM_R < \oplus_R(R \oplus \cdots \oplus R)_R$ we shall call M a centrally projective module. We shall prove in §5 the following fact in more general form. Let S be an overring of a ring R. If S is R-centrally projective then $_RR_R < \oplus_RS_R$.

LEMMA 4.6. Let Λ be a ring, $B \supset \Gamma$ subrings of Λ . If B is H-separable over Γ and Λ is Γ -centrally projective then Λ is B-centrally projective and B is Γ centrally projective. KAZUHIKO HIRATA

Proof. Since $_{\Gamma}\Lambda_{\Gamma} < \oplus_{\Gamma}(\Gamma \oplus \cdots \oplus \Gamma)_{\Gamma}$ tensoring with B over Γ we have $_{B}B \otimes_{\Gamma}\Lambda_{\Gamma} < \oplus_{B}(B \oplus \cdots \oplus B)_{\Gamma}$. On the other hand since $_{B}B_{B} < \oplus_{B}B \otimes_{\Gamma}B_{B}$ we have $_{B}\Lambda_{A} \cong_{B}B \otimes_{B}\Lambda_{A} < \oplus_{B}B \otimes_{\Gamma}\Lambda_{A}$. Therefore $_{B}\Lambda_{\Gamma} < \oplus_{B}(B \oplus \cdots \oplus B)_{\Gamma}$. Furthermore tensoring with B over Γ we have $_{B}\Lambda \otimes_{\Gamma}B_{B} < \oplus_{B}(B \otimes_{\Gamma}B \oplus \cdots \oplus B)_{F}B_{B}$. Since $_{A}\Lambda_{B} < \oplus_{A}\Lambda \otimes_{\Gamma}B_{B}$ and $_{B}B \otimes_{\Gamma}B_{B} < \oplus_{B}(B \oplus \cdots \oplus B)_{B}$ we have $_{B}\Lambda_{B} < \oplus_{B}(B \oplus \cdots \oplus B)_{B}$. As we noted above we have also $_{B}B_{B} < \oplus_{B}\Lambda_{B}$ and of course $_{\Gamma}B_{\Gamma} < \oplus_{\Gamma}\Lambda_{\Gamma}$. Since $_{\Gamma}\Lambda_{\Gamma} < \oplus_{\Gamma}(\Gamma \oplus \cdots \oplus \Gamma)_{\Gamma}$ we have $_{\Gamma}B_{\Gamma} < \oplus_{\Gamma}(\Gamma \oplus \cdots \oplus \Gamma)_{\Gamma}$.

Letting $B = \Lambda$ in (4.1) and (4.2) we have

PROPOSITION 4.7. Let Λ be an H-separable extension of Γ and let $\Delta = V_{\Lambda}(\Gamma)$, C the center of Λ . Then $\Delta \otimes_{C} \Delta \cong \operatorname{Hom}_{(\Gamma,\Gamma)}(\Lambda, \Lambda)$ and Δ is C-finitely generated projective. If further $\Gamma\Gamma_{\Gamma} < \oplus \Gamma\Lambda_{\Gamma}$ then Δ is a separable C-algebra, and if $\Gamma\Lambda_{\Gamma}$ $< \oplus \Gamma(\Gamma \oplus \cdots \oplus \Gamma)\Gamma$ then Δ is an H-separable C-algebra.

Combining these lemmas and propositions we have

THEOREM 4.8. Let Λ be a ring, $B \supset \Gamma$ subrings of Λ . Assume that Λ is a Γ -centrally projective H-separable extension of Γ and B is an H-separable subextension of Γ in Λ . Let $\Delta = V_A(\Gamma)$, $D = V_A(B)$ and C = the center of Λ . Then (1) Δ is a finitely generated projective, H-separable C-algebra and closed in Λ . (2) Dis a C-finitely generated projective H-separable C-subalgebra of Δ . (3) $V_A(V_A(B)) = B$ and $V_A(V_A(\Gamma)) = \Gamma$. Conversely assume that Δ is a subring of Λ containing C, that Δ is a finitely generated projective, H-separable C-algebra and that D is an H-separable C-subalgebra of Δ . Then (4) Λ is $V_A(\Delta)$ -centrally projective and H-separable over $V_A(\Delta)$. (5) $V_A(D)$ is H-separable over $V_A(\Delta)$. (6) $V_A(V_A(D)) = D$. In this way there is a one to one correspondence between the set of H-separable subextensions of Γ in Λ and the set of H-separable C-subalgebras of Δ .

Proof. If Λ is a centrally projective H-separable extension of Γ then, by (4.7), Λ is C-finitely generated projective and H-separable over C. Closedness of Λ is clear. If B is an H-separable subextension of Γ then, by (4.3), Λ is H-separable over B and B-centrally projective by (4.6). Therefore D is C-finitely generated projective and H-separable over C. As we have noted above, $\Gamma\Gamma_{\Gamma} < \oplus \Gamma\Lambda_{\Gamma}$ and ${}_{B}B_{B} < \oplus {}_{B}\Lambda_{B}$ since Λ is both Γ - and B-centrally projective. Therefore $V_{\Lambda}(V_{\Lambda}(\Gamma)) = \Gamma$ and $V_{\Lambda}(V_{\Lambda}(B)) = B$ by Proposition 1.2 in [15], since Λ is H-separable over Γ and over B. The converse is similar. We note that under these assumptions for Λ , D and C, Λ is D-

centrally projective and *H*-separable over *D*, and so (5) follows form (4.1) and (4.2). That $V_A(V_A(D)) = D$ follows from (5) in (2.3).

Finally we give the converse of Proposition 3.4 in [9]. Let Λ be an *H*-separable extension of its subring Γ and assume that $_{\Gamma}\Gamma_{\Gamma} < \oplus _{\Gamma}\Lambda_{\Gamma}$. Let $\Lambda = V_{\Lambda}(\Gamma)$ and *C* the center of Λ . Then $V_{\Lambda}(\Lambda) = \Gamma$ by Proposition 1.2 [15]. So center $\Gamma = \Gamma \cap \Lambda = V_{\Lambda}(\Lambda) \cap \Lambda =$ center $\Lambda \supset C$. Let C' = center $\Gamma =$ center Λ and $\Lambda' = V_{\Lambda}(C')$. Since Λ is separable over *C* by (4.7), Λ is central separable over *C'* and so *H*-separable over *C'*. By Theorem 1.2 in [15] $\Lambda' = \Gamma \otimes_{C} \Lambda$. If C' = C then $\Lambda = \Gamma \otimes_{C} \Lambda$.

PROPOSITION 4. 10. Let Λ be a ring with the center C, Γ a subring of Λ with the center equal to Λ . If Λ is H-separable over Γ and $\Gamma\Gamma_{\Gamma} < \oplus_{\Gamma}\Lambda_{\Gamma}$ then $V_{\Lambda}(\Gamma)$ is central separable over C, $\Lambda \cong \Gamma \otimes_{c} V_{\Lambda}(\Gamma)$ and Λ is Γ -centrally projective.

§5. Centrally projective modules

As we have seen in the last section there is a type of two-sided modules which we have called 'centrally projective'. In this section we shall study some properties of these modules. Let R be a ring with the center C, M a two-sided R-module. If ${}_{R}M_{R} < \bigoplus_{R} (R \oplus \cdots \oplus R)_{R}$ we shall call M a centrally projective module. Note that $\operatorname{Hom}_{(R,R)}(R,M)$ is isomorphic to $M^{R} = \{m \in M \mid rm = mr, r \in R\}$. Let $\Omega = \operatorname{End}_{(R,R)}(M)$. By (1.1) in [9] we have

PROPOSITION 5.1. *M* is centrally projective if and only if $\operatorname{Hom}_{(R,R)}(M,R)$ $\otimes_{c} M^{R} \cong \Omega$.

The isomorphism is given by $g \otimes m \longrightarrow (x \longrightarrow g(x)m)$, where $g \otimes m \in$ Hom_(R,R) $(M, R) \otimes_{C} M^{R}$ and $x \in M$.

From (1. 2) in [9] we have

PROPOSITION 5.2. If M is centrally projective then M^R is C-finitely generated projective as well as an Ω -generator, $M \cong R \otimes_C M^R$ and $\operatorname{End}_C(M^R) = \Omega$.

The isomorphism $M \cong R \otimes_{\mathbb{C}} M^{\mathbb{R}}$ is given by $r \otimes m \longrightarrow rm$ for $r \otimes m \in R \otimes_{\mathbb{C}} M^{\mathbb{R}}$.

PROPOSITION 5.3. If M is centrally projective and M^R is C-faithful then ${}_{R}R_{R} < \bigoplus_{R} (M \oplus \cdots \oplus M)_{R}$.

Proof. Since M^R is *C*-finitely generated projective, if it is *C*-faithful then ${}_{c}C < \bigoplus_{c}(M^R \oplus \cdots \oplus M^R)$. Therefore tensoring with *R* over *C* we have $R < \bigoplus R \otimes_{c} M^R \oplus \cdots \oplus R \otimes_{c} M^R \cong M \oplus \cdots \oplus M$ as two-sided *R*-modules.

Let $\operatorname{Tr}_{(R,R)}(M)$ be the two-sided ideal in R generated by $g(m), g \in \operatorname{Hom}_{(R,R)}(M,R)$ and $m \in M$. Then by (1.2) in [9]

PROPOSITION 5.4. $_{R}R_{R} < \bigoplus_{R}(M \oplus \cdots \oplus M)_{R}$ if and only if $\operatorname{Tr}_{(R,R)}(M) = R$. When this is the case M^{R} is Ω -finitely generated projective as well as a C-generator and $\operatorname{Hom}_{\Omega}(M^{R}, M^{R}) \cong C$.

Let $\operatorname{Tr}_{\mathcal{C}}(M^{R})$ be the ideal in C generated by f(m), $f \in \operatorname{Hom}_{\mathcal{C}}(M^{R}, C)$ and $m \in M^{R}$. If $M \cong R \otimes_{\mathcal{C}} M^{R}$ then since $\operatorname{Hom}_{(R,R)}(M,R) \cong \operatorname{Hom}_{\mathcal{C}}(M^{R},C)$ it is easily seen that $R \cdot \operatorname{Tr}_{\mathcal{C}}(M^{R}) = \operatorname{Tr}_{(R,R)}(M)$. Let $\mathfrak{A} = \{x \in R \mid xM = 0, Mx = 0\}$ and $\mathfrak{a} = \{x \in C \mid xM^{R} = 0\}$. If $M \cong R \otimes_{\mathcal{C}} M^{R}$ then it is clear that $R \cdot \mathfrak{a} \subset \mathfrak{A}$.

PROPOSITION 5.5. If M is centrally projective then $\mathfrak{A} + \operatorname{Tr}_{(R,R)}(M) = R$.

Proof. Since M^R is C-finitely generated and projective, by Proposition A. 3 [1], $\mathfrak{a} + \operatorname{Tr}_C(M^R) = C$. From the above remarks we have the conclusion.

Next we consider an overring of R which is centrally projective.

PROPOSITION 5.6. Let S be an overring of a ring R, C the center of R. If S is R-centrally projective then $S \cong R \otimes_C S^R$, S^R is C-finitely generated projective and $_RR_R < \bigoplus_R S_R$.

Proof. The first two assertions follow from (5. 2). Since S^R is *C*-finitely generated projective and $S^R \supset C$, ${}_{c}C < \bigoplus {}_{c}S^R$ and $R < \bigoplus R \otimes_{c}S^R$ as two-sided *R*-modules.

We also note that if $_{R}R_{R} < \oplus _{R}(S \oplus \cdots \oplus S)_{R}$ then $_{R}R_{R} < \oplus _{R}S_{R}$.

References

- M. Auslander and O. Goldman, Maximal orders, Trans. Amer. Math. Soc., 97 (1960), 1-24.
- [2] M. Auslander and O. Goldman, The Brauer group of a commutative ring, Trans. Amer. Math. Soc., 97 (1960), 367–409.
- [3] G. Azumaya, Completely faithful modules and self-injective rings, Nagoya Math. J., 27 (1966), 697–708.
- [4] H. Bass, The Morita theorems, Lecture note at Univ. of Oregon, 1962.
- [5] H. Cartan and S. Eilenberg, Homological algebra, Princeton, 1956.
- [6] S. Endo, Completely faithful modules and quasi-Frobenius algebras, J. Math. Soc. Japan, 19 (1967), 437–456.
- [7] A. Hattori, Semisimple algebras over a commutative ring, J. Math. Soc. Japan, 15 (1963), 404-419.

CENTRALIZERS OF RINGS

- [8] K. Hirata and K. Sugano, On semisimple extensions and separable extensions over non commutative rings, J. Math. Soc. Japan, 18 (1966), 360-373.
- [9] K. Hirata, Some types of separable extensions of rings, Nagoya Math. J., 33 (1968), 107-115.
- [10] G. Hochschild, Note on relative homological algebra, Trans. Amer. Math. Soc., 82 (1956) 246–269.
- [11] K. Morita, Duality for modules and its application to the theory of rings with minimum condition, Sci. Rep. Tokyo Kyoiku Daigaku, Sect. A, 6 (1958), 83-142.
- [12] K. Morita, Adjoint pairs of functors and Frobenius extensions, Sci. Rep. Tokyo Kyoiku Daigaku, Sect. A, 9 (1965), 40–71.
- [13] B. Müller, Quasi-Frobenius Erweiterungen, Math. Z., 85 (1964), 345-368.
- [14] B. Müller, Quasi-Frobenius Erweiterungen II, Math. Z., 88 (1965), 380-409.
- [15] K. Sugano, Note on semisimple extensions and separable extensions, Osaka J. Math., 4 (1967), 265-270.

Chiba University