K. Hirata

Nagoya Math. J.
Vol. 35 (1969), 31-45

SEPARABLE EXTENSIONS AND CENTRALIZERS OF RINGS

KAZUHIKO HIRATA

We have introduced in [9] a type of separable extensions of a ring as a generalization of the notion of central separable algebras. Unfortunately it was unsuitable to call such extensions 'central' as Sugano pointed out in [15] (Example below Theorem 1.1). Some additional properties of such extensions were given in [15]. Especially Propositions 1.3 and 1.4 in [15] are interesting and suggested us to consider the commutor theory of separable extensions. Let Λ be a ring and Γ a subring of Λ. When $\Lambda \otimes_{\Gamma} \Lambda$ is a direct summand of a finite direct sum of Λ as a two-sided Λ-module we shall denote it by $\Lambda \otimes_{\Gamma} \Lambda_{\Lambda}<\oplus{ }_{\Lambda}(\Lambda \oplus \cdots \oplus \Lambda)_{A}$ and call Λ an H-separable extension of Γ (cf. [9] and [15]). Let Δ be a subring of Λ containing the center C of Λ and let Γ be the centralizer of Δ in $\Lambda, \Gamma=V_{\Lambda}(\Delta)=\Lambda^{4}=$ $\{\lambda \in \Lambda \mid \delta \lambda=\lambda \delta, \delta \in \Delta\}$. If ${ }_{\Lambda} \Lambda \otimes_{c} \Delta_{\Delta}<\oplus{ }_{\Lambda}(\Lambda \oplus \cdots \oplus \Lambda)_{\Delta}$ and Δ is C-finitely generated and projective then Λ is an H-separable extension of Γ and Λ is right Γ-finitely generated and projective. Conversely for such an H-separable extension Λ over Γ, if we set $\Delta^{\prime}=V_{\Lambda}(\Gamma)$, $\operatorname{then}_{A} \Lambda \otimes_{c} \Delta^{\prime} \Delta^{\prime}<\oplus \oplus_{\Lambda}(\Lambda \oplus \cdots$ $\oplus \Lambda) \Delta^{\prime}$ and Δ^{\prime} is C-finitely generated and projective. In this way we can give a one to one correspondence between Γ 's and Δ 's. A more general situation than H-separable extensions is possible and is symmetric to each other. Let B and Γ be subrings of Λ such that $B \supset \Gamma$. Let $\Delta=V_{\Lambda}(\Gamma)$ and $D=V_{A}(B)$. If ${ }_{B} B \otimes_{\Gamma} \Lambda_{A}<\oplus_{B}(\Lambda \oplus \cdots \oplus \Lambda)_{A}$ and B is right Γ-finitely generated and projective then $\Lambda_{\Lambda} \Lambda \otimes_{D} \Delta_{\Delta}<\oplus \oplus_{\Lambda}(\Lambda \oplus \cdots \oplus \Lambda)_{A}$ and Δ is left D finitly generated and projective. Same considerations are possible for H separable subextensions. These are treated in $\S 2,3$ and 4.81 is a continuation of $\$ 1$ in [9] and the results are applied to the following sections. In 85 we give some notes on two-sided modules. It is well known that any finitly generated projective module over a commutative ring is a generator (completely faithful) if it is faithful. Let M be a two-sided module over a
ring R and assume that ${ }_{R} M_{R}<\oplus_{R}(R \oplus \cdots \oplus R)_{R}$. (It is natural to say such a module 'centrally projective'.) Set $M^{R}=\{m \in M \mid r m=m r, r \in R\}$. Then if M^{R} is C-faithful, where C is the center of R, then ${ }_{R} R_{R}<\oplus \oplus_{R}(M \oplus \cdots \oplus M)_{R}$.

Throughout this paper we assume that all rings have a unit element, subrings contain this element and modules are unitary.

§1. Continuation of $\S 1$ in [9]

Let R be a ring and let A and B be left R-modules respectively. Put $S=\operatorname{End}_{R}(A)$ and $T=\operatorname{End}_{R}(B)$. Following to [9] we note that S and T operate on the right of A and B respectively. Then $\operatorname{Hom}_{R}(A, B)$ is a left S - and right T-module, and $\operatorname{Hom}_{R}(B, A)$ is a left T - and right S-module.

Theorem 1. 1. For R-modules A and B the following conditions are equivalent.
(1) ${ }_{R} B<\oplus_{R}(A \oplus \cdots \oplus A)$.
(2) $\operatorname{Hom}_{R}(B, A)$ is S-finitely generated projective and B is isomorphic to $\operatorname{Hom}_{S}\left(\operatorname{Hom}_{R}(B, A), A\right)$ as an R-module.
(3) $\operatorname{Hom}_{R}(B, A) \otimes_{S} \operatorname{Hom}_{R}(A, M) \cong \operatorname{Hom}_{R}(B, M)$ for any left R-module M.

Proof. By (1.2) in [9], (1) implies (2). Assume (2). Then since $\operatorname{Hom}_{R}(B, A)$ is S-finitely generated and projective $\operatorname{Hom}_{R}(B, A) \otimes_{S} \operatorname{Hom}_{R}(A, M)$ $\cong \operatorname{Hom}_{R}\left(\operatorname{Hom}_{S}\left(\operatorname{Hom}_{R}(B, A), A\right), M\right)$ and by the second condition of (2) the last is isomorphic to $\operatorname{Hom}_{R}(B, M)$. If we put $M=B$ then (3) implies (1) by (1.1) in [9].

Proposition 1.2. Assume that ${ }_{R} B<\oplus_{R}(A \oplus \cdots \oplus A)$. If A is an S generator so is B as a T-module.

Proof. By (1.2) in [9] B is isomorphic to $A \otimes_{S} \operatorname{Hom}_{R}(A, B)$ as a right T-module. Since $S_{S}<\oplus(A \oplus \cdots \oplus A)_{s}$ tensoring with $\operatorname{Hom}_{R}(A, B)$ over S we have $\operatorname{Hom}_{R}(A, B)_{T}<\oplus\left(A \otimes_{S} \operatorname{Hom}_{R}(A, B) \oplus \cdots \oplus A \otimes_{S} \operatorname{Hom}_{R}(A, B)\right)_{T} \cong(B$ $\oplus \cdots \oplus B)_{T} . \quad$ As $\operatorname{Hom}_{R}(A, B)$ is a T-generator so is B.

Proposition 1. 3. Assume that both ${ }_{R} B<\oplus_{R}(A \oplus \cdots \oplus A)$ and ${ }_{R} A<\oplus$ ${ }_{R}(B \oplus \cdots \oplus B)$. Then
(1) $\operatorname{End}_{T}(B) \cong \operatorname{End}_{S}(A)$ as rings.
(2) A is S-finitely generated projective if and only if B is so as a T-module.
(3) A is an S-generator if and only if B is so as a T-module.

Proof. (1) By (1.2) in [9] we have both $B_{T} \cong A \otimes_{S} \operatorname{Hom}_{R}(A, B)_{T}$ and $A_{S} \cong \operatorname{Hom}_{T}\left(\operatorname{Hom}_{R}(A, B), B\right)_{S}$. Then we have $\operatorname{Hom}_{T}(B, B) \cong \operatorname{Hom}_{T}\left(A \otimes_{S} \operatorname{Hom}_{R}\right.$ $(A, B), B) \cong \operatorname{Hom}_{S}\left(A, \operatorname{Hom}_{T}\left(\operatorname{Hom}_{R}(A, B), B\right)\right) \cong \operatorname{Hom}_{S}(A, A)$.
(2) Assume that A is S-finitely generated and projective. So $A_{S}<\oplus$ $(S \oplus \cdots \oplus S)_{S}$. Tensoring with $\operatorname{Hom}_{R}(A, B)$ over S we have $B_{T} \cong A \otimes_{S}$ $\operatorname{Hom}_{R}(A, B)_{T}<\oplus\left(\operatorname{Hom}_{R}(A, B) \oplus \cdots \oplus \operatorname{Hom}_{R}(A, B)\right)_{T}$. Since $\operatorname{Hom}_{R}(A, B)$ is T-finitely generated and projective by (1.5) in [9] so is B. The converse is similar. (3) was proved in (1.2) already.

Remark 1. When the assumptions in (1.3) are fulfiled the category of left (right) S-modules is equivalent to the category of left (right) T-modules ((1.5) in [9]). Therefore Proposition 1.3 is an obvious fact. Furthermore the property 'direct summand' is preserved in the above equivalences. We shall use this fact in $\$ 2$.

Remark 2. The isomorphism $\operatorname{End}_{T}(B) \cong \operatorname{End}_{S}(A)$ is given as follows. Let $v \in \operatorname{End}_{S}(A)$. Then corresponding $u \in \operatorname{End}_{T}(B)$ is given by the composition $B \cong A \otimes_{S} \operatorname{Hom}_{R}(A, B) \xrightarrow{v \otimes 1} A \otimes_{S} \operatorname{Hom}_{R}(A, B) \cong B$, and so, the isomorphisms stated in (1.2) in [9] are all $\operatorname{End}_{T}(B) \cong \operatorname{End}_{S}(A)$-admissible.

§2. Pairs of subrings and their centralizers

Let A be a ring and let B and Γ be subrings of A such that $B \supset \Gamma$. We consider the case that ${ }_{B} B \otimes_{\Gamma} \Lambda_{\Lambda}<\oplus{ }_{B}(\Lambda \oplus \cdots \oplus \Lambda)_{A}$. Then End ${ }_{(B, \Lambda)}$ (Λ, Λ), left B - and right Λ-endomorphisms of Λ, is isomorphic to the left multiplication of $D=V_{A}(B)=\Lambda^{B}$, the centralizer of B in Λ, and $\operatorname{Hom}_{(B, \Lambda)}$ ($B \otimes_{\Gamma} \Lambda, \Lambda$) is isomorphic to $\Delta=V_{\Lambda}(\Gamma)=\Lambda^{\Gamma}$, the centralizer of Γ in Λ. We have, by (1.2) in [9], $B \otimes_{\Gamma} \Lambda \cong \operatorname{Hom}_{D}\left({ }_{D} \Delta,{ }_{D} \Lambda\right), b \otimes \lambda \longrightarrow(\delta \longrightarrow b \delta \lambda)$, as left B - and right Λ-modules and Δ is left D-finitely generated and projective. Furthermore we have following isomorphisms.

$$
\Lambda \otimes_{D} \Delta \cong \operatorname{Hom}_{\Lambda}\left(\Lambda_{A}, \Lambda_{A}\right) \otimes_{D} \Delta \cong \operatorname{Hom}_{\Lambda}\left(\operatorname{Hom}_{D}\left({ }_{D} \Lambda,{ }_{D} \Lambda\right)_{\Lambda}, \Lambda_{\Lambda}\right) \cong \operatorname{Hom}_{A}\left(B \otimes_{\Gamma} \Lambda_{\Lambda}\right.
$$ $\left.\Lambda_{\Lambda}\right) \cong \operatorname{Hom}_{\Gamma}\left(B_{\Gamma}, \operatorname{Hom}_{\Lambda}\left(\Lambda_{\Lambda}, \Lambda_{A}\right)\right) \cong \operatorname{Hom}_{\Gamma}\left(B_{\Gamma}, \Lambda_{\Gamma}\right)$. The isomorphism of $\Lambda \otimes_{D} \Delta$ to $\operatorname{Hom}_{\Gamma}\left(B_{\Gamma}, \Lambda_{\Gamma}\right)$ is given by $\lambda \otimes \delta \longrightarrow(b \longrightarrow \lambda b \delta)$. Therefore this is left Λ - and right Δ-admissible. If B is right Γ-finitely generated and projective, then ${ }_{\Lambda} \operatorname{Hom}_{\Gamma}\left(B_{\Gamma}, \Lambda_{\Gamma}\right)_{\Delta}<\oplus{ }_{\Lambda} \operatorname{Hom}_{\Gamma}\left((\Gamma \oplus \cdots \oplus \Gamma)_{\Gamma}, \Lambda_{\Gamma}\right)_{\Delta} \cong{ }_{A}\left(\operatorname{Hom}_{\Gamma}\left(\Gamma_{\Gamma}, \Lambda_{\Gamma}\right) \oplus \cdots\right.$ $\left.\cdot \oplus \operatorname{Hom}_{\Gamma}\left(\Gamma_{\Gamma}, \Lambda_{\Gamma}\right)\right)_{\Delta} \cong{ }_{\Lambda}(\Lambda \oplus \cdots \oplus \Lambda)_{\Delta}$. We have

Proposition 2.1. Let Λ be a ring and let B and Γ be subrings of Λ such
that $B \supset \Gamma$. If ${ }_{B} B \otimes{ }_{\Gamma} \Lambda_{\Lambda}<\oplus_{B}(\Lambda \oplus \cdots \oplus \Lambda)_{A}$ then ${ }_{B} B \otimes_{\Gamma} \Lambda_{A} \cong{ }_{B} \operatorname{Hom}_{D}\left({ }_{D} \Delta,{ }_{D} \Lambda\right)_{\Lambda}$, $\Lambda \Lambda \otimes_{D} \Delta_{\Lambda} \cong{ }_{\Lambda} \operatorname{Hom}_{\Gamma}\left(B_{\Gamma}, \Lambda_{\Gamma}\right)_{\Delta}$ and Δ is left D-finitely generated and projective. If, further, B is right Γ-finitely generated and projective then ${ }_{\Lambda} \Lambda \otimes_{D} \Delta_{\Lambda}<\oplus{ }_{\Lambda}(\Lambda \oplus \cdots \oplus$ 1). .

We shall call a subring of a ring Λ be closed if it coincides with its second centralizer in Λ. From the above proposition we have

Theorem 2.2. There is a one to one correspondence between the set of pairs (B, Γ) of closed subrings of a ring Λ such that $B \supset \Gamma,{ }_{B} B \otimes_{\Gamma} \Lambda_{A}<\oplus_{B}(\Lambda \oplus \cdots \oplus \Lambda)_{A}$ and B is right Γ-finitely generated projective and the set of pairs (Δ, D) of closed subrings of Λ such that $\Delta \supset D,{ }_{\Lambda} \Lambda \otimes_{D} \Delta_{\Delta}<\oplus{ }_{\Lambda}(\Lambda \oplus \cdots \oplus \Lambda) \Delta$ and Δ is left D-finitely generated projective.

Now the endomorphism ring of $B \otimes_{\Gamma} \Lambda$ as a (B, Λ)-module is isomorphic to $\left(B \otimes_{\Gamma} \Lambda\right)^{r}=\left\{\xi \in B \otimes_{\Gamma} \Lambda \mid \gamma \xi=\xi \gamma, \gamma \in \Gamma\right\}$ and, as is easily seen, it is also isomorphic to $\operatorname{Hom}_{D}\left({ }_{D} \Delta,{ }_{D} \Delta\right)$ if ${ }_{B} B \otimes_{\Gamma} \Lambda_{A}<\oplus{ }_{B}(\Lambda \oplus \cdots \oplus \Lambda)_{A}$, where $\Delta=V_{A}(\Gamma)$ and $D=V_{\Lambda}(B)$. Contrary to $\S 1$ we consider $B \otimes_{\Gamma} \Lambda$ as a left $\left(B \otimes_{r} \Lambda\right)^{r}$-module.

Proposition 2.3. Let $B \supset \Gamma$ be subrings of a ring Λ such that ${ }_{B} B \otimes{ }_{\Gamma} \Lambda_{A}$ $<\oplus{ }_{B}(\Lambda \oplus \cdots \oplus \Lambda)_{A}$ and let $\Delta=V_{\Lambda}(\Gamma)$ and $D=V_{\Lambda}(B)$. Then the following hold.
(1) If $\Gamma_{\Gamma}<\oplus B_{\Gamma}$ then the contraction map $\varphi_{\Delta}: \Lambda \otimes_{D} \Delta \longrightarrow \Lambda, \varphi_{\Delta}(\lambda \otimes \delta)=\lambda \delta$, splits as a (Λ, Δ)-homomorphism.
(2) If the contraction map $\varphi_{B}: B \otimes_{\Gamma} \Lambda \longrightarrow \Lambda, \varphi_{B}(b \otimes \lambda)=b \lambda$, splits as a $(B, \Lambda)-$ homomorphism then ${ }_{D} D<\oplus_{D} \Delta$.
(3) Let C be the center of Λ and define the map $\eta: \Lambda \otimes r \Lambda \longrightarrow \operatorname{Hom}_{c}(\Lambda, \Lambda)$ by $\eta(x \otimes y)(\delta)=x \delta y$. If $B_{\Gamma}<\oplus \Lambda_{\Gamma}$ and η is a monomorphism, or if B is right Γ-finitely generated projective, $V_{\Lambda}\left(V_{A}(\Gamma)\right)=\Gamma$ and $\Gamma \Gamma<\oplus{ }_{\Gamma} \Lambda$, then $V_{\Lambda}\left(V_{A}(B)\right)=B$.
(4) Assume that ${ }_{B} \Lambda_{A}<\oplus_{B} B \otimes_{\Gamma} \Lambda_{\Lambda}$. Then $\left(B \otimes_{\Gamma} \Lambda\right)^{r}<\oplus B \otimes_{\Gamma} \Lambda$ as left $\left(B \otimes_{\Gamma} \Lambda\right)^{\Gamma}$-modules if and only if ${ }_{D} \Delta<\oplus_{D} \Lambda$.
(5) Assume that $V_{A}\left(V_{A}(\Gamma)\right) \subset B$. (This is the case when $V_{A}\left(V_{A}(B)\right)=B$.) If $\Gamma_{\Gamma}<\oplus B_{\Gamma}$ or $\Gamma_{\Gamma} \Gamma<\oplus \Gamma_{\Gamma}$ then $V_{\Lambda}\left(V_{\Lambda}(\Gamma)\right)=\Gamma$.

Proof. (1) Let $\psi_{B}: \operatorname{Hom}_{\Gamma}\left(B_{\Gamma}, \Lambda_{\Gamma}\right) \longrightarrow \Lambda$ be the map defined by $\psi_{B}(f)$ $=f(1), f \in \operatorname{Hom}_{\Gamma}\left(B_{\Gamma}, \Lambda_{\Gamma}\right)$. Then the following diagram

is commutative. If $\Gamma_{\Gamma}<\oplus B_{\Gamma}$, let $\pi: B \longrightarrow \Gamma$ be the projection and define $\psi_{B}^{\prime}: \Lambda \longrightarrow \operatorname{Hom}_{\Gamma}\left(B_{\Gamma}, \Lambda_{\Gamma}\right)$ by $\psi_{B}^{\prime}(\lambda)=\lambda_{l} \circ \pi$ where λ_{l} is the left multiplication of λ on B. Then ψ_{B}^{\prime} is a (Λ, Δ)-homomorphism such that $\psi_{B} \circ \psi_{B}^{\prime}=1_{\Lambda}$. Therefore $\dot{\varphi_{B}}$ splits.
(2) $\operatorname{By}(2.1) B \otimes_{\Gamma} \Lambda \cong \operatorname{Hom}_{D}\left({ }_{D} \Delta,{ }_{D} \Lambda\right)$ and the diagram

$$
\xrightarrow[\varphi_{B}]{B \otimes_{\Gamma} \Lambda \longrightarrow \operatorname{Hom}_{D}\left({ }_{D} \Lambda,{ }_{D} \Lambda\right)}
$$

is commutative, where $\psi_{\Delta}(g)=g(1), g \in \operatorname{Hom}_{D}\left({ }_{D} \Delta,{ }_{D} \Lambda\right)$. If $\varphi_{B}: B \otimes_{\Gamma} \Lambda \longrightarrow \Lambda$ splits as a (B, Λ)-homomorphism, then there exists $\psi_{A}^{\prime}: \Lambda \longrightarrow \operatorname{Hom}_{D}\left({ }_{D} \Lambda,{ }_{D} \Lambda\right)$ such that $\psi_{\Delta}^{\circ} \psi_{\Delta}^{\prime}=1_{A}$. If we let $\psi_{\Delta}^{\prime}(1)=\rho$, then $b \circ \rho=\rho \circ b, b \in B$ and $\rho(1)=1$. From this D is a left D-direct summand of Δ. We note that $\varphi_{B}: B \otimes_{\Gamma} \Lambda \longrightarrow \Lambda$ splits if and only if there exists an element $\Sigma b_{i} \otimes \lambda_{i} \in B \otimes_{\Gamma} \Lambda$ such that $\sum b b_{i} \otimes \lambda_{i}=\Sigma b_{i} \otimes \lambda_{i} b$ for $b \in B$ and $\sum b_{i} \lambda_{i}=1$. Then the projection from Δ to D is given by $\delta \longrightarrow \sum b_{i} \delta \lambda_{i}, \delta \in \Delta$.
(3) Assume that $B_{\Gamma}<\oplus \Lambda_{\Gamma}$ and $\eta: \Lambda \otimes_{\Gamma} \Lambda \longrightarrow \operatorname{Hom}_{C}(\Delta, \Lambda)$ is monomorphic. Let x be in $V_{\Lambda}\left(V_{\Lambda}(B)\right)=V_{\Lambda}(D)$ and consider the following commutative diagram

Then since $\eta(x \otimes 1)$ may consider as is in $\operatorname{Hom}_{D}\left({ }_{D} \Lambda,{ }_{D} \Lambda\right)$ we have $x \otimes 1 \in$ $B \otimes_{\Gamma} \Lambda$. Therefore $x \in B$, as $B_{\Gamma}<\oplus \Lambda_{\Gamma}$. Next we assume that B is right Γ-projective, $V_{A}\left(V_{A}(\Gamma)\right)=\Gamma$ and ${ }_{\Gamma} \Gamma<\oplus{ }_{\Gamma} \Lambda$. Since B is right Γ-finitely generated and projective, $\Lambda \Lambda \otimes_{D} \Delta_{\Delta}<\oplus_{\Lambda}(\Lambda \oplus \cdots \oplus \Lambda)_{\Delta}$ by (2.1). Therefore if we put $V_{\Lambda}(\Delta)=B^{\prime}$ then $B^{\prime} \otimes_{\Gamma} \Lambda \cong \operatorname{Hom}_{D}\left({ }_{D} \Delta,{ }_{D} \Lambda\right)$. Since $B \otimes_{\Gamma} \Lambda \cong \operatorname{Hom}_{D}\left({ }_{D} \Delta,{ }_{D} \Lambda\right)$, from the sequence

$$
0 \longrightarrow B \longrightarrow B^{\prime} \longrightarrow B^{\prime} / B \longrightarrow 0
$$

we have $B^{\prime} \mid B \otimes_{\Gamma} \Lambda=0$. As $\Gamma \Gamma<\oplus_{\Gamma} \Lambda, B^{\prime} \mid B=0$ and $B=B^{\prime}$.
(4) Since ${ }_{B} \Lambda_{A}<\oplus_{B} B \otimes_{\Gamma} \Lambda_{A}<\oplus_{B}(\Lambda \oplus \cdots \oplus \Lambda)_{A}$ we can use Remark 1 in §1. $\quad \operatorname{By}(1.1)$ in [9] we have $\left(B \otimes_{\Gamma} \Lambda\right)^{\Gamma} \cong \operatorname{Hom}_{(B, \Lambda)}\left(B \otimes_{\Gamma} \Lambda, B \otimes_{\Gamma} \Lambda\right) \cong \operatorname{Hom}_{(B, \Lambda)}$
$\left(\Lambda, B \otimes_{\Gamma} \Lambda\right) \otimes_{D} \operatorname{Hom}_{(B, \Lambda)}\left(B \otimes_{\Gamma} \Lambda, \Lambda\right)$. On the other hand by (1.2) in [9] $B \otimes_{r} \Lambda \cong \operatorname{Hom}_{(B, \Lambda)}\left(\Lambda, B \otimes_{r} \Lambda\right) \otimes_{D} \Lambda$. Here we are considering Λ and $B \otimes_{r} \Lambda$ as left D - and left $\left(B \otimes_{\Gamma} \Lambda\right)^{\Gamma}$-modules respectively. Then $\left(B \otimes_{\left.\Gamma^{\Lambda}\right) \Gamma}\left(B \otimes_{\Gamma} \Lambda\right)^{r}<\right.$ $\oplus_{\left(B \otimes_{\Gamma} \Lambda\right) \Gamma} B \otimes_{\Gamma} \Lambda$ means that $\operatorname{Hom}_{(B, \Lambda)}\left(\Lambda, B \otimes_{\Gamma} \Lambda\right) \otimes_{D} \operatorname{Hom}_{(B, \Lambda)}\left(B \otimes_{\Gamma} \Lambda, \Lambda\right)<\oplus$ $\operatorname{Hom}_{(B, \Lambda)}\left(\Lambda, B \otimes_{r} \Lambda\right) \otimes_{D} \Lambda$. By Remark 1 in $\S 1$, this implies that ${ }_{D} \Lambda \cong \operatorname{Hom}_{(B, \Lambda)}$ $\left(B \otimes_{\Gamma} \Lambda, \Lambda\right)<\oplus_{D} \Lambda$. The converse is obtained by tensoring with $\operatorname{Hom}_{(B, \Lambda)}$ ($\Lambda, B \otimes_{r} \Lambda$) over D.
(5) Let x be in $V_{A}\left(V_{A}(\Gamma)\right)=V_{A}(\Delta)$. Since $B \otimes_{\Gamma} \Lambda \cong \operatorname{Hom}_{D}\left({ }_{D} \Delta,{ }_{D} \Lambda\right)$ we have $x \otimes 1=1 \otimes x$ in $B \otimes_{\Gamma} \Lambda$. Assume $B_{\Gamma}=\left(\Gamma \oplus \Gamma^{\prime}\right)_{\Gamma}$ and write $x=y+z$, $y \in \Gamma, z \in \Gamma^{\prime}$. Then $B \otimes_{\Gamma} \Lambda=\Gamma \otimes_{\Gamma} \Lambda \oplus \Gamma^{\prime} \otimes_{\Gamma} \Lambda$ and $y \otimes 1+z \otimes 1=x \otimes 1=$ $1 \otimes x \in \Gamma \otimes A$. Therefore $x \otimes 1=y \otimes 1$ and $x=y \in \Gamma$. The case of ${ }_{\Gamma} \Gamma<\oplus_{\Gamma} \Lambda$ is similar.

Remark 1. η in (3) of (2.3) is a monomorphism (isomorphism) if Λ is H-separable over B. For, then we have $\Lambda \otimes_{\Gamma} \Lambda \cong \Lambda \otimes_{B} B \otimes_{\Gamma} \Lambda<\oplus \Lambda \otimes_{B} \Lambda \oplus \cdots$ $\oplus \Lambda \otimes_{B} \Lambda<\oplus \Lambda \oplus \cdots \oplus \Lambda$ and Λ is H-separable over Γ, and so $\Lambda \otimes_{\Gamma} \Lambda \cong \mathrm{Hom}_{c}$ (Λ, Λ) (cf. §2 in [9]).

Remark 2. If ${ }_{B} \Lambda_{A}<\oplus_{B}\left(B \otimes_{\Gamma} \Lambda \oplus \cdots \oplus B \otimes_{\Gamma} \Lambda\right)_{A}$ then ${ }_{B} \Lambda_{A}<\oplus_{B} B \otimes_{\Gamma} \Lambda_{A}$ and the contraction map $B \otimes_{r} \Lambda \longrightarrow \Lambda$ splits as a (B, Λ)-homomorphism.

Proposition 2.4. Assume that ${ }_{B} \Lambda_{A}<\oplus_{B} B \otimes_{\Gamma} \Lambda_{A}<\oplus_{B}(\Lambda \oplus \cdots \oplus \Lambda)_{A}$ and let $\Delta=V_{A}(\Gamma)$ and $D=V_{\Lambda}(B)$. Then ${ }_{D} D<\oplus_{D} \Lambda$ if and only if ${ }_{D} \Delta<\oplus_{D} \Lambda$.

Proof. By (1.3) $V=\operatorname{End}_{D}(\Lambda) \cong \operatorname{End}_{T}\left(B \otimes_{\Gamma} \Lambda\right)=U \quad$ where $\quad T=\operatorname{End}_{(B, \Lambda)}$ $\left(B \otimes_{\Gamma} \Lambda\right) \cong\left(B \otimes_{\Gamma} \Lambda\right)^{\Gamma}$. If ${ }_{D} D<\oplus_{D} \Lambda$ then Λ is V-finitely generated and projective. Since $\operatorname{Hom}_{(B, \Lambda)}\left(\Lambda, B \otimes_{\Gamma} \Lambda\right)$ is D-finitely generated and projective by (1.2) in [9], $\operatorname{Hom}_{(B, \Lambda)}\left(\Lambda, B \otimes_{\Gamma} \Lambda\right) \otimes_{D} \Lambda$ is V-finitely generated and projective. Since the isomorphism of U to V is given through the isomorphism $B \otimes_{\Gamma} \Lambda \cong$ $\operatorname{Hom}_{(B, \Lambda)}\left(\Lambda, B \otimes_{\Gamma} \Lambda\right) \otimes_{D} \Lambda$ (Remark 2 in $\left.\S 1\right) B \otimes_{\Gamma} \Lambda$ is U-finitely generated and projective. On the other hand $U \longrightarrow B \otimes_{\Gamma} \Lambda$ defined by $f \longrightarrow f(1 \otimes 1)$, $f \in U$, is epimorphic since B_{l} and Λ_{r} are in U, and so splits as a U-homomorphism. Therefore $\operatorname{End}_{U}\left(B \otimes_{\Gamma} \Lambda\right)=\operatorname{End}_{(B, \Lambda)}\left(B \otimes_{\Gamma} \Lambda\right) \cong\left(B \otimes_{\Gamma} \Lambda\right)^{r}$ is a direct summand of $B \otimes_{\Gamma} \Lambda$ as a $\left(B \otimes_{\Gamma} \Lambda\right)^{r}$-module. So ${ }_{D} \Delta<\oplus_{D} \Lambda$ by (4) in (2.3). The converse is a similar argument. Or, by (2) in (2.3) ${ }_{D} D<\oplus_{D} \Delta$ and so ${ }_{D} D<\oplus{ }_{D} \Lambda$.

Proposition 2.5. Assume that ${ }_{B} B \otimes_{\Gamma} \Lambda_{\Lambda}<\oplus_{B}(\Lambda \oplus \cdots \oplus)_{A}$ and let $\Delta=V_{A}(\Gamma)$ and $D=V_{\Lambda}(B)$. Then for every right 1 -module $M, \operatorname{Hom}_{\Gamma}\left(B_{\Gamma}, M_{\Gamma}\right) \cong M \otimes_{D} \Delta$.

If further B is right Γ-finitely generated and projective then $B \otimes_{\Gamma} N \cong \operatorname{Hom}_{D}\left({ }_{D} \Delta,{ }_{D} N\right)$ for any left 1 -module N.

Proof. Since $B \otimes_{\Gamma} \Lambda \cong \operatorname{Hom}_{D}\left({ }_{D} \Delta,{ }_{D} \Lambda\right)$ and Δ is D-finitely generated and projective, we have $\operatorname{Hom}_{\Gamma}\left(B_{\Gamma}, M_{\Gamma}\right) \cong \operatorname{Hom}_{\Gamma}\left(B_{\Gamma}, \operatorname{Hom}_{\Lambda}(\Lambda, M)_{\Gamma}\right) \cong \operatorname{Hom}_{\Lambda}\left(B \otimes_{\Gamma} \Lambda\right.$, $M) \cong \operatorname{Hom}_{\Lambda}\left(\operatorname{Hom}_{D}\left({ }_{D} \Delta,{ }_{D} \Lambda\right), M\right) \cong \operatorname{Hom}_{A}(\Lambda, M) \otimes_{D} \Delta=M \otimes_{D} \Delta$. Similarly we have $\operatorname{Hom}_{D}\left({ }_{D} \Delta,{ }_{D} N\right) \cong \operatorname{Hom}_{D}\left(\Delta, \operatorname{Hom}_{\Lambda}(\Lambda, N)\right) \cong \operatorname{Hom}_{\Lambda}\left(\Lambda \otimes_{D} \Delta, N\right) \cong \operatorname{Hom}_{A}\left(\operatorname{Hom}_{\Gamma}\right.$ $\left.\left(B_{\Gamma}, \Lambda_{\Gamma}\right), N\right) \cong B \otimes_{\Gamma} \operatorname{Hom}_{A}(\Lambda, N) \cong B \otimes_{\Gamma} N$ since B is right Γ-finitely generated and projective.

§3. Separable extensions

In $\S 2$ if we take $B=\Lambda$ then we have the condition $\Lambda_{\Lambda} \Lambda \otimes_{\Gamma} \Lambda_{A}<\oplus \oplus_{\Lambda}(\Lambda \oplus$ $\cdots \oplus \Lambda)_{A}$ for a ring Λ and its subring Γ. When this condition holds we have proved that Λ is a separable extension of Γ, that is, the contraction $\operatorname{map} \varphi: \Lambda \otimes_{r} \Lambda \longrightarrow \Lambda, \varphi(x \otimes y)=x y$, splits as a (Λ, Λ)-homomorphism ((2.2) in [9]). We shall call such an extension an H-separable extension. Let $\Delta=V_{A}(\Gamma)$ and $C=$ the center of Λ. Then by (2.1)

Proposition 3.1. If Λ is an H-separable extension of Γ, then $\Lambda \otimes_{\Gamma} \Lambda \cong$ $\operatorname{Hom}_{c}(\Delta, \Lambda), \Lambda \otimes_{c} \Delta \cong \operatorname{Hom}_{\Gamma}\left(\Lambda_{\Gamma}, \Lambda_{\Gamma}\right), \Delta \otimes_{c} \Lambda \cong \operatorname{Hom}_{\Gamma}\left(\Gamma_{\Gamma} \Lambda, r^{\prime} \Lambda\right)$ and Δ is C-finitely generated and projective. Furthermore, if Λ is right Γ-finitely generated and projective then $\Lambda \Lambda \otimes_{c} \Delta_{\Lambda}<\oplus_{\Lambda}(\Lambda \oplus \cdots \oplus \Lambda)_{\Lambda}$, and, if Λ is left Γ-finitely generated and projective then ${ }_{\Delta} \Delta \otimes_{\mathrm{c}} \Lambda_{\Lambda}<\oplus \Delta(\Lambda \oplus \cdots \oplus \Lambda)_{\Lambda}$.

Remark. We shall show further $\Delta \otimes_{c} \Delta \cong \operatorname{Hom}_{(\Gamma, \Gamma)}(\Lambda, \Lambda)$ in $\S 4$.
Proposition 3.2. Let Λ be an H-separable extension of Γ and let $\Delta=V_{\Lambda}(\Gamma)$ and $C=$ the center of Λ. Then $\Gamma_{\Gamma}<\oplus \Lambda_{\Gamma}$ if and only if the contraction map $\Lambda \otimes_{C} \Delta$ $\longrightarrow \Lambda$ splits as a (Λ, Δ)-homomorphism and $V_{\Lambda}(\Delta)=\Gamma . \quad$ Similarly ${ }_{\Gamma} \Gamma<\oplus_{\Gamma} \Lambda$ if and only if $\Delta \otimes_{C} \Lambda \longrightarrow \Lambda$ splits as a (Λ, Λ)-homomorphism and $V_{\Lambda}(\Lambda)=\Gamma$.

Proof. The following diagram

$$
\Lambda \otimes_{\varphi} \Delta \xrightarrow{i}{\underset{\Lambda}{\operatorname{Hom}}}_{\operatorname{Hom}_{\Gamma}\left(\Lambda_{\Gamma}, \Lambda_{\Gamma}\right)}
$$

is commutative where i, φ and ψ are defined as follows: $i(\lambda \otimes \delta)(x)=\lambda x \delta$, $\varphi(\lambda \otimes \delta)=\lambda \delta$ and $\psi(f)=f(1)$ respectively. If $\Gamma_{\Gamma}<\oplus \Lambda_{\Gamma}$ then letting π be the projection from Λ to Γ, the $\operatorname{map} \psi^{\prime}: \Lambda \longrightarrow \operatorname{Hom}_{\Gamma}\left(\Lambda_{\Gamma}, \Lambda_{\Gamma}\right), \psi^{\prime}(\lambda)=\lambda_{l} \circ \pi$, is a (Λ, Δ)-homomorphism and $\psi \circ \psi^{\prime}=1_{\Lambda}$. Therefore $\varphi: \Lambda \otimes \Delta \longrightarrow \Lambda$ splits as a
(Λ, Δ)-homomorphism. That $V_{\Lambda}(\Delta)=\Gamma$ is Proposition 1.2 in [15]. Conversely if there exists $\varphi^{\prime}: \Lambda \longrightarrow \Lambda \otimes_{C} \Delta$ such that $\varphi \circ \varphi^{\prime}=1_{\Lambda}$, let $\pi=i \circ \varphi^{\prime}(1)$. Then $\delta \circ \pi=\pi \circ \delta$ for any $\delta \in \Delta$ and $\pi(1)=1$. Therefore $\pi(\lambda) \in V_{\Lambda}(\Delta)=\Gamma$ for $\lambda \in \Lambda$ and $\pi(\gamma)=\gamma$ for $\gamma \in \Gamma$, and so $\Gamma_{\Gamma}<\oplus \Lambda_{\Gamma}$. Another statement is similar.

Proposition 3.3. Let Λ be a ring C the center of Λ, Δ a subring of Λ containing C and let $\Gamma=V_{\Lambda}(\Delta)$. If $\Lambda \Lambda \otimes_{C} \Delta_{\Delta}<\oplus \Lambda(\Lambda \oplus \cdots \oplus \Lambda)_{\Delta}$ then $\Lambda \otimes_{C} \Delta \cong$ $\operatorname{Hom}_{\Gamma}\left(\Lambda_{\Gamma}, \Lambda_{\Gamma}\right), \Lambda \otimes_{\Gamma} \Lambda \cong \operatorname{Hom}_{C}(\Lambda, \Lambda)$ and Λ is right Γ-finitely generated projective. If $\Delta \Delta \otimes_{C} \Lambda_{\Lambda}<\oplus \Theta_{\Delta}(\Lambda \oplus \cdots \oplus \Lambda)_{A}$ then $\Delta \otimes_{C} \Lambda \cong \operatorname{Hom}_{\Gamma}\left({ }_{\Gamma} \Lambda,{ }_{\Gamma} \Lambda\right), \quad \Lambda \otimes_{\Gamma} \Lambda \cong \operatorname{Hom}_{C}$ (Δ, Λ) and Λ is left Γ-finitely generated projective.

Proof. This is a special case of (2.1).
From (3.3) and (2.3) we can easily prove the following proposition by the same argument.

Proposition 3.4. Let Λ be a ring with the center C, Δ a subring of Λ containing C and let $\Gamma=V_{\Lambda}(\Delta)$. Assume that $\Lambda \Lambda \otimes_{C} \Delta_{\Lambda}<\oplus_{A}(\Lambda \oplus \cdots \oplus \Lambda)_{\Delta}$. Then
(1) ${ }_{c} C<\oplus_{c} \Delta$ if and only if Λ is a separable extension of Γ.
(2) If Δ is C-finitely generated and projective then Λ is an H-separable extension of Γ.
(3) If the contraction map $\Lambda \otimes_{C} \Delta \longrightarrow \Lambda$ splits as a (Λ, Δ)-homomorphism then $\Gamma_{\Gamma}<\oplus \Lambda_{\Gamma}$.
(4) If ${ }_{c} \Delta<\oplus_{c} \Lambda$ and $\eta: \Lambda \otimes_{C} \Lambda \longrightarrow \operatorname{Hom}_{C}(\Lambda, \Lambda)$ is a monomorphism or if ${ }_{c} C<\oplus_{C} \Lambda$ and Δ is C-finitely generated projective then $V_{\Lambda}\left(V_{\Lambda}(\Delta)\right)=\Delta$.

There is a similar statement for Λ, Δ and C such that ${ }_{\Delta} \Delta \otimes_{C} \Lambda_{A}<\oplus_{\Lambda}(\Lambda \oplus$ $\cdots \oplus \Lambda)_{\Lambda}$.

From (3.1), (3.3) and (3.4) we have the following theorem.
Theorem 3.5. There is a one to one correspondence between the set of closed subrings Γ 's of a ring Λ such that Λ is H-separable over Γ and Λ is right (left) Γ-finitely generated projective, and the set of closed subrings Δ 's of 1 containing the center C of Λ such that $\Lambda \Lambda \otimes_{C} \Delta_{\Delta}<\oplus \Lambda_{\Lambda}(\Lambda \oplus \cdots \oplus \Lambda)_{\Delta}\left(\Delta \Delta \otimes_{c} \Lambda_{\Lambda}<\oplus_{\Delta}(\Lambda \oplus \cdots \oplus \Lambda)_{\Lambda}\right)$ and Δ is C-finitely generated projective.

From (2.3) and (2.4) letting $B=\Lambda$ we have
Proposition 3.6. Let Λ be a ring with the center C, Γ a subring of Λ.

Assume that ${ }_{\Lambda} \Lambda \otimes_{\Gamma} \Lambda_{\Lambda}<\oplus{ }_{\Lambda}(\Lambda \oplus \cdots \oplus \Lambda)_{\Lambda}$ and let $T=\operatorname{End}_{(\Lambda, \Lambda)}\left(\Lambda \otimes_{\Gamma} \Lambda\right) \cong\left(\Lambda \otimes_{\Gamma} \Lambda\right)^{\Gamma}$. Then the following are equivalent.
(1) ${ }_{c} C<\oplus_{c} \Lambda$.
(2) ${ }_{T}\left(\Lambda \otimes_{\Gamma} \Lambda\right)^{r}<\oplus_{T} \Lambda \otimes_{\Gamma} \Lambda$.
(3) ${ }_{c} \Delta<\oplus{ }_{c} \Lambda$.

Theorem 3.7. Let Λ be a ring with the center C, Γ a subring of 1. Assume that C is a C-direct summand of Λ. Then there is a one to one correspondence between the set of subrings Γ 's of Λ such that Λ is H-separable over Γ, Λ is right (left) Γ-finitely generated projective and $\Gamma_{\Gamma}<\oplus \Lambda_{\Gamma}\left(\Gamma \Gamma<\oplus{ }_{\Gamma} \Lambda\right)$, and the set of subrings Δ 's of Λ containing C such that $\Lambda_{\Lambda}<\Lambda_{\Lambda} \Lambda \otimes_{C} \Delta_{\Delta}<\oplus \oplus_{\Lambda}(\Lambda \oplus \cdots \oplus \Lambda)_{\Delta}$ $\left(\Delta \Lambda_{\Lambda}<\oplus \Delta \Delta \otimes_{C} \Lambda_{\Delta}<\oplus \Delta(\Lambda \oplus \cdots \oplus \Lambda)_{A}\right)$, and Δ is C-finitely generated projective.

Proof. If $\Gamma_{\Gamma}<\oplus \Lambda_{\Gamma}$ then Γ is closed by (3.2). If Δ satisfies the assumptions of the theorem then Δ is closed by (4) of (3.4). Therefore the theorem follows from (3.5).

Note that ${ }_{\Lambda} \Lambda \otimes_{C} \Delta_{\Delta}<\oplus{ }_{\Lambda}(\Lambda \oplus \cdots \oplus \Lambda)_{\Delta}$ means that left $\Lambda \otimes_{C} \Lambda^{0}$-module Λ is a generator where Δ^{0} is the opposite ring of Δ.

Proposition 3. 8. Let 1 be a ring with the center C and Γ a subring of 1. Assume that Λ is an H-separable extension of Γ and let $T=\operatorname{End}_{(\Lambda, \Lambda)}\left(\Lambda \otimes \otimes_{\Gamma} \Lambda\right)$. Then $\operatorname{End}_{T}\left(\Lambda \otimes_{\Gamma} \Lambda\right) \cong \operatorname{Hom}_{C}(\Lambda, \Lambda)$, and Λ is C-finitely generated projective if and only if $\Lambda \otimes_{\Gamma} \Lambda$ is T-finitely generated projective.

Proof. Since $\Lambda_{\Lambda} \Lambda_{\Lambda}<\oplus \Lambda_{\Lambda} \Lambda \otimes_{\Gamma} \Lambda_{\Lambda}$ we can apply (1.3).
From (2.5) we have
Proposition 3.9. Let Λ be an H-separable extension of Γ and let $\Delta=V_{A}(\Gamma)$ and C the center of Λ. Then for any right (left) 1 -module $M(N) \operatorname{Hom}_{\Gamma}\left(\Lambda_{\Gamma}, M_{\Gamma}\right)$ $\cong M \otimes_{C} \Delta\left(\operatorname{Hom}_{\Gamma}\left(\Gamma_{\Gamma} \Lambda,{ }_{\Gamma} N\right) \cong \Delta \otimes_{C} N\right)$. If further Λ is right (left) Γ-finitely generated projective then $\Lambda \otimes_{\Gamma} N \cong \operatorname{Hom}_{C}(\Delta, N)\left(M \otimes_{\Gamma} \Lambda \cong \operatorname{Hom}_{C}(\Delta, M)\right)$.

§4. Separable subextensions

In this section we shall deal with a ring Λ and its subrings $B \supset \Gamma$ such that B is H-separable over Γ. Since ${ }_{B} B \otimes_{\Gamma} B_{B}<\oplus \oplus_{B}(B \oplus \cdots \oplus B)_{B}$, tensoring with Λ over B there yields ${ }_{\Lambda} \Lambda \otimes_{\Gamma} B_{B} \Lambda(\Lambda \oplus \cdots \oplus \Lambda)_{B}$ or ${ }_{B} B \otimes_{\Gamma} \Lambda_{A}<\oplus_{B}(\Lambda \oplus \cdots$ $\oplus \Lambda)_{A}$. Therefore all propositions in $\S 2$ hold for the da'ta Λ, B and Γ such
that B is H-separable over Γ. We shall study about further properties of them.

Let B^{r} be the centralizer of Γ in B and B^{B} the center of B. Then, since B is H-separable over Γ, for any two-sided B-module $M, M^{\Gamma} \cong B^{T} \bigotimes_{B B} M^{B}$ by Theorem 1.2 in [15] where $M^{\Gamma}=\{m \in M \mid \gamma m=m \gamma, \gamma \in \Gamma\}$ and $M^{B}=$ $\{m \in M \mid b m=m b, b \in B\}$. Therefore if we put $\Lambda^{\Gamma}=\Delta$ and $\Lambda^{B}=D$ then $\Delta \cong B^{r} \otimes_{B B} D$.

Proposition 4.1. Let Λ be a ring, B and Γ subrings of Λ such that $B \supset \Gamma$. Let Δ and D be the centralizers of Γ and B in Λ respectively. If B is H-separable over Γ then $\Delta \otimes_{D} \Delta \cong \operatorname{Hom}_{(\Gamma, \Gamma)}(B, \Lambda)$ and ${ }_{D} D_{D}<\oplus_{D} \Delta_{D}<\oplus_{D}(D \oplus \cdots \oplus D)_{D}$. If further B is closed in $\Lambda\left(V_{\Lambda}\left(V_{\Lambda}(B)\right)=B\right)$ then $B \otimes_{\Gamma} B \cong \operatorname{Hom}_{(D, D)}(\Lambda, \Lambda)$.

Proof. Since B is H-separable over $\Gamma, B \otimes_{\Gamma} B \cong \operatorname{Hom}_{B B}\left(B^{\Gamma}, B\right)$ and B^{Γ} is B^{B}-finitely generated and projective. And so B^{B} is B^{B}-direct summand of B^{T}. We have $B_{B B}^{B}<\oplus B_{B}^{\Gamma}<\oplus\left(B^{B} \oplus \cdots \oplus B^{B}\right)_{B_{B}}$. Tensoring with D over B^{B} this yields $D<\oplus \Delta<\oplus D \oplus \cdots \oplus D$ as two-sided D-modules.

Next, we have $\Delta \otimes_{D} \Delta \cong B^{\Gamma} \otimes_{B B} D \otimes_{D} \Delta \cong B^{\Gamma} \otimes_{B^{B}} \Delta \cong B^{\Gamma} \otimes_{B^{B}} \operatorname{Hom}_{(B, \Gamma)}(B, \Lambda)$ $\cong \operatorname{Hom}_{(B, \Gamma)}\left(\operatorname{Hom}_{B B}\left(B^{\Gamma}, B\right), \Lambda\right) \quad\left(B^{\Gamma}\right.$ is B^{B}-finitely generated and projective) $\cong \operatorname{Hom}_{(B, \Gamma)}\left(B \otimes_{\Gamma} B, \Lambda\right) \cong \operatorname{Hom}_{(\Gamma, \Gamma)}\left(B, \operatorname{Hom}_{B}\left({ }_{B} B,{ }_{B} \Lambda\right)\right) \cong \operatorname{Hom}_{(\Gamma, \Gamma)}(B, \Lambda)$.

Last, we assume that B is closed. We have $\operatorname{Hom}_{(D, D)}(\Lambda, \Lambda) \cong \operatorname{Hom}_{(D, D)}$ $\left(B^{\Gamma} \otimes_{B B} D, \Lambda\right) \cong \operatorname{Hom}_{B B}\left(B^{\Gamma}, \operatorname{Hom}_{(D, D)}(D, \Lambda)\right) \cong \operatorname{Hom}_{B B}\left(B^{\Gamma}, B\right)$ as $\operatorname{Hom}_{(D, D)}(D, \Lambda)$ $\cong V_{A}(D)=B$. Since $B \otimes_{\Gamma} B \cong \operatorname{Hom}_{B B}\left(B^{\Gamma}, B\right)$ we have $\operatorname{Hom}_{(D, D)}(\Delta, \Lambda)=B \otimes_{r} B$.

Corollary 4.2. Let Λ be a ring, B and Γ subrings of Λ such that B is H-separable over Γ. If ${ }_{\Gamma} \Gamma_{\Gamma}<\oplus_{\Gamma} B_{\Gamma}$ then Δ is separable over D, and if $\Gamma_{\Gamma}<\oplus$ $\Gamma(\Gamma \oplus \cdots \oplus \Gamma)_{\Gamma}$ then Δ is H-separable over D.

Proof. We have following commutative diagram

where φ is the contraction map and $\psi(f)=f(1), f \in \operatorname{Hom}_{(r, \Gamma)}(B, \Lambda)$. If ${ }_{\Gamma} \Gamma_{\Gamma}<\oplus_{\Gamma} B_{\Gamma}$ then, letting π be the projection of B to $\Gamma, \psi^{\prime}: \Delta \longrightarrow \operatorname{Hom}_{(\Gamma, \Gamma)}$ (B, Λ) defined by $\psi^{\prime}(\delta)=\delta_{l} \circ \pi=\delta_{r} \circ \pi$ is a two-sided Δ-homomorphism. Therefore Δ is separable over D.

If ${ }_{\Gamma} B_{\Gamma}<\oplus \Gamma_{\Gamma}(\Gamma \oplus \cdots \oplus \Gamma)_{\Gamma}$ then $\Delta \otimes_{D} \Delta \cong \operatorname{Hom}_{(\Gamma, \Gamma)}(B, \Lambda)<\oplus \operatorname{Hom}_{(\Gamma, \Gamma)}$
$(\Gamma \oplus \cdots \oplus \Gamma, \Lambda) \cong \operatorname{Hom}_{(\Gamma, \Gamma)}(\Gamma, \Lambda) \oplus \cdots \oplus \operatorname{Hom}_{(\Gamma, \Gamma)}(\Gamma, \Lambda) \cong \Delta \oplus \cdots \oplus \Delta$. Therefore Δ is H-separable over D.

Proposition 1. 4 in [15] asserts that for a separable subextension B of Γ in an H-separable extension Λ of Γ, Λ is an H-separable extension of B if Λ, Γ and B satisfy the assumption in Proposition 1.3 in [15]. But the last assumption is not necessary. That is

Proposition 4. 3. Let A be an H-separable extension of Γ and B a separable subextension of Γ in Λ. Then Λ is H-separable over B and ${ }_{D} D_{D}<\oplus_{D} \Delta_{D}$ where $\Delta=V_{A}(\Gamma)$ and $D=V_{A}(B)$.

Proof. Since B is separable over $\Gamma,{ }_{B} B_{B}<\oplus_{B} B \otimes_{\Gamma} B_{B}$. Tensoring with Λ over B on both sides, we have $\Lambda_{\Lambda} \otimes_{B} \Lambda_{A}<\oplus \Theta_{\Lambda} \Lambda \otimes_{\Gamma} \Lambda_{A}$ and since Λ is H -
 $<\oplus_{A}(\Lambda \oplus \cdots \oplus \Lambda)_{A}$ and Λ is H-separable over B. That ${ }_{D} D_{D}<\oplus_{D} \Delta_{D}$ has been proved in [15] without further assumptions.

Instead of the assumption ${ }_{B} B_{\Gamma}<\oplus_{B} \Lambda_{\Gamma}$ in Proposition 1.3 in [15] we can assume that B is H-separable over Γ or more weakly ${ }_{B} B \otimes_{[} \Lambda_{A}<\oplus_{B}(\Lambda \oplus \cdot$ - $\oplus \Lambda$) .

Lemma 4.4. Let Λ be a ring, $B \supset \Gamma$ subrings of Λ. If B is H-separable over Γ and $\Gamma_{\Gamma}<\oplus \Lambda_{\Gamma}\left({ }_{\Gamma} \Gamma<\oplus \Gamma_{\Gamma} \Lambda\right)$ then $B_{B}<\oplus \Lambda_{B}\left({ }_{B} B<\oplus{ }_{B} \Lambda\right)$.

Proof. Since ${ }_{B} B \otimes{ }_{r} B_{B}<\oplus_{B}(B \oplus \cdots \oplus B)_{B}$ tensoring with Λ over B we have $\Lambda \Lambda \otimes_{\Gamma} B_{B}<\oplus \Lambda(\Lambda \oplus \cdots \oplus \Lambda)_{B}$. If $\Gamma_{\Gamma}<\oplus \Lambda_{\Gamma}$ then $B_{B} \cong \Gamma \otimes_{\Gamma} B<\oplus \Lambda \otimes_{\Gamma} B$. Therefore $B_{B}<\oplus(\Lambda \oplus \cdots \oplus \Lambda)_{B}$ and $B_{B}<\oplus \Lambda_{B}$ since Λ is a ring.

Lemma 4.5. Assume that Λ is H-separable over Γ and that B is an H separable subextension of Γ in Λ. If $\Gamma_{\Gamma}<\oplus \Lambda_{\Gamma}$ or ${ }_{\Gamma} \Gamma<\oplus \Gamma_{\Gamma} \Lambda$ then $V_{\Lambda}\left(V_{A}(B)\right)=B$.

Proof. By (4.3) Λ is H-separable over B, and by (4.4) $B_{B}<\oplus \Lambda_{B}$ or ${ }_{B} B<\oplus_{B} \Lambda$. Therefore by Proposition 1.2 in [15] $V_{A}\left(V_{A}(B)\right)=B$.

Let R be a ring, M a two-sided R-module. If ${ }_{R} M_{R}<\oplus{ }_{R}(R \oplus \cdots \oplus R)_{R}$ we shall call M a centrally projective module. We shall prove in $\S 5$ the following fact in more general form. Let S be an overring of a ring R. If S is R-centrally projective then ${ }_{R} R_{R}<\oplus_{R} S_{R}$.

Lemma 4.6. Let Λ be a ring, $B \supset \Gamma$ subrings of Λ. If B is H-separable over Γ and Λ is Γ-centrally projective then Λ is B-centrally projective and B is Γ centrally projective.

Proof. Since ${ }_{\Gamma} \Lambda_{\Gamma}<\oplus_{\Gamma}(\Gamma \oplus \cdots \oplus \Gamma)_{\Gamma}$ tensoring with B over Γ we have ${ }_{B} B \otimes_{\Gamma} \Lambda_{\Gamma}<\oplus_{B}(B \oplus \cdots \oplus B)_{\Gamma}$. On the other hand since ${ }_{B} B_{B}<\oplus_{B} B \otimes_{\Gamma} B_{B}$ we have ${ }_{B} \Lambda_{A} \cong_{B} B \otimes_{B} \Lambda_{A}<\oplus_{B} B \otimes_{\Gamma} \Lambda_{\Lambda}$. Therefore ${ }_{B} \Lambda_{\Gamma}<\oplus_{B}(B \oplus \cdots \oplus B)_{\Gamma}$. Furthermore tensoring with B over Γ we have ${ }_{B} \Lambda \otimes_{\Gamma} B_{B}<\oplus_{B}\left(B \otimes_{\Gamma} B \oplus \cdots \oplus \otimes_{\Gamma} B\right)_{B}$. Since ${ }_{\Lambda} \Lambda_{B}<\oplus{ }_{\Lambda} \Lambda \otimes_{\Gamma} B_{B}$ and ${ }_{B} B \otimes_{\Gamma} B_{B}<\oplus{ }_{B}(B \oplus \cdots \oplus B)_{B}$ we have ${ }_{B} \Lambda_{B}<\oplus$ ${ }_{B}(B \oplus \cdots \oplus B)_{B}$. As we noted above we have also ${ }_{B} B_{B}<\oplus{ }_{B} \Lambda_{B}$ and of course ${ }_{\Gamma} B_{\Gamma}<\oplus \oplus_{\Gamma} \Lambda_{\Gamma}$. Since ${ }_{\Gamma} \Lambda_{\Gamma}<\oplus \oplus_{\Gamma}(\Gamma \oplus \cdots \oplus \Gamma)_{\Gamma}$ we have ${ }_{\Gamma} B_{\Gamma}<\oplus \oplus_{\Gamma}(\Gamma \oplus \cdots \oplus \Gamma)_{\Gamma}$.

Letting $B=\Lambda$ in (4.1) and (4.2) we have
Proposition 4. 7. Let Λ be an H-separable extension of Γ and let $\Delta=V_{\Lambda}(\Gamma)$, C the center of Λ. Then $\Delta \otimes_{C} \Delta \cong \operatorname{Hom}_{(\Gamma, \Gamma)}(\Lambda, \Lambda)$ and Δ is C-finitely generated projective. If further $\Gamma_{\Gamma} \Gamma_{\Gamma}<\oplus_{\Gamma} \Lambda_{\Gamma}$ then Δ is a separable C-algebra, and if $\Gamma \Lambda_{\Gamma}$ $<\oplus \Gamma_{\Gamma}(\Gamma \oplus \cdots \oplus \Gamma)_{\Gamma}$ then Δ is an H-separable C-algebra.

Combining these lemmas and propositions we have
Theorem 4. 8. Let Λ be a ring, $B \supset \Gamma$ subrings of Λ. Assume that Λ is a Γ-centrally projective H-separable extension of Γ and B is an H-separable subextension of Γ in Λ. Let $\Delta=V_{A}(\Gamma), D=V_{A}(B)$ and $C=$ the center of Λ. Then (1) Δ is a finitely generated projective, H-separable C-algebra and closed in Λ. (2) D is a C-finitely generated projective H-separable C-subalgebra of Δ. (3) $V_{A}\left(V_{A}(B)\right)=B$ and $V_{A}\left(V_{A}(\Gamma)\right)=\Gamma$. Conversely assume that Δ is a subring of Λ containing C, that Δ is a finitely generated projective, H-separable C-algebra and that D is an H-separable C-subalgebra of Δ. Then (4) Λ is $V_{\Lambda}(\Delta)$-centrally projective and H-separable over $V_{A}(\Delta)$. (5) $V_{A}(D)$ is H-separable over $V_{A}(\Delta)$. (6) $V_{A}\left(V_{A}(D)\right)=D$. In this way there is a one to one correspondence between the set of H-separable subextensions of Γ in Λ and the set of H-separable C-subalgebras of Δ.

Proof. If Λ is a centrally projective H-separable extension of Γ then, by (4.7), Δ is C-finitely generated projective and H-separable over C. Closedness of Δ is clear. If B is an H-separable subextension of Γ then, by (4.3), Λ is H-separable over B and B-centrally projective by (4.6). Therefore D is C-finitely generated projective and H-separable over C. As we have noted above, $\Gamma \Gamma_{\Gamma}<\oplus{ }_{\Gamma} \Lambda_{\Gamma}$ and ${ }_{B} B_{B}<\oplus_{B} \Lambda_{B}$ since Λ is both Γ - and B-centrally projective. Therefore $V_{A}\left(V_{A}(\Gamma)\right)=\Gamma$ and $V_{A}\left(V_{A}(B)\right)=B$ by Proposition 1.2 in [15], since Λ is H-separable over Γ and over B. The converse is similar. We note that under these assumptions for Δ, D and C, Δ is D -
centrally projective and H-separable over D, and so (5) follows form (4.1) and (4.2). That $V_{A}\left(V_{A}(D)\right)=D$ follows from (5) in (2.3).

Finally we give the converse of Proposition 3.4 in [9]. Let Λ be an H-separable extension of its subring Γ and assume that ${ }_{\Gamma} \Gamma_{\Gamma}<\oplus{ }_{\Gamma} \Lambda_{\Gamma}$. Let $\Delta=V_{\Lambda}(\Gamma)$ and C the center of Λ. Then $V_{\Lambda}(\Delta)=\Gamma$ by Proposition 1. 2 [15]. So center $\Gamma=\Gamma \cap \Delta=V_{\Lambda}(\Delta) \cap \Delta=$ center $\Delta \supset C$. Let $C^{\prime}=$ center $\Gamma=$ center Δ and $\Lambda^{\prime}=V_{\Lambda}\left(C^{\prime}\right)$. Since Δ is separable over C by (4.7), Δ is central separable over C^{\prime} and so H-separable over C^{\prime}. By Theorem 1.2 in [15] $\Lambda^{\prime}=\Gamma \otimes_{c} \Delta$. If $C^{\prime}=C$ then $\Lambda=\Gamma \otimes_{C} \Delta$.

Proposition 4. 10. Let Λ be a ring with the center C, Γ a subring of Λ with the center equal to Λ. If Λ is H-separable over Γ and $\Gamma_{\Gamma} \Gamma_{\Gamma}<\oplus_{\Gamma} \Lambda_{\Gamma}$ then $V_{\Lambda}(\Gamma)$ is central separable over $C, \Lambda \cong \Gamma \otimes_{C} V_{\Lambda}(\Gamma)$ and Λ is Γ-centrally proiective.

§5. Centrally projective modules

As we have seen in the last section there is a type of two-sided modules which we have called 'centrally projective'. In this section we shall study some properties of these modules. Let R be a ring with the center C, M a two-sided R-module. If ${ }_{R} M_{R}<\oplus_{R}(R \oplus \cdots \oplus R)_{R}$ we shall call M a centrally projective module. Note that $\operatorname{Hom}_{(R, R)}(R, M)$ is isomorphic to $M^{R}=\{m \in M \mid r m=m r, r \in R\} . \quad$ Let $\Omega=\operatorname{End}_{(R, R)}(M) . \quad$ By (1.1) in [9] we have

Proposition 5.1. M is centrally projective if and only if $\operatorname{Hom}_{(R, R)}(M, R)$ $\otimes_{C} M^{R} \cong \Omega$.

The isomorphism is given by $g \otimes m \longrightarrow(x \longrightarrow g(x) m)$, where $g \otimes m \in$ $\operatorname{Hom}_{(R, R)}(M, R) \otimes_{C} M^{R}$ and $x \in M$.

From (1.2) in [9] we have
Proposition 5.2. If M is centrally projective then M^{R} is C-finitely generated projective as well as an Ω-generator, $M \cong R \otimes_{C} M^{R}$ and $\operatorname{End}_{C}\left(M^{R}\right)=\Omega$.

The isomorphism $M \cong R \otimes_{C} M^{R}$ is given by $r \otimes m \longrightarrow r m$ for $r \otimes m \in$ $R \otimes_{c} M^{R}$.

Proposition 5. 3. If M is centrally projective and M^{R} is C-faithful then ${ }_{R} R_{R}<\oplus{ }_{R}(M \oplus \cdots \oplus M)_{R}$.

Proof. Since M^{R} is C-finitely generated projective, if it is C-faithful then ${ }_{C} C<\oplus_{C}\left(M^{R} \oplus \cdots \oplus M^{R}\right)$. Therefore tensoring with R over C we have $R<\oplus R \otimes_{C} M^{R} \oplus \cdots \oplus R \otimes_{C} M^{R} \cong M \oplus \cdots \oplus M$ as two-sided R-modules.

Let $\operatorname{Tr}_{(R, R)}(M)$ be the two-sided ideal in R generated by $g(m), g \in$ $\operatorname{Hom}_{(R, R)}(M, R)$ and $m \in M$. Then by (1.2) in [9]

Proposition 5.4. ${ }_{R} R_{R}<\oplus_{R}(M \oplus \cdots \oplus M)_{R}$ if and only if $\operatorname{Tr}_{(R, R)}(M)=$ R. When this is the case M^{R} is Ω-finitely generated projective as well as a C generator and $\operatorname{Hom}_{\Omega}\left(M^{R}, M^{R}\right) \cong C$.

Let $\operatorname{Tr}_{\sigma}\left(M^{R}\right)$ be the ideal in C generated by $f(m), f \in \operatorname{Hom}_{C}\left(M^{R}, C\right)$ and $m \in M^{R}$. If $M \cong R \otimes_{C} M^{R}$ then since $\operatorname{Hom}_{(R, R)}(M, R) \cong \operatorname{Hom}_{C}\left(M^{R}, C\right)$ it is easily seen that $R \cdot \operatorname{Tr}_{C}\left(M^{R}\right)=\operatorname{Tr}_{(R, R)}(M)$. Let $\mathfrak{A}=\{x \in R \mid x M=0$, $M x=0\}$ and $\mathfrak{a}=\left\{x \in C \mid x M^{R}=0\right\}$. If $M \cong R \otimes_{C} M^{R}$ then it is clear that $R \cdot \mathfrak{a} \subset \mathfrak{A}$.

Proposition 5. 5. If M is centrally projective then $\mathfrak{A}+\operatorname{Tr}_{(R, R)}(M)=R$.
Proof. Since M^{R} is C-finitely generated and projective, by Proposition A. 3 [1], $\mathfrak{a}+\operatorname{Tr}_{C}\left(M^{R}\right)=C$. From the above remarks we have the conclusion.

Next we consider an overring of R which is centrally projective.
Proposition 5.6. Let S be an overring of a ring R, C the center of R. If S is R-centrally projective then $S \cong R \otimes_{C} S^{R}, S^{R}$ is C-finitely generated projective and ${ }_{R} R_{R}<\oplus_{R} S_{R}$.

Proof. The first two assertions follow from (5.2). Since S^{R} is C-finitely generated projective and $S^{R} \supset C,{ }_{c} C<\oplus{ }_{c} S^{R}$ and $R<\oplus R \otimes_{C} S^{R}$ as two-sided R-modules.

We also note that if ${ }_{R} R_{R}<\oplus_{R}(S \oplus \cdots \oplus S)_{R}$ then ${ }_{R} R_{R}<\oplus{ }_{R} S_{R}$.

References

[1] M. Auslander and O. Goldman, Maximal orders, Trans. Amer. Math. Soc., 97 (1960), 1-24.
[2] M. Auslander and O. Goldman, The Brauer group of a commutative ring, Trans. Amer. Math. Soc., 97 (1960), 367-409.
[3] G. Azumaya, Completely faithful modules and self-injective rings, Nagoya Math. J., 27 (1966), 697-708.
[4] H. Bass, The Morita theorems, Lecture note at Univ. of Oregon, 1962.
[5] H. Cartan and S. Eilenberg, Homological algebra, Princeton, 1956.
[6] S. Endo, Completely faithful modules and quasi-Frobenius algebras, J. Math. Soc. Japan, 19 (1967), 437-456.
[7] A. Hattori, Semisimple algebras over a commutative ring, J. Math. Soc. Japan, 15 (1963), 404-419.
[8] K. Hirata and K. Sugano, On semisimple extensions and separable extensions over non commutative rings, J. Math. Soc. Japan, 18 (1966), 360-373.
[9] K. Hirata, Some types of separable extensions of rings, Nagoya Math. J., 33 (1968), 107-115.
[10] G. Hochschild, Note on relative homological algebra, Trans. Amer. Math. Soc., 82 (1956) 246-269.
[11] K. Morita, Duality for modules and its application to the theory of rings with minimum condition, Sci. Rep. Tokyo Kyoiku Daigaku, Sect. A, 6 (1958), 83-142.
[12] K. Morita, Adjoint pairs of functors and Frobenius extensions, Sci. Rep. Tokyo Kyoiku Daigaku, Sect. A, 9 (1965), 40-71.
[13] B. Müller, Quasi-Frobenius Erweiterungen, Math. Z., 85 (1964), 345-368.
[14] B. Müller, Quasi-Frobenius Erweiterungen II, Math. Z., 88 (1965), 380-409.
[15] K. Sugano, Note on semisimple extensions and separable extensions, Osaka J. Math., 4 (1967), 265-270.

Chiba University

