ON THE GROUP OF A DIRECTED GRAPH

ROBERT L. HEMMINGER

In 1938, Frucht (2) proved that for any given finite group G there exists a finite symmetric graph X such that $G(X)$ is abstractly isomorphic to G. Since $G(X)$ is a permutation group, it is natural to ask the following related question: If P is a given finite permutation group, does there exist a symmetric (and more generally a directed) graph X such that $G(X)$ and P are isomorphic (see Convention below) as permutation groups? The answer for the symmetric case is negative as seen in (3) and more recently in (1). It is the purpose of this paper to deal with this problem further, especially in the directed case. In §3, we supplement Kagno's results (3, pp. 516-520) for symmetric graphs by giving the corresponding results for directed graphs. These results are useful in studying which permutation groups have directed graphs, but our main results are in $\S 1$. Since forming products (in the case of permutation groups as used here, the product is a group and is in fact isomorphic to the direct product since we assume the factors have disjoint support sets) is one of the major ways of constructing new permutation groups from old ones, we have investigated the problem of relating the existence of a directed (symmetric) graph for a product to the existence of graphs for the factors. Corollary 1.1.1 shows that the solution is the "natural" one in general, but Theorem 1.3 shows that this "natural" solution is not always the correct one for fixed point free graphs.

By a directed graph X we mean a finite set $V(X)$ called the vertices of X, together with a set $E(X)$, called the edges of X, consisting of ordered pairs of distinct elements from $V(X)$. We shall indicate ordered pairs by parentheses. We say (a, b) is a symmetric edge if both (a, b) and (b, a) are edges, and we frequently distinguish symmetric edges by writing $[a, b]$ in place of (a, b). If every edge in X is a symmetric edge, then we say X is a symmetric graph. A directed graph is connected if upon considering the edges as unordered pairs it is connected as an undirected graph. The complement of a directed graph X, denoted by X^{c}, is the directed graph with $V\left(X^{c}\right)=V(X)$ and

$$
E\left(X^{c}\right)=\{(a, b): a, b \in V(X) \text { and }(a, b) \notin E(X)\} .
$$

If $A \subseteq V(X)$, then the section graph of X on A is the graph with vertex set A and whose edges are all edges of X that have end points in A.

Let X be a directed graph. Then the group of automorphisms of X, denoted by $G(X)$, is the set of all permutations σ of $V(X)$ such that $(a, b) \in E(X)$ if and only if $\sigma(a, b)=(\sigma(a), \sigma(b)) \in E(X)$. Thus from the viewpoint of the group
of automorphisms, a symmetric graph is the same as an undirected graph. An element in the domain of a permutation group P is in the support set of P if it is not fixed for all $\sigma \in P$. A directed graph X is called fixed point free if $V(X)$ is the support set of $G(X)$.

In $\S 3$ we follow the usual practice $(3 ; 4)$ of listing only permutation groups having their domains and support sets equal. But these are not sufficient to study the permutation groups of a graph properly, as seen by Corollary 1.3.1. For these reasons and for ease of statement and proof of results we make the following convention.

Convention. Let P_{i} be a permutation group with support set S_{i} and let

$$
P\left(S_{i}\right)=\left\{\sigma^{\prime}: \sigma^{\prime}=\sigma \mid S_{i}, \sigma \in P_{i}\right\}, \quad i=1,2
$$

Then we shall say that P_{1} and P_{2} are isomorphic permutation groups if $P\left(S_{1}\right)$ and $P\left(S_{2}\right)$ are isomorphic as permutation groups in the usual sense (6, p. 39). Thus we are viewing permutations as products of disjoint cycles, each of length at least two, and having as domain any set containing the symbols displayed in these cycles.

If for a given permutation group P there exists a directed graph X such that $G(X)=P$ (where the permutations are viewed as products of cycles as above), then we say that P has the directed graph X.

For any terms used but not defined see (5).

1. Group products and their graphs. Before obtaining the theorems dealing with the existence of graphs for products of permutation groups we need two lemmas. The first is easy and well known; so we state it without proof.

Lemma 1.1.1. If X is a directed graph, then (a) either X or X^{c} is connected, and (b) $G(X)=G\left(X^{c}\right)$.

Lemma 1.1.2. If X is a directed (symmetric) graph and

$$
\left\{T_{j}: j=1,2, \ldots, k\right\}
$$

is a partitioning of $V(X)$, then

$$
P=\left\{\sigma \in G(X): \sigma\left(T_{j}\right)=T_{j}, j=1,2, \ldots, k\right\}
$$

has a directed (symmetric) graph.
Proof. It is clear that P is a subgroup of $G(X)$. Let $|V(X)|=v$ and let

$$
\left.\begin{array}{rl}
A=\left\{b_{0}, b_{1}, \ldots, b_{v+1}, a_{0}, a_{01}, a_{02}, \ldots, a_{0 v},\right. & a_{11}, \\
\ldots, \\
\ldots, a_{1 v}
\end{array}, \ldots, a_{(k-1) 1}, a_{(k-1) 2}, \ldots, a_{(k-1) v}, a_{k 1}\right\}
$$

with $V(X) \cap A=\emptyset$. Define the graph X^{*} by taking $V\left(X^{*}\right)=V(X) \cup A$ and $E\left(X^{*}\right)=E(X) \cup E_{1} \cup E_{2}$, where E_{1} and E_{2} consist only of symmetric edges
and are as follows: E_{1} consists of the symmetric edge [a_{01}, b_{1}] and the edges in the symmetric arcs $\left[b_{0}, b_{1}, \ldots, b_{v+1}\right]$ and

$$
\left[a_{0}, a_{01}, a_{02}, \ldots, a_{0 v}, a_{11}, \ldots, a_{(k-1) v}, a_{k 1}\right]
$$

while E_{2} consists of the symmetric edges $\left[t_{j}, a_{j 1}\right]$ for all $t_{j} \in T_{j}, j=1,2, \ldots, k$.
By starting with b_{0} and working out on the arcs from b_{0} having vertices in A, it is easy to see that A is fixed vertexwise by $G\left(X^{*}\right)$; hence $G\left(X^{*}\right) \leqslant G(X)$. Also since $a_{j 1}$ is fixed by $G\left(X^{*}\right)$, the set T_{j} must be invariant under $G\left(X^{*}\right)$. Therefore $G\left(X^{*}\right) \subseteq P$. On the other hand, if $\sigma \in G(X)$ such that $\sigma\left(T_{j}\right)=T_{j}$, $j=1,2, \ldots, k$, a straightforward check of possible ordered pairs reveals that $\sigma \in G\left(X^{*}\right)$, so that $P \subseteq G\left(X^{*}\right)$. Hence $P=G\left(X^{*}\right)$, i.e., P has a directed graph. The symmetric case follows immediately since X^{*} is symmetric if and only if X is symmetric.

Theorem 1.1. If P_{1} and P_{2} are permutation groups with disjoint support sets, then $P_{1} P_{2}$ has a directed (symmetric) graph if and only if P_{1} and P_{2} have directed (symmetric) graphs.

Proof. Let P_{i} have support set $A_{i}, i=1,2$, with $A_{1} \cap A_{2}=\emptyset$. First assume that P_{i} has the directed graph X_{i}. By Lemma 1.1.1, we can assume that X_{i} is connected. Define the directed graph X by taking $V(X)=A_{1} \cup A_{2}$ and

$$
E(X)=E\left(X_{1}\right) \cup E\left(X_{2}\right) \cup\left\{(a, b): a \in A_{1} \text { and } b \in A_{2}\right\}
$$

We proceed to show that $G(X)=P_{1} P_{2}$. Clearly $P_{1} P_{2} \subseteq G(X)$ since we included all edges from X_{1} to X_{2}; so let $\sigma \in G(X)$ and let $\left|A_{1}\right| \leqslant\left|A_{2}\right|$ (the argument in the case $\left|A_{1}\right| \geqslant\left|A_{2}\right|$ is analogous). Then if $a \in A_{1}$ and $b \in A_{2}$, we see that $\rho_{i}(a)<\left|A_{1}\right| \leqslant \rho_{i}(b)$, where $\rho_{i}(x)$ is the incoming local degree at x. But σ must preserve the incoming local degree; hence $\sigma\left(A_{1}\right) \subseteq A_{i}$ for $i=1,2$. Therefore $\sigma\left(A_{i}\right)=A_{i}$ for $i=1,2$. Then clearly $\sigma_{i} \in P_{i}$, where σ_{i} is σ restricted to A_{i}; so $\sigma=\sigma_{1} \sigma_{2}$ and $G(X) \subseteq P_{1} P_{2}$. Hence $G(X)=P_{1} P_{2}$; so $P_{1} P_{2}$ has a directed graph.

One easily sees that in the event that X_{1} is not isomorphic to X_{2}, it suffices to define $E(X)=E\left(X_{1}\right) \cup E\left(X_{2}\right)$ in the last paragraph since X_{i} is connected. Thus if X_{1} and X_{2} are symmetric graphs and X_{1} is not isomorphic to X_{2}, then $P_{1} P_{2}$ has a symmetric graph. But if $X_{1} \cong X_{2}=Y$, we can define Y^{*} as in the proof of Lemma 1.1.2 with the T_{j} being the transitivity sets of $G(Y)$. Then

$$
G\left(Y^{*}\right)=\left\{\sigma \in G(Y): \sigma\left(T_{j}\right)=T_{j}, j=1,2, \ldots, k\right\}=G(Y)
$$

and clearly X_{1} and Y^{*} are connected, Y^{*} is symmetric, and X_{1} is not isomorphic to Y^{*}. So if X is defined by taking $V(X)=V\left(X_{1}\right) \cup V\left(Y^{*}\right)$ and

$$
E(X)=E\left(X_{1}\right) \cup E\left(Y^{*}\right)
$$

then X is symmetric and, as before, $G(X)=G\left(X_{1}\right) G(Y)=P_{1} P_{2}$; so $P_{1} P_{2}$ has a symmetric graph if P_{1} and P_{2} have symmetric graphs. We note, however, that X is not a fixed point free graph in this case. (See Theorem 1.3 for clarification of this difficulty.)

Conversely, assume P_{1} has no directed graph but that $P=P_{1} P_{2}$ has a directed graph X. Then $A_{1} \cup A_{2}$ is the support set for P. Let X_{1} be the section graph of X on A_{1}. Then $P_{1} \subseteq G\left(X_{1}\right)$. Let $T_{j}, j=1, \ldots, k$, be the transitivity classes of P_{1} and let $a_{j} \in T_{j}$ and $b \in A_{2}$. Denote $\left\{\left(a_{j}, b\right): a_{j} \in T_{j}\right\}$ by $\left(T_{j}, b\right)$. Then from the observation that $\left(a_{j}, b\right) \in E(X)$ if and only if $\left(T_{j}, b\right) \subseteq E(X)$ and $\left(b, a_{j}\right) \in E(X)$ if and only if $\left(b, T_{j}\right) \subseteq E(X)$, we see that if $\sigma \in G\left(X_{1}\right)$ such that $\sigma\left(T_{j}\right)=T_{j}$ for $j=1,2, \ldots, k$, then $\sigma \in P$ and so $\sigma \in P_{1}$. Hence we have shown that

$$
P_{1}=\left\{\sigma \in G\left(X_{1}\right): \sigma\left(T_{j}\right)=T_{j}, j=1,2, \ldots, k\right\} .
$$

But then by Lemma 1.1.2 P_{1} has a graph, which is a contradiction; so P has no graph. This completes the proof of the theorem. The general case is immediate by induction. We state it as a corollary.

Corollary 1.1.1. If $P_{1}, P_{2}, \ldots, P_{k}$ are permutation groups with pairwise disjoint support sets, then $P_{1} P_{2} \ldots P_{k}$ has a directed (symmetric) graph if and only if P_{i} has a directed (symmetric)graph for $i=1,2, \ldots, k$.

Corollary 1.1.2. If $P_{i}, i=1,2, \ldots, k$, has a directed fixed point free graph, then $P_{1} P_{2} \ldots P_{k}$ has a directed fixed point free graph.

The proof of the last corollary is immediate from Corollary 1.1.1 and the first part of the proof of Theorem 1.1. That this corollary does not hold for symmetric graphs will be seen in Theorem 1.3.

Before proceeding to the next result, which is related to Theorem 1.1, we give a definition.

Definition 3.1. Let $T_{j}, j=1,2, \ldots, k$, be a partitioning of the support set of a permutation group P. We say that P is independently transitive on T_{i} with respect to T_{j} if given $a, b \in T_{i}$ and $c \in T_{j}$ there exists $\sigma \in P$ such that $\sigma(a)=b$ and $\sigma(c)=c$.

If T_{1}, \ldots, T_{k} are the transitivity sets of P, then it is easy to see that P is independently transitive on T_{i} with respect to $T_{j}, i \neq j$, if and only if P is independently transitive on T_{j} with respect to T_{i}. Hence in that case we say that P is independently transitive on T_{i} and T_{j}.

Theorem 1.2. Let X be a directed graph and let $T_{1}, T_{2}, \ldots, T_{k}$ be the transitivity sets of $G(X), X_{i}$ the section graph of X on T_{i}, and $X_{i j}$ the section graph of X on $T_{i} \cup T_{j}$. Then
(a) $G(X) \subseteq G\left(X_{1}\right) G\left(X_{2}\right) \ldots G\left(X_{k}\right)$;
(b) if $G(X)$ is independently transitive on T_{i} and $T_{j}, i \neq j$, then

$$
G\left(X_{i}\right) G\left(X_{j}\right) \subseteq G\left(X_{i j}\right)
$$

(c) $G(X)$ is independently transitive on T_{i} and T_{j} for all $i, j, 1 \leqslant i<j \leqslant k$, if and only if $G(X)=G\left(X_{1}\right) G\left(X_{2}\right) \ldots G\left(X_{k}\right)$.

Proof. If $\sigma \in G(X)$ and σ_{i} is the restriction of σ to T_{i}, then $\sigma_{i} \in G\left(X_{i}\right)$ and $\sigma=\sigma_{1} \sigma_{2} \ldots \sigma_{k}$, so we have (a).

Let $a, b \in T_{i}$ and $c, d \in T_{j}$. Then there exists $\sigma \in G(X)$ such that $\sigma(c)=d$ and so, by our assumption on T_{i} and T_{j}, there exists $\tau \in G(X)$ such that $\tau(\sigma(a))=b$ and $\tau(d)=d$. Thus $\tau \sigma(a, c)=(b, d)$. Hence either all or none of the possible edges from X_{i} to X_{j} are present. Likewise either all or none of the edges from X_{j} to X_{i} are present, but the two cases are independent. Because of this situation we see that if $\sigma \in G\left(X_{i}\right)$ or if $\sigma \in G\left(X_{j}\right)$, then $\sigma \in G\left(X_{i j}\right)$. Thus $G\left(X_{i}\right) G\left(X_{j}\right) \subseteq G\left(X_{i j}\right)$, which proves (b).

In (c), the sufficiency of the condition is obvious and the necessity follows by (a) and a straightforward generalization of the argument in (b) showing that $G\left(X_{1}\right) G\left(X_{2}\right) \ldots G\left(X_{k}\right) \subseteq G(X)$.

Theorem 1.3. If P_{1} and P_{2} are transitive permutation groups on disjoint support sets and P_{i} has a fixed point free symmetric graph for $i=1,2$, then $P_{1} P_{2}$ has no fixed point free symmetric graph if and only if P_{1} and P_{2} are isomorphic permutation groups and all of their fixed point free symmetric graphs are isomorphic. In particular, if P_{1} has a fixed point free symmetric graph Y, then $Y \cong Y^{c}$ since $G\left(Y^{\prime}\right)=G\left(Y^{c}\right)$.

Proof. Let T_{i} be the support set of $P_{i}, i=1,2$. First assume that P_{1} and P_{2} are isomorphic permutation groups such that all of their fixed point free symmetric graphs are isomorphic. $P_{1} P_{2}$ has a symmetric graph by Theorem 1.1; but, we now demonstrate that $P_{1} P_{2}$ has no fixed point free symmetric graph. Suppose X was such a graph. Then T_{1} and T_{2} are the transitivity sets of $G(X)$, and $G(X)$ is independently transitive on T_{1} and T_{2}. So by Theorem 1.2, $P_{1} P_{2}=G(X)=G\left(X_{1}\right) G\left(X_{2}\right)$, where X_{i} is the section graph of X on T_{i}. But this means that $P_{i}=G\left(X_{i}\right)$, so $X_{1} \cong X_{2}$. Let σ be the isomorphism between X_{1} and X_{2}. Then $\sigma \in G(X)$, but $\sigma \notin P_{1} P_{2}$, which is a contradiction so our assumption was false and our claim true.

Conversely, if it is not the case that P_{1} and P_{2} are isomorphic permutation groups such that all of their fixed point free symmetric graphs are isomorphic, then P_{i} has a connected fixed point free symmetric graph X_{i} such that X_{1} is not isomorphic to X_{2}. But then $G(X)=P_{1} P_{2}$, where $X=X_{1} \cup X_{2}$ is a symmetric fixed point free graph (we have already seen this in the proof of Theorem 1.1).

By taking P_{1} and P_{2} isomorphic to $\langle(a b)(c d)\rangle$, we see that the assumption of transitivity is necessary.

By taking P_{1} and P_{2} isomorphic to the dihedral group $\langle(a b c d e),(a b)(c d)\rangle$, we see that the theorem is not vacuous and we state this as a corollary.

Corollary 1.3.1. There exist permutation groups with symmetric graphs but with no fixed point free symmetric graphs.
2. Miscellaneous results. In this section we shall give a number of results enabling us to give a concise tabular form in $\S 3$. Some of these results are general enough to be of interest on their own.
In most cases the notation used for the permutation groups appearing in this and the next section is self-explanatory, but it can be found in (4).
In the remainder of the paper we shall use X as a directed graph with

$$
V(X)=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\} .
$$

Theorem 2.1. The following are equivalent:
(a) $G(X)=\left(a_{1} a_{2} \ldots a_{n}\right)$ all,
(b) $G(X)$ is k-ply transitive, $k \geqslant 2$,
(c) X is either the null graph or the complete directed graph.

Theorem 2.2. The groups $G_{6,6}=\{(a b c d) \operatorname{cyc}(e f)\}$ pos, $G_{6,22}=(a b c d e f)_{18}$, and $G_{6,27}=(\text { abcdef })_{24_{5}}$ have directed graphs.

Proof. One checks that $G_{6,6}$ has the graph with edges $(a, b),(b, c),(c, d)$, $(d, a),(a, f),(b, e),(c, f),(d, e)$, and $[e, f] ; G_{6,22}$ has the graph with edges $(a, b),(b, c),(c, a),(d, e),(e, f)$, and (f, e); and $G_{6,27}$ has the graph with edges $(a, b),(a, d),(b, e),(b, f),(c, b),(c, d),(d, e),(d, f),(e, a),(e, c),(f, a)$, and (f, c).

Theorem 2.3. ($a_{1} a_{2} \ldots a_{n}$) cyc has the directed circuit ($a_{1}, a_{2}, \ldots, a_{n}, a_{1}$) as a graph.

Theorem 2.4. Let $\sigma \in G(X)$ be the rotation $\left(a_{1} a_{2} \ldots a_{n}\right)$ and let τ be the reflection $\left(a_{1} a_{n}\right)\left(a_{2} a_{n-1}\right) \ldots\left(a_{k} a_{n-k+1}\right)$ with $k=\left[\frac{1}{2} n\right]$. Then $\tau \in G(X)$ if and only if X is symmetric.

Proof. By repeated use of σ, every edge can be rotated into one of the form $\left(a_{1}, a_{i}\right)$ or (a_{i}, a_{1}), $i=2,3, \ldots, n$. We consider only those edges of the form (a_{1}, a_{i}); those of the form (a_{i}, a_{1}) are handled in the same manner. Now $\tau\left(a_{1}, a_{i}\right)=\left(a_{n}, a_{n-i+1}\right)=\sigma^{n-i}\left(a_{i}, a_{1}\right)$, so $\tau\left(a_{1}, a_{i}\right) \in E(X)$ if and only if (a_{i}, a_{1}) $\in E(X), i=2,3, \ldots, n$. Thus $\tau \in G(X)$ if and only if X is symmetric.

Both Theorem 2.3 and 2.4 are quite simple but important to the study of groups that have directed graphs but do not have symmetric graphs. From them we see that the cyclic groups $C_{n}=\left(a_{1} a_{2} \ldots a_{n}\right)$ cyc fall in that category. From Corollary 1.1.1, any permutation group having C_{n} as a direct factor also falls in that category; in fact, the tables in §3 suggest that these groups account for most of the groups in that category.

Theorem 2.5. If ($a_{1} a_{2} \ldots a_{m}$) pos $\subseteq G(X)$ with $m \geqslant 4$, then

$$
\left(a_{1} a_{2} \ldots a_{m}\right) \text { all } \subseteq G(X)
$$

Proof. For $m \geqslant 4,\left(a_{1} a_{2} \ldots a_{m}\right)$ pos is 2-ply transitive and the result follows easily.

Corollary 2.5.1. $\left(a_{1} a_{2} \ldots a_{n}\right)$ pos has a directed graph for $n \geqslant 2$ if and only if $n=2$ or 3 .

Proof. ($a_{1} a_{2}$) pos is the identity group and has the graph X_{2} with

$$
E\left(X_{2}\right)=\left\{\left(a_{1}, a_{2}\right)\right\} .
$$

$\left(a_{1} a_{2} a_{3}\right)$ pos $=\left(a_{1} a_{2} a_{3}\right)$ cyc and has the graph X_{3} with

$$
E\left(X_{3}\right)=\left\{\left(a_{1}, a_{2}\right),\left(a_{2}, a_{3}\right)\left(a_{3}, a_{1}\right)\right\} .
$$

By the theorem, ($a_{1} a_{2} \ldots a_{n}$) pos has no directed graph for $n \geqslant 4$.
Theorem 2.6. If $P=\left\langle\left(a_{1} a_{2}\right), R\right\rangle$ pos $\subseteq G(X)$ for some group of permutations R (not all positive) with support set $\left\{a_{3}, \ldots, a_{n}\right\}$ such that P is independently transitive on $\left\{a_{1}, a_{2}\right\}$ with respect to $\left\{a_{3}, \ldots, a_{n}\right\}$, then $\left\langle\left(a_{1} a_{2}\right), R\right\rangle \subseteq G(X)$.

Proof. Let $\mu=\left(a_{1} a_{2}\right)$ and $\tau \in R$ such that $\mu \tau \in P$. Then μ acts like either $\mu \tau$ or the identity on all ordered pairs except some of those of the form (a_{i}, p) or (p, a_{i}) for $i=1,2 ; p \in\left\{a_{3}, \ldots, a_{n}\right\}$. But by our assumption on P, there exists $\alpha \in P$ such that $\alpha\left(a_{1}\right)=a_{2}$ and $\alpha(p)=p$; so $\mu\left(a_{i}, p\right)=\alpha\left(a_{i}, p\right)$. Thus $\mu \in P$ and the result follows.

In connection with this theorem, we note by Theorem 1.1 that $\left\langle\left(a, a_{2}\right), R\right\rangle$ has a graph if and only if R has a graph.

Corollary 2.6.1. $\left\langle\left(a_{1} a_{2}\right),\left(a_{3}, a_{4}\right), \ldots,\left(a_{n-1} a_{n}\right)\right\rangle$ pos with $n=2 k$ has a directed graph if and only if $k=1$ or 2 .

Proof. If $k>2$, the theorem applies and the given group has no directed graph. The case $k=1$ is trivial and

$$
\left\langle\left(a_{1} a_{2}\right),\left(a_{3} a_{4}\right)\right\rangle \operatorname{pos}=\left\{1,\left(a_{1} a_{2}\right)\left(a_{3} a_{4}\right)\right\}
$$

has the directed graph X with

$$
V(X)=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\} \text { and } E(X)=\left\{\left(a_{1}, a_{3}\right),\left(a_{3}, a_{4}\right),\left(a_{4}, a_{2}\right)\right\}
$$

Note that the theorem does not apply when $k=2$ because of the independently transitive condition.

In connection with this corollary, we note that $\left(a_{1} a_{2}\right) \ldots\left(a_{n-1} a_{n}\right)$ has a symmetric graph for all even n.

Theorem 2.7. If $\tau=\left(a_{1} a_{2}\right)\left(a_{3} a_{4}\right)$ and $\sigma=\left(a_{3} a_{4}\right)\left(a_{5} a_{6}\right) \in G(X)$, then $\left\langle\left(a_{1} a_{2}\right),\left(a_{3} a_{4}\right),\left(a_{5} a_{6}\right)\right\rangle \subseteq G(X)$.

Proof. Let $\mu=\left(a_{1} a_{2}\right)$. Then μ acts the same as either τ or the identity on ordered pairs with the exception of $\left(a_{1}, a_{3}\right),\left(a_{3}, a_{1}\right),\left(a_{1}, a_{4}\right),\left(a_{4}, a_{1}\right),\left(a_{2}, a_{3}\right)$, $\left(a_{3}, a_{2}\right),\left(a_{2}, a_{4}\right)$, and (a_{4}, a_{2}). Now

$$
\mu\left(a_{1}, a_{3}\right)=\left(a_{2}, a_{3}\right)=\tau\left(a_{1}, a_{4}\right)=\tau\left[\sigma\left(a_{1}, a_{3}\right)\right]=\tau \sigma\left(a_{1}, a_{3}\right),
$$

so $\mu\left(a_{1}, a_{3}\right) \in E(X)$ if and only if $\left(a_{1}, a_{3}\right) \in E(X)$. The remaining exceptions are handled in the same manner, so $\mu \in G(X)$. Therefore $\mu \tau=\left(a_{3}, a_{4}\right)$ and $\mu \tau \sigma=\left(a_{5}, a_{6}\right) \in G(X)$ and the theorem follows.

Theorem 2.8. If $P=\left\{\left(a_{1} a_{2} \ldots a_{m}\right)\right.$ all $\left(a_{m+1} a_{m+2} \ldots a_{n}\right)$ all $\}$ pos $\subseteq G(X)$ with $3 \leqslant m<n$ and $5 \leqslant n$, then $G(X)=G_{1}, G_{2}$, or G_{3} where

$$
G_{1}=\left(a_{1} \ldots a_{m}\right) \text { all }\left(a_{m+1} \ldots a_{n}\right) \text { all, } \quad G_{2}=\left(a_{1} a_{m+1} \cdot a_{2} a_{m+2} \ldots . a_{m} a_{2 m}\right) G_{1}
$$

with $n=2 m$, and $G_{3}=\left(a_{1} \ldots a_{n}\right)$ all.
The theorem also holds for $n=2, m=1$ but easy counterexamples can be found for the other excepted values, namely, $n=3, m=1$, or 2 and $n=4$, $m=1,2$, or 3 .

Proof. P has the transitivity sets $T_{1}=\left\{a_{1}, \ldots, a_{m}\right\}$ and $T_{2}=\left\{a_{m+1}, \ldots, a_{n}\right\}$, so $G(X)$ either is transitive or has the transitivity sets T_{1} and T_{2}. In either case, $G(X)$ is independently transitive on T_{1} with respect to T_{2} since P is (this depends on having $m \geqslant 3$).

First assume that $G(X)$ is intransitive. Then by Theorem 1.2,

$$
G(X)=G\left(X_{1}\right) G\left(X_{2}\right)
$$

where X_{i} is the section graph of X on T_{i}. Thus ($a_{1} \ldots a_{m}$) pos $\subseteq G\left(X_{1}\right)$ and $\left(a_{m+1} \ldots a_{n}\right)$ pos $\subseteq G\left(X_{2}\right)$. If $m \geqslant 4$, then $G\left(X_{1}\right)=\left(a_{1} \ldots a_{m}\right)$ all by Theorem 2.5. If $m=3$, then $n-m \geqslant 2$; so $\left(a_{1} a_{2}\right)\left(a_{m+1} a_{m+2}\right) \in P \subseteq G(X)$; hence $\left(a_{1} a_{2}\right) \in G\left(X_{1}\right)$ and again $G\left(X_{1}\right)=\left(a_{1} a_{2} a_{3}\right)$ all. Thus for $m \geqslant 3$, we have

$$
G\left(X_{1}\right)=\left(a_{1} a_{2} \ldots a_{m}\right) \text { all }
$$

Now for $n-m \geqslant 2$ we have $\left(a_{1} a_{2}\right)\left(a_{m+1} a_{m+2}\right) \in P \subseteq G(X)$ so

$$
\left(a_{m+1} a_{m+2}\right) \in G\left(X_{2}\right)
$$

and $G\left(X_{2}\right)=\left(a_{m+1} \ldots a_{n}\right)$ all. If $n=m+1$, then $G\left(X_{2}\right)=\left(a_{m}\right)$ all. In any case $G(X)=G\left(X_{1}\right) G\left(X_{2}\right)=G_{1}$.

The other possibility is that $G(X)$ is transitive. As in the proof of Theorem 1.2 we see that either all or none of the possible edges from X_{1} to X_{2} are present and likewise from X_{2} to X_{1}. But now $G(X)$ is transitive, so X is regular and these edges are present from X_{1} to X_{2} if and only if they are present from X_{2} to X_{1}. So by taking complements if necessary, we can assume that none of these edges are present. Thus as in the last paragraph we get

$$
\left(a_{1} \ldots a_{m}\right) \text { all }\left(a_{m+1} \ldots a_{n}\right) \text { all } \subseteq G(X)
$$

Hence either X_{1} is the null graph or the complete m point and X_{2} is the null graph or the complete $n-m$ point. By the transitivity of $G(X), E\left(X_{1}\right)$ has an element if and only if $E\left(X_{2}\right)$ does. The existence of edges results in $G(X)=G_{2}$ and the absence of edges results in $G(X)=G_{3}$.

Theorem 2.9. $\left\langle\left(a_{1} \ldots a_{m}\right)\left(a_{m+1} \ldots a_{2 m}\right)\right\rangle$ has a directed graph.
Proof. It has the graph X with $E(X)=A_{1} \cup A_{2} \cup E$, where A_{1} contains the edges in the directed circuit ($a_{1}, a_{2}, \ldots, a_{m}, a_{1}$), A_{2} contains the edges in the directed circuit ($a_{m+1}, a_{m+2}, \ldots, a_{2 m}, a_{m+1}$), and

$$
E=\left\{\left(a_{i}, a_{m+i}\right): i=1,2, \ldots, m\right\} .
$$

Theorem 2.10. $G_{4,3}=(a b c d)_{4}$ and $G_{6,9}=(a b c d e f)_{6}$ have no directed graphs.
We omit the proof since the methods resemble those previously used in this section.
3. Groups of degree six or less and directed graphs. We shall separate the permutation groups into three categories: (I) those that have symmetric graphs (for these graphs see (3, pp. 516-520)), (II) those that have directed graphs but do not have symmetric graphs, and (III) those that do not have directed graphs. A thoerem appearing in parentheses after a group listed in the second (third) category is one showing that the group has (does not have) a directed graph. It is demonstrated in (3, pp. 516-520) that those in (II) do not have symmetric graphs.

The groups involved will be labelled $G_{p, q}$, where $G_{p, q}$ is the q th group of degree p in the listing given in (3, pp. 516-520).
(I) Groups that have symmetric graphs:
$G_{2,1}=(a b) ;$
$G_{3,2}=(a b c)$ all;
$G_{4,1}=(a b \cdot c d) ;$
$G_{4,2}=(a b)(c d) ; \quad G_{4,5}=(a b c d)_{8} ;$
$G_{4,7}=(a b c d)$ all;
$G_{5,4}=(a b c d e)_{10} ;$
$G_{5,5}=(a b c)$ all $(d e) ; \quad G_{5,8}=(a b c d e)$ all;
$G_{6,1}=(a b \cdot c d \cdot e f) ;$
$G_{6,3}=(a b \cdot c d)(e f) ; \quad G_{6,5}=\left\{(a b c d)_{4}(e f)\right\} \mathrm{dim} ;$
$G_{6,8}=(a b c \cdot d e f)$ all;
$G_{6,10}=(a b)(c d)(e f) ;$
$G_{6,13}=\left\{(a b c d)_{8} \operatorname{com}(e f)\right\} \operatorname{dim} ;$
$G_{6,17}=(a b c d e f)_{12} ;$
$G_{6,19}=(a b c d)_{8}(e f) ;$
$G_{6,28}=(a b c) \operatorname{all}(d e f) \mathrm{all} ;$
$G_{6,31}=(a b c d)$ all $(e f)$;
$G_{6,32}=(a b c d e f)_{48} ;$
$G_{6,34}=(a b c d e f)_{72} ;$
$G_{6,37}=(a b c d e f)$ all.
(II) Groups having directed graphs but not symmetric graphs:

$G_{3,1}=(a b c) \mathrm{cyc}$	(Th. 2.3);		
$G_{4,4}=(a b c d)$ cyc	(Th. 2.3);		
$G_{5,1}=(a b c d e)$ cyc	(Th. 2.3);	$G_{5,2}=(a b c) \operatorname{cyc}(d e)$	(Th. 1.1, 2.3);
$G_{6,2}=(a b c \cdot d e f)$ сус	(Th. 2.9);	$G_{6,6}=\{(a b c d) \operatorname{cyc}(e f)\}$ pos	(Th. 2.2);
$G_{6,7}=(a b c d e f)$ cyc	(Th.2.3);	$G_{6,11}=(a b c d) \operatorname{cyc}(e f)$	(Th. 1.1, 2.1, 2.3);
$G_{6,16}=(a b c) \operatorname{cyc}($ def $) \mathrm{cyc}$	(Th. 1.1, 2.3);	$G_{6,20}=(a b c)$ all (def)cyc	(Th. 1.1, 2.1, 2.3);
$G_{6,22}=(a b c d e f)_{18}$	(Th. 2.2);	$G_{6,27}=(a b c d e f)_{245}$	(Th. 2.2).

(III) Groups having no directed graph:

$G_{4,3}=(a b c d)_{4}$	$($ Th.2.10 $) ;$	$G_{4,6}=(a b c d)$ pos 2	(Cor.2.5.1);
$G_{5,3}=\{(a b c)$ all $(d e)\}$ pos	(Th.2.6);	$G_{5,6}=(a b c d e)_{20}$	(Th.2.1);
$G_{5,7}=(a b c d e) \operatorname{pos}$	(Cor.2.5.1);		
$G_{6,4}=\{(a b)(c d)(e f)\}$ pos	(Cor.2.6.1);	$G_{6,9}=(a b c d e f)_{6}$	(Th.2.10);

$G_{6,12}=(a b c d)_{4}(e f)$	(Th.1.1);	$G_{6,14}=\left\{(a b c d)_{8} \operatorname{cyc}(e f)\right\} \operatorname{dim}$	(Th.1.2);
$G_{6,15}=\left\{(a b c d)_{8} \operatorname{pos}(e f)\right\} \operatorname{dim}$	(Th.1.2);	$G_{6,18}=(a b c d e f)_{122}$	(Th.2.7);
$G_{6,21}=\{(a b c)$ all $(d e f)$ all $\}$ pos	(Th. 2.8);	$G_{6,23}=(a b c d) \operatorname{pos}(e f)$	(Th.1.1);
$G_{6,24}=\{(a b c d)$ all $(e f)\} \operatorname{pos}$	(Th.2.6);	$G_{6,25}=(\pm a b c d e f)_{24}$	(Th.2.7);
$G_{6,26}=(+a b c d e f)_{24}$	(Th.2.7);	$G_{6,29}=(a b c d e f)_{36}$	(Th.2.8);
$G_{6,30}=(a b c d e f)_{36_{3}}$	(Th.2.4);	$G_{6,33}=(a b c d e f)_{60}$	(Th.2.7);
$G_{6,35}=(a b c d e f)_{120}$	(Th.2.4);	$G_{6,36}=(a b c d e f)$ pos	(Cor.2.5.1).

References

1. Chong-Yun Chao, On a theorem of Sabidussi, Proc. Amer. Math. Soc., 15 (1964), 291-292.
2. R. Frucht, Herstellung von Graphen mit vorgegebener abstrakter Gruppe, Compositio Math., 6 (1938), 239-250.
3. I. N. Kagno, Linear graphs of degree $\leqslant 6$ and their groups, Amer. J. Math., 68 (1946), 505-520. Corrections, Amer. J. Math., 77 (1955), 392.
4. G. A. Miller, Memoir on the substitution groups whose degree does not exceed eight, Amer. J. Math., 21 (1899), 288-337.
5. O. Ore, Theory of graphs (Providence, R.I., 1962).
6. H. Zassenhaus, The theory of groups, 2nd ed. (New York, 1958).

Vanderbilt University
Nashville, Tennessee

