
ON THE GROUP OF A DIRECTED GRAPH 
ROBERT L. H E M M I N G E R 

In 1938, Frucht (2) proved that for any given finite group G there exists a 
finite symmetric graph X such that G(X) is abstractly isomorphic to G. Since 
G(X) is a permutation group, it is natural to ask the following related question : 
If P is a given finite permutation group, does there exist a symmetric (and more 
generally a directed) graph X such that G(X) and P are isomorphic (see Con
vention below) as permutation groups? The answer for the symmetric case is 
negative as seen in (3) and more recently in (1). It is the purpose of this paper 
to deal with this problem further, especially in the directed case. In §3, we 
supplement Kagno's results (3, pp. 516-520) for symmetric graphs by giving 
the corresponding results for directed graphs. These results are useful in study
ing which permutation groups have directed graphs, but our main results are 
in §1. Since forming products (in the case of permutation groups as used here, 
the product is a group and is in fact isomorphic to the direct product since we 
assume the factors have disjoint support sets) is one of the major ways of 
constructing new permutation groups from old ones, we have investigated the 
problem of relating the existence of a directed (symmetric) graph for a product 
to the existence of graphs for the factors. Corollary 1.1.1 shows that the solution 
is the "natural" one in general, but Theorem 1.3 shows that this "natural" 
solution is not always the correct one for fixed point free graphs. 

By a directed graph X we mean a finite set V(X) called the vertices of X, 
together with a set E(X), called the edges of X, consisting of ordered pairs of 
distinct elements from V(X). We shall indicate ordered pairs by parentheses. 
We say (a, b) is a symmetric edge if both (a, b) and (b, a) are edges, and we 
frequently distinguish symmetric edges by writing [a, b] in place of (a, b). 
If every edge in X is a symmetric edge, then we say X is a symmetric graph. 
A directed graph is connected if upon considering the edges as unordered pairs 
it is connected as an undirected graph. The complement of a directed graph X, 
denoted by Xe, is the directed graph with F (Xe) = V(X) and 

E(XC) = {(a, b):a, b € V(X) and (a, b) (2 £ (X)} . 

If A C V(X), then the section graph of X on A is the graph with vertex set A 
and whose edges are all edges of X that have end points in A. 

Let X be a directed graph. Then the group of automorphisms of X, denoted 
by G(X), is the set of all permutations a of V(X) such that (a, b) € E(X) if 
and only if a (a, b) = (a (a), a (b)) G E(X). Thus from the viewpoint of the group 
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of automorphisms, a symmetric graph is the same as an undirected graph. An 
element in the domain of a permutation group P is in the support set of P if it 
is not fixed for all a 6 P> A directed graph X is called fixed point free if V(X) 
is the support set of G (X). 

In §3 we follow the usual practice (3; 4) of listing only permutation groups 
having their domains and support sets equal. But these are not sufficient to 
study the permutation groups of a graph properly, as seen by Corollary 
1.3.1. For these reasons and for ease of statement and proof of results we make 
the following convention. 

Convention. Let P{ be a permutation group with support set Si and let 

P(St) = {*':*' = a | Si9 a £ Pt\, i = l,2. 

Then we shall say that Pi and P% are isomorphic permutation groups if P(S\) 
and P(SÏ) are isomorphic as permutation groups in the usual sense (6, p. 39). 
Thus we are viewing permutations as products of disjoint cycles, each of length 
at least two, and having as domain any set containing the symbols displayed 
in these cycles. 

If for a given permutation group P there exists a directed graph X such that 
G(X) = P (where the permutations are viewed as products of cycles as above), 
then we say that P has the directed graph X. 

For any terms used but not defined see (5). 

1. Group products and their graphs. Before obtaining the theorems 
dealing with the existence of graphs for products of permutation groups we 
need two lemmas. The first is easy and well known; so we state it without 
proof. 

LEMMA 1.1.1. If X is a directed graph, then (a) either X or Xe is connected, 
and (b)G(X) = G (Xe). 

LEMMA 1.1.2. If X is a directed (symmetric) graph and 

{T3:j = 1 , 2 , . . . , * } 

is a partitioning of V(X), then 

P = {ae G(X) : a(Tj) = T„j = 1 , 2 , . . . , * } 

has a directed (symmetric) graph. 

Proof. It is clear that P is a subgroup olG(X). Let | V(X)\ = v and let 

A = {bo, bij . . . , bv+i, #o, &oi, #02, • • • , aov1 an, ai2, 
. . . , a\v, . . . , a(A;_i)i, #(fc_i)2, . . . , a(fc_i)P, aki} 

with V(X) C\ A = 0. Define the graph X* by taking V(X*) = V (X) U A and 
E(X*) = E(X) VJ Ei \J E2, where E\ and E2 consist only of symmetric edges 

https://doi.org/10.4153/CJM-1966-023-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1966-023-2


THE GROUP OF A DIRECTED GRAPH 213 

and are as follows: E\ consists of the symmetric edge [a0i, b\] and the edges in 
the symmetric arcs [bo, bi, . . . , bv+i] and 

[#0, Cloi, #02, • • • , dOvi (llh • • • » à(k-l)vi &kl] 

while E2 consists of the symmetric edges [tj, a ;i] for all tj € Tj,j = 1, 2, . . . , k. 
By starting with bo and working out on the arcs from b0 having vertices in A, 

it is easy to see that A is fixed vertexwise by G(X*); hence G(X*) < G(X). 
Also since a,ji is fixed by G(X*), the set Tj must be invariant under G(X*). 
Therefore G(X*) C P . On the other hand, if a 6 G(X) such that a(Tj) = T„ 
j = 1, 2, . . . , &, a straightforward check of possible ordered pairs reveals that 
er e G(X*), so that P C G(X*). Hence P = G(X*), i.e., P has a directed 
graph. The symmetric case follows immediately since X* is symmetric if and 
only if X is symmetric. 

THEOREM 1.1. If Pi and P2 are permutation groups with disjoint support sets, 
then P i P 2 has a directed {symmetric) graph ij and only if Pi and P2 have directed 
(symmetric) graphs. 

Proof. Let Pt have support set Aiyi = 1,2, with A i P\ A 2 = 0. First assume 
that Pi has the directed graph Xt. By Lemma 1.1.1, we can assume that Xt is 
connected. Define the directed graph X by taking V(X) = A1 \J A 2 and 

E(X) = E{Xi) \JE(X2) U {(a,b):a € Aiandb 6 A*). 

We proceed to show that G(X) = Pi P2 . Clearly P i P 2 Q G(X) since we in
cluded all edges from Xi to X2; so let <J Ç G(X) and let \Ai\ < | 4 2 | (the 
argument in the case \Ai\ > \A2\ is analogous). Then if a £ ^41 and ô Ç i 2 , 
we see that p*(a) < |^4i| < Piib), where pi(x) is the incoming local degree at x. 
But a must preserve the incoming local degree; hence a(Ai) Q Ai for i = 1,2. 
Therefore o"(̂ 4 0 = ^4jforz = 1, 2. Then clearly o-* Ç P*, where cr̂  is a restricted 
to A i\ so 0- = tri 0-2 and G(X) Ç P x P2 . Hence G(X) = P1P2; so P i P 2 has a 
directed graph. 

One easily sees that in the event that Xi is not isomorphic to X2f it suffices to 
define E(X) = E(Xi) VJ E(X2) in the last paragraph since Xt is connected. 
Thus if Xi and X2 are symmetric graphs and Xi is not isomorphic to X2y then 
P i P 2 has a symmetric graph. But if Xi = X2 = F, we can define F* as in the 
proof of Lemma 1.1.2 with the Tj being the transitivity sets of G( F). Then 

G(Y*) = {ere G(Y):a(Ts) = T„j = 1 , 2 , . . . , * } = G(Y) 

and clearly Xi and F* are connected, F* is symmetric, and Xi is not isomorphic 
to F*. So if X is defined by taking V(X) = V(Xi) VJ F(F*)and 

E(X) = E(Xi) U £ ( F * ) , 

then X is symmetric and, as before, G(X) = G(Xi)G(Y) = P i P 2 ; so P i P 2 

has a symmetric graph if P i and P2 have symmetric graphs. We note, however, 
that X is not a fixed point free graph in this case. (See Theorem 1.3 for clari
fication of this difficulty.) 
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Conversely, assume P i has no directed graph but that P = P i P 2 has a 
directed graph X. Then A i VJ A 2 is the support set for P . Let X\ be the section 
graph of X on A\. Then P i Ç G(Xi). Let P,, j = 1, . . . , k, be the transitivity 
classes of P i and let a;- G P ; and b £ A2. Denote {(a;-, 6) : a^ G P ;} by {Tjy b). 
Then from the observation that (ajy b) G E{X) if and only if {Tjf b) C P(X) 
and (6, a,) G P(X) if and only if (6, P,) C P(X) , we see that if a G G(Zi) 
such that a(Tj) = Tj for j = 1, 2, . . . , k, then a G P and so c G Pi . Hence 
we have shown that 

P i = {a G G(Xt) : a(T3) = Tj9j = 1, 2, . . . , * } . 

But then by Lemma 1.1.2 P i has a graph, which is a contradiction; so P has 
no graph. This completes the proof of the theorem. The general case is immedi
ate by induction. We state it as a corollary. 

COROLLARY 1.1.1. If P i , P2 , . . . , P* are permutation groups with pairwise 
disjoint support sets, then P i P 2 . . . P& has a directed {symmetric) graph if and 
only if P i has a directed {symmetric) graph for i = 1,2,. . . , k. 

COROLLARY 1.1.2. If Pu i — 1, 2, . . . , fe, has a directed fixed point free graph, 
then P i P 2 . . . Pk has a directed fixed point free graph. 

The proof of the last corollary is immediate from Corollary 1.1.1 and the 
first part of the proof of Theorem 1.1. That this corollary does not hold for 
symmetric graphs will be seen in Theorem 1.3. 

Before proceeding to the next result, which is related to Theorem 1.1, we 
give a definition. 

DEFINITION 3.1. Let Tjf j = 1, 2, . . . , k, be a partitioning of the support set of 
a permutation group P . We say that P is independently transitive on T\ with respect 
to Tj if given a, b G Tt and c G Tj there exists a G P such that a {a) = b and 
a{c) = c. 

If Pi, . . . , Tk are the transitivity sets of P , then it is easy to see that P is 
independently transitive on Tt with respect to P ; , i 9^ j , if and only if P is 
independently transitive on Tj with respect to Tt. Hence in that case we say 
that P is independently transitive on Tt and Tj. 

THEOREM 1.2. Let X be a directed graph and let Pi, P2, • • . , Tk be the transi
tivity sets of G{X), Xi the section graph of X on Tu and Xtj the section graph of X 
onTi^J Tj. Then 

(a) G(X) ç G(X0G(Xt) . . . G(Xk); 
(b) ifG(X) is independently transitive on Tt and T}, i 9^ j , then 

GiXJGiXJQGiXtj); 

(c) G(X) is independently transitive on Ttand T3for all i,j, 1 < i < j < k, 
if and only if G (X) = G(X1)G(X2) . . . G(Xk). 
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Proof. If a G G(X) and at is the restriction of a to Tu then ai G G(Xi) and 
o- = 0-i <72. . . o"jfc, so we have (a). 

Let a, K 7\ and c, d G Tj. Then there exists o- G G(X) such that o-(c) = d 
and so, by our assumption on Tt and Tjt there exists r G G(X) such that 
T((7(a)) = b and r(d) = J. Thus Ta(a, c) = (b, d). Hence either all or none of 
the possible edges from Xt to Xj are present. Likewise either all or none of the 
edges from Xj to Xt are present, but the two cases are independent. Because 
of this situation we see that if a G G(Xi) or if a G G(Xj), then <J G G(Xtj). 
ThusG{Xl)G{Xj) C G(XtJ), which proves (J). 

In (c), the sufficiency of the condition is obvious and the necessity follows by 
(a) and a straightforward generalization of the argument in (b) showing that 
G(X1)G(X2)...G(Xk)QG(X). 

THEOREM 1.3. If Pi and P2 are transitive permutation groups on disjoint 
support sets and Pt has a fixed point free symmetric graph for i = 1,2, then 
PiP2 has no fixed point free symmetric graph if and only if P\ and P2 are iso
morphic permutation groups and all of their fixed point free symmetric graphs are 
isomorphic. In particular, if Pi has a fixed point free symmetric graph Y, then 
Y^ YcsinceG(Y) = G(Ye). 

Proof. Let Ti be the support set of Pu i = 1» 2. First assume that P\ and P 2 

are isomorphic permutation groups such that all of their fixed point free sym
metric graphs are isomorphic. P\P2 has a symmetric graph by Theorem 1.1; 
but, we now demonstrate that P\ P2 has no fixed point free symmetric graph. 
Suppose X was such a graph. Then T\ and T2 are the transitivity sets of G(X), 
and G{X) is independently transitive on 7\ and T2. So by Theorem 1.2, 
P\P2 = G(X) = G(Xi)G(X2), where Xt is the section graph of X on Tt. But 
this means that Pt = G(Xt), s o ! i = X2. Let a be the isomorphism between 
Xi and X2. Then a G G(X), but a (£ PiP2, which is a contradiction so our 
assumption was false and our claim true. 

Conversely, if it is not the case that Pi and P2 are isomorphic permutation 
groups such that all of their fixed point free symmetric graphs are isomorphic, 
then Pi has a connected fixed point free symmetric graph Xi such that Xi is not 
isomorphic to X2. But then G(X) = Pi P2, where X = Xi U X2 is a symmetric 
fixed point free graph (we have already seen this in the proof of Theorem 1.1). 

By taking Pi and P2 isomorphic to ((ab)(cd)), we see that the assumption 
of transitivity is necessary. 

By taking Pi and P2 isomorphic to the dihedral group ({abcde), (ab)(cd)), 
we see that the theorem is not vacuous and we state this as a corollary. 

COROLLARY 1.3.1. There exist permutation groups with symmetric graphs but 
with no fixed point free symmetric graphs. 
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2. Miscellaneous resu l t s . In this section we shall give a number of results 
enabling us to give a concise tabular form in §3. Some of these results are general 
enough to be of interest on their own. 

In most cases the notation used for the permutation groups appearing in 
this and the next section is self-explanatory, but it can be found in (4). 

In the remainder of the paper we shall use X as a directed graph with 

V{X) = {aha2j . . . ,an). 

THEOREM 2.1. The following are equivalent: 
(a) G{X) = ( a i a 2 . . . an)all, 
(b) G(X) is k-ply transitive, k > 2, 
(c) X is either the null graph or the complete directed graph. 

THEOREM 2.2. The groups G6,6 = {(abcd)cyc(ef)}pos, G6,22 = (abcdef)is, and 
GO,27 = (abcdef)24& have directed graphs. 

Proof. One checks that G6,6 has the graph with edges (a, J), (6, c), (c, d), 
(d,a), (a , / ) , (b,e), (c,/), (d,e), and [e,f\; G6,22 has the graph with edges 
(a, b), (6, c), (c, a), (d, è), (e,f), and (/, e)\ and G6,27 has the graph with edges 
(a,b), (a, d), (b,e), (6,/), (c, 6), (c, d), (d, e), (d,/) , 0 , a \ 0 , c), (/,«), and 

THEOREM 2.3. (ai a 2 . . . an)cyc has the directed circuit (ai, a2, . . . , an, ai) 
as a graph. 

THEOREM 2.4. Le£ o- 6 G(X) be the rotation {a\a2. . . an) and let r be the 
reflection (a,\ an) (a2 an_i) . . . (afc a^-^+i) wi% & = [|w]. TTzen r 6 G(X) ^/ and 
ow/y if X is symmetric. 

Proof. By repeated use of <r, every edge can be rotated into one of the form 
(ai, a*) or (a*, ai), i = 2, 3, . . . , n. We consider only those edges of the form 
(ai, at); those of the form (au a\) are handled in the same manner. Now 
T(alfai) = (an,an-i+i) = anr'i{aua\i, so r(ai, a*) G £ Q 0 if and only if 
(#t, #i) G E>{X), i = 2, 3, . . . , w. Thus r G G(X) if and only if X is symmetric. 

Both Theorem 2.3 and 2.4 are quite simple but important to the study of 
groups that have directed graphs but do not have symmetric graphs. From 
them we see that the cyclic groups Cn = (ai a 2 . . . a jcyc fall in that category. 
From Corollary 1.1.1, any permutation group having Cn as a direct factor also 
falls in that category; in fact, the tables in §3 suggest that these groups account 
for most of the groups in that category. 

THEOREM 2.5. If (ai a2. . . am)pos £ G(X) with m > 4, then 

(ai a2. . . am)all C G(X). 

Proof. For m > 4, (ai a%. . . am)pos is 2-ply transitive and the result follows 
easily. 
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COROLLARY 2.5.1. (oi 02. . . a jpos has a directed graph for n > 2 if and only 
ifn = 2 or 3. 

Proof, (oi o2)pos is the identity group and has the graph X2 with 

E(X2) = {(01,02)}. 

(01 o2 o3)pos = (01 02 a3)cyc and has the graph X3 with 

E(XZ) = {(01, o2), (a2, o8)(o8, 01)}. 

By the theorem, (01 02. . . on)pos has no directed graph for n > 4. 

THEOREM 2.6. lfP = ((oi o2), P)pos C G{X) for some group of permutations 
R {not all positive) with support set {o3, . . . , an) such that P is independently 
transitive on {oi, o2} with respect to {o3, . . . , an), then ((01 o2), P ) £ G(X). 

Proof. Let /* = (ai o2) and r € R such that /xr 6 P. Then /* acts like either 
JUT or the identity on all ordered pairs except some of those of the form (aiy p) 
or (p, at) for i = 1, 2; p £ {̂ 3, • • , #«}. But by our assumption on P , there 
exists a £ P such that a(oi) = o2 and a(p) = p] so fx(au p) = a(au p). Thus 
/* Ç P and the result follows. 

In connection with this theorem, we note by Theorem 1.1 that ((a, a2), P ) 
has a graph if and only if P has a graph. 

COROLLARY 2.6.1. ((oia2), (o3, o4), . . . , (on_ion))pos with n = 2k has a 
directed graph if and only ifk — 1 or2. 

Proof. If k > 2, the theorem applies and the given group has no directed 
graph. The case k = 1 is trivial and 

((ai02), (o3o4) )pos = {1, (oio2)(o3o4)} 

has the directed graph X with 

V(X) = {01,02,03,04} and E(X) = {(01,03), (azfa4), (o4, o2)}. 

Note that the theorem does not apply when k = 2 because of the independently 
transitive condition. 

In connection with this corollary, we note that (01 o2) . . . (ow_i ow) has a 
symmetric graph for all even n. 

THEOREM 2.7. If T = (oi02)(o3o4) ono7 a- = (o3o4)(o5o6) Ç G(X), then 
((ai02), (a3a4), (05 ae)) £ G ^ ) . 

Proof. Let ju = (01 o2). Then /z acts the same as either r or the identity on 
ordered pairs with the exception of (01, o3), (o3, 01), (01, o4), (o4, 01), (o2, a3), 
(o3, 02), (a2, 04), and (o4, o2). Now 

ix{ai,a^) = (02,03) = r(oi, o4) = r[o-(oi, o3)] = ro-(oi, o3), 
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so ju(ai, a3) G £ (X) if and only if (ah a3) G E(X). The remaining exceptions are 
handled in the same manner, so ju Ç G(X). Therefore JLIT = (a3, a4) and 
jurer = (a5, a6) € G(X) and the theorem follows. 

THEOREM 2.8. / / P = {(a\ a2. . . aw)all (am+i am + 2 . . . an)all}pos £ G(X) 
m t t 3 < m < nand5 < n,then G (X) = Gi, G2, or Gzwhere 

Gi = ( a i . . . aOT)all (aTO+i. . . an)all, G2 = (#i am+i.a2 am+2 am a2m)G\ 

with n = 2m, and G3 = (a,\. . . an)all. 

The theorem also holds for n = 2, m = 1 but easy counterexamples can be 
found for the other excepted values, namely, n = 3, m = 1, or 2 and w = 4, 
m = 1,2,or 3. 

Proof. P has the transitivity sets T\ — {ai, . . . , am) and T2 = {aw+i, . . . , a n } , 
so G(X) either is transitive or has the transitivity sets T\ and T2. In either case, 
G(X) is independently transitive on 7\ with respect to T2 since P is (this 
depends on having m > 3). 

First assume that G (X) is intransitive. Then by Theorem 1.2, 

G(X) = G(X1)G(X2), 

where Xt is the section graph of X on Tt. Thus (#i . . . am)pos C G(Xi) and 
(am+i. . . a jpos Ç G(X2). If m > 4, then G(Xi) = (a i . . . am)all by Theorem 
2.5. If ra = 3, then n — m > 2; so (aia2)(am+i am+2) (z P Q G(X); hence 
(aia2) G G(Xi) and again G(Xi) = (aia2a3)all . Thus for m > 3, we have 

G(Xi) = (f l i f l2 . . . O a l l . 

Now for n — m > 2 we have (ai a2) (am+i am+2) G P ^ G(X) so 

(am+i am+2) G G(X2) 

and G(X2) = (am+i. . . an)all. If n = m + 1, then G(X2) = (aw)all. In any 
caseG(X) = G(Xi)G(X2) = Gi. 

The other possibility is that G (X) is transitive. As in the proof of Theorem 1.2 
we see that either all or none of the possible edges from X\ to X2 are present and 
likewise from X2 to X\. But now G(X) is transitive, so X is regular and these 
edges are present from X\ to X2 if and only if they are present from X2 to X\. 
So by taking complements if necessary, we can assume that none of these edges 
are present. Thus as in the last paragraph we get 

(a i . . . aro)all (am+i. . . a»)all QG(X). 

Hence either Xi is the null graph or the complete m point and X2 is the null 
graph or the complete n — m point. By the transitivity of G(X), E(Xi) has an 
element if and only if E(X2) does. The existence of edges results in G(X) = G2 

and the absence of edges results in G (X) = G3. 
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THEOREM 2.9. ( (a i . . . am) (am+i. . . a2m))has a directed graph. 

Proof. It has the graph X with E(X) = A\ U A2 U £ , where ^ i contains 
the edges in the directed circuit (ai, a2, . . . , am, ai), 4̂ 2 contains the edges in 
the directed circuit (am+i, am+2,. • . , a2w, am+i), and 

-£ = {(au am+i) : i = 1, 2, . . . , m}. 

THEOREM 2.10. G4.3 = (abed) 4 and GQ,9 = (abedef ) Q have no directed graphs. 

We omit the proof since the methods resemble those previously used in this 
section. 

3. Groups of degree six or less and directed graphs. We shall separate 
the permutation groups into three categories: (I) those that have symmetric 
graphs (for these graphs see (3, pp. 516-520)), (II) those that have directed 
graphs but do not have symmetric graphs, and (III) those that do not have 
directed graphs. A thoerem appearing in parentheses after a group listed in the 
second (third) category is one showing that the group has (does not have) 
a directed graph. I t is demonstrated in (3, pp. 516-520) that those in (II) 
do not have symmetric graphs. 

The groups involved will be labelled Gp,q, where Gv,q is the gth group of 
degree p in the listing given in (3, pp. 516-520). 

(I) Groups that have symmetric graphs : 
G2,i = (ab); 
Gz,2 = (a&c)all; 
GA,I — (ab-cd); 
Gij = (abcd)a\\; 
(75,4 = (abede) 10; 

G&,i = (ab-cd-ef); 
Ge.s = (abc'def)a\\; 
G 6,17 = (abedef) 12; 
Ge.31 = (abcd)a\\(ef) ; 

U-6,37 = 

G 4,2 = (ab)(cd); 

G5l5 = (abc)a\\(de); 
GO, 3 = (ab-cd)(ef)\ 
G 6,io = (ab)(cd)(ef); 
6e, 19 = (abcd)s(ef); 
Ge,32 = (abedef) AS] 

Gi,5 = (abed) 8; 

65,8 = (abcde)a\\; 
G6,5

 = {(abed) i(ef)} dim; 
Ge,i3 = {(abed) 8com(ef)} dim; 
G6,28 = (abc)a\\(def)a\\; 
G6,34 = (abedef )12; 

(II) Groups having directed graphs but not symmetric graphs: 
GS)i = (abc) eye 
(74,4 = (abcd)cyc 
Gb)i = (abcde)cyc 
G6,2 = (abc-def)cyc 
G6>7 = (abedef) eye 
G6,i6

 = (abc)cyc(def)cyc 
GQt22 = (abedef) is 

(Th. 2.3); 
(Th.2.3); 
(Th.2.3); 
(Th.2.9); 
(Th.2.3); 
(Th. 1.1,2.3); 
(Th.2.2); 

G5,2 = (abc)cyc(de) 
G6,6 = {(abcd)cyc(ef)}pos 
GQ,U — (abcd)cyc(ef) 
^6,20 = (abc) all (def) eye 
G6,27 = (abedef) 24b 

(Th. 1.1,2.3); 
(Th.2.2); 
(Th. 1.1,2.1,2.3); 
(Th. 1.1,2.1,2.3); 
(Th.2.2). 

(I l l) Groups having no directed graph: 
G4,3 = (abed)* (Th.2.10); G4)6 = (abcd)pos 
G5'3 = {(abc)a.\\(de)}pos (Th. 2.6); G5>6 = (abcde)2Q 

£5,7 = (abcde)pos (Cor. 2.5.1); 
G M = {(ab)(cd)(ef)}pos (Cor. 2.6.1); G6(9 = (abedef)* 

(Cor. 2.5.1); 
(Th.2.1); 

(Th.2.10); 

https://doi.org/10.4153/CJM-1966-023-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1966-023-2


220 ROBERT L. HEMMINGER 

^6,12 = (abcd)i(ef) (Th. 1.1) &6.14 = = I (abed)scyc(ef)}dim (Th. 1.2) 

&6.15 = {(abed) spos(ef) J dim (Th. 1.2) ^6,18 = = (abedef) u2 (Th. 2.7) 

&6.21 — {(afo)all(^/)all}pos (Th. 2.8) ^6,23 = = (abcd)pos(ef) (Th. 1.1) 

^6,24 — {(abcd)a\\(ef)\pos (Th. 2.6) ^6,25 = = (±abcdef)24 (Th. 2.7) 

^6,26 = (~\-abcdef)u (Th. 2.7) G&, 29 = - (abedef)36 (Th. 2.8) 
^6,30 = (abcdef)z%z (Th. 2.4) ^6,33 = = (abedef) <w (Th. 2.7) 

^6,35 = (abedef) no (Th. 2.4) ^6,36 = = (abedef )pos (Cor. 2.5.1). 
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