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Abstract

The aim of this paper is to show that some of the known properties of distributions in the domain of
attraction of a stable law have counterparts for distributions which are stochastically compact in the
sense of Feller. This enables us to unify the ideas of Feller and Doeblin, who first studied the
concept of stochastic compactness, and give new characterizations of stochastic compactness and the
domain of attraction of the normal distribution.

1980 Mathematics subject classification (Amer. Math. Soc.): 60 F 05, 60 E 07, 60 G 50.

1. Results

Let X, Xj be independent and identically distributed random variables with
distribution F. Suppose P(\X\ > x) > 0 for x > 0. The terminology stochastic
compactness was introduced by Feller (1965-66) to describe the following
property of Sn = Xl + X2 + • • • +Xn: there are sequences An and Bn with
Bn > 0, Bn -> + oo, such that, for every sequence n" -> + oo of integers, there is
a subsequence ri —» + oo for which (Sn,/Bn.) — An, converges in distribution to a
nondegenerate random variable. This is a generalization of the idea of attraction
of normed and centred sums. Feller obtained elegant characterizations of
stochastic compactness in terms of upper bounds on the tail of F and the
truncated second moment V(x) = Jx_+

X u2 dF{u), which generalize regularly vary-
ing properties known to characterize the domains of attraction.

The concept of stochastic compactness had already been studied by Doeblin
(1940, 1947), who called it 'compactness', but the simplifying ideas of the theory
of regular variation, which Feller used to such good effect, were not known to
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[2] Some properties of stochastic compactness 265

him. Doeblin introduced a further concept of 'strong compactness' and gave a
characterization and some properties of it. One of the aims of the present paper
is to elucidate Doeblin's results and relate them to those of Feller. We show in
fact that 'compactness' and 'strong compactness' are the same, and thus obtain a
unification of Doeblin's and Feller's ideas.

There has been much interest recently in the theory and application of
stochastic compactness. A first application was given by Feller (1965-66), who
proved a local limit theorem for stochastically compact sequences. A paper of
Simons and Stout (1978) discussed stochastic compactness in relation to weak
invariance principles, de Haan and Ridder (1979) extend the stochastic compact-
ness idea to sample extremes, while Smythe (1974) and Thompson and Owen
(1972) give other applications.

As regular variation is connected with domains of attraction, so a one-sided
version of regular variation called by Feller (1969) 'dominated variation' is
connected with stochastic compactness. Generalized regular variation was con-
sidered in the 1930's by Karamata, and has recently been reviewed and extended
by Seneta (1976). Dominated variation has been connected with subexponential-
ity in the works of Goldie (1977, 1978); see also Embrechts et al. (1979). The
mathematical duality between stochastic compactness and one-sided regular
variation means that results obtained in one context apply in the other.

If F is stochastically compact, write F G SC. The following are equivalent:

(1.1) F e SC;

(1.2) lim sup Jc^dA] > x)/ V(x) < + oo;

(1.3) lim sup V(x\)/ V(x) < cX2~a for A > 1 for some c > 1 and a G (0, 2] ;
X—»+O0

(1.4) lim sup K(xXo)/ V(x) < X% for some \ , > 1.
X—>+ 00

The equivalence of (1.1), (1.2) and (1.3) follows from Theorem 2 and the
theorem on page 387 of Feller (1965-66) (note that Feller's Theorem 2 is in error
by the omission of an arbitrarily small e > 0). Condition (1.3) is not actually
Feller's; he uses instead V(x\)/V(x) < cX2~y for x > 1 and X > r for some
c > 1, T > 1 and y > 0. However this uniform bound is implied by (1.3); one
way to show this is by an argument like that of Letac (1970); see Seneta (1976, p.
97) (see also de Haan and Ridder (1979, p. 300) and Mailer (1979)). We prefer to
work with (1.3) since it is the direct generalization of the condition V(xX)/ V(x)
->X2~" for X > 0, which is necessary for F to be in the domain of attraction of
a stable law (Feller (1971, p. 577)); also necessary for this is x2P{\X\ > x)/ V(x)
->(2 - a)/a, see (1.2). The equivalence of (1.3) and (1.4) follows from regular
variation theory (Feller (1969), Goldie (1977, p. 775)); note that Goldie's indices
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266 R. A. Mailer [31

of variation, and their properties due to Matuszewska, can be used to describe
stochastic compactness; see Mailer (1979).

We remark that, if (1.3) holds, it need not hold with c = 1. An example, due
to de Haan, taking V(x) equal to e^"*' for large x, shows this. However,
de Haan and Ridder (1979) show that, under certain smoothness conditions on
F, c may be taken as 1 in (1.3).

A second aim of this paper is to show that some of the well-known properties
of distributions in a domain of attraction have counterparts for stochastically
compact distributions. We give, for example, an analogue of the fact that the
stable distributions are in their own domains of attraction.

In Theorem 6.2 de Haan and Ridder (1979) show that if

lim lim sup P(\X\ > xX)/P(\X\ > x) = 0
\—>+OO X—>+O0

then F G SC (their assumption of symmetry is easily seen to be unnecessary).
(This strengthens a result of page 309 of Simons and Stout (1978); see also Siegel
(1978), Theorem 3.2.) It can be shown by a similar method to that of de Haan
and Ridder that if

lim sup P(\X\ > xX)/P(\X\ > x) < cX'2
JT-*+OO

whenever X > 1, for some c > 1, then F G Z>(2), the domain of attraction of the
normal distribution. The converses of these results are not true (de Haan and
Ridder (1979); Mailer (1980)).

However, conditions on the tail function P(|Ar| > x) can be necessary for
stochastic compactness when F is not in the domain of partial attraction of the
normal distribution (written F $. Dp{2)) as was noticed by Simons and Stout
(1978). Using their result on page 309 we can show that if F £ Dp(2), the
following are equivalent:

(1.5) F G SC;

(1.6) lim lim sup P(\X\ > xX)/P(\X\ > x) < 1;
A—*+ oo x—»+oo

(1.7) there are constants c > 1 and a > Ofor which

lim sup P(\X\ > xX)/P(\X\ > x) < cX~a whenever X > 1.
X—»+00

The equivalence of (1.6) with (1.7) is again proved by standard methods of
regular variation theory. We remark that F G Dp{2) if and only if

lim+inf x2P{\X\ > x)/V(x) = 0;

see Levy (1937, p. 113) (see also Mailer (1980, Theorem 1)).
It was shown in the last-mentioned paper that, if F G Dp(2), then

lim inf V(xX)/V(x) = 1 for A > 1,
X—> + OO
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[41 Some properties of stochastic compactness 267

but that the converse is not true. Nevertheless the following useful result holds:

THEOREM 1.

(1.8) IfFe.SC and lim+inf V(xX)/ V(x) = 1 for X > 1 then F e Dp{2).

Let us call the random variables obtained as the weak limits of (Sn-/Bn.) — An.
for subsequences n', the subsequential limit random variables and their distribu-
tions the subsequential limit distributions. From Gnedenko and Kolmogorov
(1968, pp. 70 and 116), these are infinitely divisible distributions whose char-
acteristic functions have the Levy canonical representation

(1.9) log £(/) = iyt - \o2t2 - f [eitx - 1 - itx/ (1 + x2)]dN(x)

[e"x - 1 - itx I (1 + x2)]dM(x),

where a2 is the normal component of £ and N(x) and M(-x) are canonical
measures; they are nonincreasing functions on (0, oo) with

N(+oo) = A/(-oo) = 0 and C u2\dN(u) + dM(-u)\ < + oo.
Jo+

The distribution is nondegenerate if and only if either a2 > 0 or N(x) + M(-x)
> 0 for some x > 0.

We now state our results on the limits of distribution on SC:

THEOREM 2. The following are equivalent:

(1.10) F £ SC and none of the subsequential limits has finite variance;

(1.11) F EL SC and none of the subsequential limits is a normal distribution;

(1.12) F G SC and none of the subsequential limits has a positive normal

component;

(1.13) (1.3) holds and ljm+inf V(x\)/ V(x) > 1 for some \ , > 1.

According to (1.11) we can describe the situation in Theorem 2 as F E. SC(a)
— Dp(2), SC(a) being the subclass of SC which satisfies (1.3) for the particular
value of a. Clearly SC(a) — Dp{2) is characterized by (1.7) in conjunction with
F $ Dp(2), and then a < 2 (see the proof of (1.13)). SC(a) - Dp(2) is the
analogue of the class of distributions attracted to nonnonnal stable laws.
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268 R. A. Mailer [5]

THEOREM 3.

(1.14) If F G SC then I G SC, where I is any subsequential limit distribution,

(1.15) ifF G SC{a) - Dp{2) then I G SC(a) - Dp(2).

and

(1.16) F G SC(a) - Dp(2) if and only ifF G SC, P(\Xt\ > x) < cx~a for

x > 1, a/w/ / £ £^(2), w/rere / is any subsequential limit distribution,

Xj has distribution I, and c is a constant independent of I.

THEOREM 4. F G SC and each subsequential limit distribution is normally
distributed if and only if F G D(2).

Doebelin (1940, 1947) introduced the term 'strong compactness' to describe
stochastically compact distributions whose subsequential limit distributions are
themselves stochastically compact. But we see from Theorem 3 that all stochasti-
cally compact distributions have this property, so the term 'strong compactness'
is redundant. This result illustrates the power of the regular variation-like
methods introduced by Feller. The equivalence of (1.1) and (1.2) was not
discovered by Doeblin, and his discontinuous subsequential limit (Doeblin
(1940, p. 89)) could not come from a distribution in SC. Following the proof of
Theorem 4, in fact, we show that all subsequential limit distributions are
absolutely continuous.

Doeblin (1940, Theorem X) gave necessary and sufficient conditions for F to
be strongly compact, which we can exploit to obtain a new characterization of
SC. Let U\x) = V(x)/P(\X\ > x) (recall that P(\X\ > x) > 0 for x > 0).

THEOREM 5. If

lim lim sup P(\X\ > \U(x))/P(\X\ > x) < 1,
X—» + oo x—* + oo

then F G SC, while ifFe SC,

lim lim sup P(\X\ > \U(x))/P(\X\ > x) = 0.

Theorem 5 has the following counterpart for convergence to normality, whose
proof, being similar to that of Theorem 5, is omitted:

THEOREM 6. F G D(2) if and only if

lim P(\X\ > \U(x))/P(\X\ > x) = 0 for\>0.

The characterization of D(2) in Theorem 6 may be compared with those due
to Levy (1937) (x2P(\X\ > x)/ V(x) - • 0) and Feller (1971) (V is slowly varying).
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We conclude by mentioning that a characterization of the class of subsequen-
tial limit distributions of members of SC has not yet been obtained. Further
unsolved problems include the conjecture that (1.10) and (1.12), with 'none'
replaced by 'each', are equivalent to SC(2).

2. Proofs

We use the abbreviation H(x) = P(\X\ > x) throughout. We can then write

V(x) = - f V dH(u).Jo

PROOF OF THEOREM 1. Suppose F & Dp(2), so x2H(x)/V(x) > a > 0 for
x > x0, or some a and x0 > 0. By Seneta (1976, p. 97), (1.3) implies that, if
0 < e < a, there is a \ , > 1 such that V(xX)/V(x) < X2~a+e whenever X > XQ
and x > x0, if x0 is large enough. We can assume XQ SO large that

2 f °°M-'-a+£ du = 2X^a+'/ (a - e) < a.
\

Integrating by parts shows that

H(x) = -x~2V(x) + 2 r°°M-3F(«) du.

Now if lim infx V(xX)/ V(x) = 1 for X > 1, we can take a sequence xi,-* + oo
such that F(x,A0)/F(x,)^ 1; this means F(x,A)/ F(x,) -^ 1 for 1 < \ < \ , by
monotonicity. Then by dominated convergence

x?H(Xi)/V(Xi) = 2J|\-3[F(«x,.)/F(x(.) - \}du

+ 2f°°u-3[V(uxi)/V(xi)-l]du

< o(l) + 2 f°°«-3M2-a+e du < o(l) + a,
\

giving a contradiction which proves the theorem.

PROOF OF THEOREM 2. Suppose (1.11) does not hold; then F G Dp(2), and by
Mailer (1979a), lim infx V(x\)/V(x) = 1 for A > 1, which contradicts (1.13).
Conversely suppose (1.13) does not hold; then lim inf;c^.+00 V(xX)/ V(x) = 1 for
X > 1 so by Theorem 1, F e Dp(2), which contradicts (1.11). Thus (1.13) and
(1.11) are equivalent (note that, by a standard argument, lim infx V(xX^)/V(x)
> 1 for some XQ > 1 implies V(xX)/ V(x) > X€ for some e > 0 and x, X, large
enough, so (1.3) cannot hold with a = 2). The remaining equivalences now
follow from Theorem 3 of Mailer (1980).
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PROOF OF THEOREM 3. Let F e SC and let a limiting distribution of (Sn./Bn)
— An. be the infinitely divisible distribution / having canonical components a2,
N(x) and M(-x). We have to show / G SC. We can obviously assume that F
has infinite variance. By Gnedenko and Kolmogorov (1968, p. 116), noting that
our N(x) is the negative of theirs, F must satisfy

/!'[ 1 - F{xBn) ] -> #(*), n'F(-xBn,) -> M(-x)

and

lim limfSUP)«'fin7
2K(efin,) = a2,

e—»0 + \ ml /
for x > 0, using the fact that

[J udF(u)J = o[K(*)] (*->+«>),

(see Gnedenko and Kolmogorov (1968, p. 173)). In order that / be stochastically
compact, it suffices by Gnedenko and Kolmogorov (1968, p. 88) that there is a
Ck -» + oo such that every k" —» + oo contains a subsequence k' for which

k'N(xCk,) - • JVI(JC), A;'A/(-xQ.) -^ A/,(-x)

and

lim lim k'CJ2\o2- (eC"'u2dT(u)] = T2,
e-»0+ fe'^+oo L •'0 J

where T2, ^X^) and A/,(-x), are components of a nondegenerate infinitely
divisible distribution, and T(x) = N(x) + M(-x). Convergence is at points of
continuity of the limits.

Since y~2f% uT(u) du —»0 as y -» + oo, T being a canonical measure, and
since a2 + 2/£ uT(u) du > 0 for>> > 0, / not being degenerate, we can define a
sequence Ckf + oo by

Ck = inf{>> > 0: a2 + 2f\T(u) du >

this means Ck = k[a2 + 2/£* «71(M) </«]. Take any k" —> + oo; by an extended
version of Helly's theorem there is a subsequence k' of A:" for which

k'N{xCk) -+ Nt(x), k'M(-xCk) -> M,(-x)

and

k'CkT
2\a2 + 2fXC"uT(u) du] -> W(x),

for some nonincreasing N^x) and M,(-x), and nondecreasing W(x), on JC > 0.
We have to verify that N, and Ml are canonical measures, that is, that W,( + oo)
and A/,(-oo) = 0, and that /„ u2\dNx(u)\ and fx

0 «
2|<M/,(-u)| are finite, equiva-

lently, uNt(u) and MA/,(-M) are integrable at 0.
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Note that if x > 0 is a continuity point of T and 0 < e < x,

lim sup n'B~2V(xBn,) < lim sup n'B~2V(eBn,) + lim s u p [ - f *t/V dH(uBn.)]

= lim sup n'B^2V(eBn.)- f V dT(u)
n' Je

since we can obviously apply dominated convergence to the second integral.
Now letting eJ,0 + shows that

lim sup n'BZ2V{xBn) < a2- f V dT(u),

and a reverse inequality for lim inf can be similarly obtained. Thus

n'Bn~
2V(xBn,)^a2-fXu2dT(u)

at continuity points of T. Integrating by parts then gives

in'BZ2 (xB"uH(u) du - • a2 + 2 CuT(u) du.
Jo Jo

Also we have by (1.2) and (1.3) that for some c > 0 and A > 1,

lim sup f^uHiu) du/ CuH(u) du < lim sup [ V(x\) + x2X2H(x\)]/V(x)
x Jo -'0 *

= lim sup [ 1 + x2\2H(x\)/ V(x\)] V(x\)/ V(x) < cX2~a.

This means, for x > 1 and y > 0,

a2 + 2/y uT(u) du _ . riB;,2ftB" uH(u) du
a2 + 2\l uT(u) du ™ n'B^2^ uH(u) du

Hz uH(u) du ,
< lim sup —— < ex "

z /o uH(u) du

so

W{x) = lim [a2 + 2fxCkuT(u) du]/\a2 + 2JC"uT(u) du] < ex2'"

when x > 1. Since T is nonincreasing, then

x2k'T{xCk) < k'Ck7
2\a2 + 2fXCkuT(u) du\ -+ W(x),

showing that T,(x) = lim k'T(xCk.) = N^x) + Mx(-x) is finite for x > 0 and
< cx~a for x > 1. Thus N{(x) and Mt(-x) ->0 as x -^> + oo. Furthermore,

1 = w{\) = lim k'CkT
2\a2 + 2 fC"uT(u) du]

L •'o J

> lim inf f uk'T(uCk,)du > f uTx{u) du,
Jo Jo

showing that uTt(u) is integrable at 0, so the same is true of TV, and M, .
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It remains to verify that the distribution defined by T2 (which we take to be
W(0 + )), JV, and M,, is nondegenerate. Clearly if x > 0,

W(x) = lim k'CkT
2L2 + 2\ fC"' + JxCk']uT(u) du) = 1 + ^uTx(u) du,

so W(0 + )= l-fo uTx(u) du. If 71, had no points of increase then Tx would
equal ^,(+00) = 0, in which case W(0 + ) = T2 = 1 > 0. Thus the limit is
nondegenerate and / e SC, so that (1.14) is proved.

We now prove (1.15). Let F G SC{a) - Dp(2), where a < 2, and suppose
(Sn,/Bn,) - An, converges in distribution to X,, where X, has the inf.div. distrib-
ution / with canonical components a2 (= 0, by Theorem 2), N(x) and A/(-;e).
We aim to show

lim sup P{\X,\ > x\)/P{\X,\ > x) < c\~a for X > 1.

Letting ̂  be a symmetrization of X, (Feller (1971, p. 147)) and
Zn — A, I" A.2 -t T / l n ,

we have from the same reference and the inequality 1 — e~x > xe~x, x > 0,
that

P(\X,\ >x) = lim P(\Sn, - An.Bn,\ > xBn)

>\ liminf P(\S*,\> 2xBn)

> \ lim inf n'P(\X'\ > 2xBn,)e\p[-n'P(\X*\ > 2xBn,)]

> i lim inf n'P(\X - m\ > 2xBn,)exp[-2n'P(\X\ > xBn)],

where m is a median of X. Since m = o(Bn), we thus have

(2.1) P{\XI\>x)>\T{2x)e-2T^\

Also, by a truncation argument and Chebychev's inequality (Feller (1971, p.
231)), and using the fact that An may be chosen as

-xBn

(see Gnedenko and Kolmogorov (1968, p. 117)), we have

P(\Sn - AnBn\ > xBn) < x-2B-2nV{xBn) + nP{\X\ > xBn)

so letting n -» + oo through the subsequence ri gives

(2.2) P{\X,\ >x) = lim P(\Xn. - An,Bn,\ > xBn)
n

< -x~2fXu2dT(u) + T(x)
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11 o 1 Some properties of stochastic compactness 273

because n'B^2V(xBn,) -> - /J u2 dT(u), where T(x) = N(x) + M(-x) (recall a2

= 0). Now we need the following inequalities: by (1.7),

(2.3) T(Xx)/T(x) = lim n'H(x\Bn,)/n'H(xBn.)

< lim sup H(y\)/H(y) < e^"" ;

by the fact that F £ Dp(2),

(2.4) x2T(x) - \ \ 2 dT(u) = lim (xBn.)
2H(xBn,)/ V(xBn.)

> lim inf y2H(y)/ V(y) > a,

and again since F £ />,,(2), by the remark following the proof of Theorem 1 of
Mailer (1980),

(2.5) T{Xx)/T(x) = lim H(x\Bn,)/H(xBn,)
n

> lim inf H(y\)/H(y) > 6A2*"2,

where b = a/(a + 1). In all of these we keep x > 0 and A > 1. Putting together
(2.1)-(2.5)gives

P(\ Y I ̂ > -rW I P(\ Y I >̂ r\ <L r \ ~ao'1T(x)r\\Al\ > XA)/r\\Al\ > x) ^ C2* e '

where c2 does not depend on /. Letting x -> + oo now gives

lim sup P(\X,\ > x\)/P(\Xj\ > x) < c^-" if A > 1,

since T(+oo) = 0. Our result will follow from (1.7) if / £ Dp(2). But by

lim inf P(\X,\ > x\)/P(\X,\ > x) > CjA26"2 if A > 1,

and / £ Dp(2) follows from Theorem 1 of Mailer (1980). This proves (1.15).
Now (2.2), (2.3) and (2.4) imply

P(\X,\>x) < -x-2fXu2dT(u) + T(x) < (a~l + l)T(x)

where c4 does not depend on /, because by (1.2),

7(1) = lim n'H(Bn) < d lim sup B2H(Bn,)/ V(Bn,) < cd

where by Feller (1965-66, p. 380), lim sup nB~2V(Bn) < d for some finite d.
This proves the first part of (1.16).

Finally, suppose F G SC, P{\Xt\ > x) < cx~a for x > 1, and / £ Dp(2).
Certainly / itself is not the normal distribution, s o f ? Dp(2). By (2.1) and (2.4),

- J V dT(u) < ex2'",

https://doi.org/10.1017/S144678870001716X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870001716X


274 R. A. Mailer |n]

while

Jo
f « 2 dT{u) = lim n'B;
o

for some d > 0 by Feller (1965-66, p. 380). Fix A > 1. For every n" -» + oo
there is a subsequence ri —» + oo for which

so

lim sup V(\Bn,)/V(Bn.) < cA2"a,

where c does not depend on /. This means lim sup V(\Bn)/V(Bn) < c\2~".
Now 5 n + JBn is bounded above (Feller (1965-66, p. 387)), Bn+l/Bn < d say, so
if x > 5, and «(x) is such that Bn < x < Bn + l,

lim sup V(x\)/V(x) < lim sup V(dXBn)/V(Bn) < cd2~a\2-",
X X

which is the required result. This completes the proof of (1.16).

REMARKS. It is not difficult to show from the estimates used in the proof of
Theorem 1 that, if F E SC(a), then F has finite moments of all orders less than
a, and the same is true of all subsequential limit distributions. That the latter are
also absolutely continuous follows from an argument like Lemma 2 of Mailer
(1978), wherein the characteristic function of a limit distribution is shown to be
absolutely integrable.

The following inequality also follows from the above estimates:

P{\SH-AnBn\>xBn)<cx-a+'

for e > 0, n > nQ(e) and x > xo(e), if F G SC(a). This may be compared with
inequalities due to Thompson et al. (1971, Lemma 3.2) and Owen (1973).

PROOF OF THEOREM 4. Suppose F G SC and every n" contains a subsequence
ri for which (Sn./Bn.) - An, -+ N(0, (a1)2) for some a' > 0. Then by Gnedenko
and Kolmogorov (1968, p. 128), ignoring terms like [fx_x u dF(u)]2, as we may,
we have n'B^2V(\Bn,) -> (a')2, so V(KBn)/ V(Bn.) -> 1 if A > 0. Thus
V(XBa)/ V(Bn) -* 1 for A > 0. Since Bn+X < dBn, if x > fi, and n(x) is such that
Bn <x <Bn+l, andA> 1,

so V(\x)/ V(x) -+ 1 for A > 0, V is slowly varying, and F e D{2).
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For the proof of Theorem 5, we require the following:

LEMMA \. If F e SC there are constants c0 > 0, x0 > 0,for which

lim+mf P(\Sn - AnBn\ > x0Bn) > c0.

PROOF OF LEMMA 1. If the condition of the lemma did not hold, for any

sequence x,|0 there would be a sequence m, = mj(i) of integers f + oo such that
for some e,JA

^(|^-^^|>x,.B^)<e1.

whenevery >jo(i). Thus if «, = mJo(i),

for / > 1. By stochastic compactness there would be a subsequence n- of n, for
which

P(\S^ - A ^ > xBj -* P(\X,\ > x) for x > 0,

where X, is nondegenerate. But clearly P(\Xt\ > x) — 0 for x > 0, so X, would
be degenerate at 0, which is impossible.

PROOF OF THEOREM 5. Suppose limx_>+00 lim s u p ^ . ^ H(\U(x))/H(x) < 1
and there is a sequence x, -» + oo for which xfH(x,)/ V(xt) = yf -» + oo. Then
yfU\x,) = xf, so

//(*,) H{yiU{x,)) H{\U(x,)) ^ ,. H(\U(x))

where A > 1 and / is large enough. Letting X -» + oo now gives a contradiction.
Conversely, suppose F G SC and apply Lemma 1 to the symmetrized sum S%,

which is clearly also stochastically compact. Let c0 and x0 be the resulting
constants. Suppose by way of contradiction that there are sequences \ , —» + oo,
xn -> + oo for which H(\U(xn))/H(xn) > 0 > 0 and let kn be the integer part
of co/[SH(xn)]. By truncating at 2xn,

\c0 < P d ^ | > x0BK) < x o - \ f i

for some y < 2 as a result of Feller's uniform bound. This means U\xn) >
2~yx2B^, so if x > 0 and n is large enough for 2~yx$\j; > x2, we deduce that

H(xn)
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By stochastic compactness kn contains a subsequence for which knH(xB^) -»
T(x), where T(x) is a canonical measure; but then T(x) > fico/%, which is
impossible since T( + oo) = 0. This completes the proof.

REMARK. We mention that Kesten (1972) gives a necessary and sufficient
condition for stochastic compactness in terms of the dispersion function of Sn,
related to conditions of Doeblin's, but not closely related to the conditions of
the present paper.
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