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Abstract. This paper describes a one-step method based upon the Lobatto four-point
quadrature formula for the numerical integration of differential equation: y"(x) = f(x,y(x),
y'(x));y(xo)=yo, y'(x0) = y'o. The method has a local truncation error 0(h6) in yix) and 0(/i5)
in y'(x). In the case of linear second-order differential equation, a stability criterion has been
developed. Theoretical and computational comparisons of the new method with existing method
is discussed.

1. Introduction

The necessity of accurate numerical approximations to the solution of non-
linear differential equations governing physical systems has always been an
important problem with scientists and engineers. Hammer and Hollingsworth [5]
have used Gaussian quadrature methods for solving ordinary differential equa-
tions. This method has been further developed by Morrison and Stoller [10],
Korganoff [9], Kuntzmann [8], Henrici [6], Day [2, 3], Jain and Sharma [7],
Sharma [13]. Day [1] used this method for the solution of non-linear second-
order differential equations (first derivative absent) using Lobatto four-point
quadrature formula.

The purpose of this paper is to investigate the use of Lobatto's four-point
quadrature formula for solving the second-order non-linear differential equation:
y"(x) =f(x,y(x), y'(x)); y(x0) = y0, y'(x0) = yj. The method has local trunca-
tion error 0(h6) in y(x) and 0(hs) in y'(x). For n integration steps the present
method requires (5n + 1) evaluations of / as compared to the classical methods
of Runge-Kutta, Runge-Kutta-Nystrom's An. A stability criterion has been
developed for the linear second-order differential equation.
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2. Second-order differential equations

Consider the second-order differential equation:

(2.1) y"(x) = f(x,y(x),y'(x)); y(.x0) = y0, y'(x0) = y'o

where x0 is an initial-point.

Throughout our discussion we shall assume that the function f(x,y(x),y'(x))
occurring in (2.1) is sufficiently differentiable to ensure that the derivations we give
are valid on any context in which they are used.

Integrating (2.1) from x0 to x0 + h(h > 0), we obtain the system of integral
equations:

(2.2) y(x0 + h) = yQ + hy'o + [_x0 + h - T]/(T,y(r),y'(x))dx
Jx0

(2.3) y ' ( x 0 + h ) = y ^ +
J X

+

We shall approximate the above two integrals by the Lobatto four-point
quadrature formula on the interval [xo,xo + h], see Hildebrand [4].

(2.4) P ° + F(x)dx = A. £ F(TP)WP + £4
*• p = 1

where,

Ti = xo »

T2 = xo + rh, r = (5-

t3 = xo+sh , s = (5+75)/10,

T4 = x0 +ft
and

4 f t F ( ^ )
3 27 15750 ' ^o < ̂  < ^o + ̂ >

We introduce the notations: xr/2 = x0 + rh/2, yr/2 ~ y(xr/2), xr = x0 + rh,
yr — y(xr) • Then integral equations (2.3) and (2.4) can be replaced as:

y(xo + h) = Jo + hyi +(h2ll2)[f(x0, yQ,y'o)
(2.5)

+ sf(xr,y „/,)}-] + E
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y'(xo + h) = y'0 + (hll2)[f(xo,yo,y'o) +f(x0 + h,y(x0 + h),y'(x0 + h))
( 1 6 ) + 5{f(xr,yr, y'r) + f(xs, yM, y's)}}+E'

wh ere £ and £ ' are truncation errors of 0(/i6) and 0(h5) respectively.

We note that we do not know yr, ys, y'r, y's\ thus if such an algorithm is to be
of computational value, we must obtain accurate approximate values for yr, ys,
j / and j>/. For this, we obtain the following Hermite expressions for yr and y'r
(we shall denote ^/5 by p):

(2.7) yr = yo+ rhyj + -&£ [y" + 2f(xr/2,yrl2ty'rlJ\ + Er

(2-8) y'r = <

where Er and E'r are truncation errors of 0(h5) and 0(/i4) respectively. Similar
expressions for ys and y/can be obtained by changing r to s and p to — p in
equations (2.7) and (2.8) respectively.

The approximate values of y'r/2 occurring in the equation (2.7) can be obtained
by halving the values of r, s and h in (2.8) and the approximate values of yr/2 can
be obtained by Taylor's theorem in conjunction with (2.1). Substituting the values
of yr/2 and y'r/2 in (2.7) we obtain the approximate values of yr to the desired
order of accuracy. Similar calculations yield the values of ys, y'r and y's Finally,
these values are used in (2.5) to obtain the desired value of y(x0 + h). To calculate
y'{x0 + h) we consider the expression:

h „ 25(1 + p) 25(1 - p)

(29) vT
+ 4 y(x0 + h) +^

Substitution of the values of f(xr,yr,y'r), f(xs,ys,y's) calculated above along with
the newly calculated value of f(x0 + h), y(x0 + h), y'(x0 + h)) into the equation
(2.6) leads to the required value of y'(x0 + h).

Error Terms
Error terms for each of the expressions (as abbreviated above by Er, E'r, E, E')

have been calculated as follows:

^ (4p + 8)

x f"(xo,yo,y'o)fXxo,yo,yi) - ^ fIV (x0,y0,yo)l + 0(h6)
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where

K

E

and
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_ h
_

~ X0

5tf_
12

((44 -
3600

"(*<>,JWo)

where Rt and # 2
 a r e the coefficients of ft5 in Er and £s respectively.

3. Stability criterion

The stability of the present method will be discussed in a manner similar to
that adopted by Jain and Sharma [7]. Consider the differential equation y" = ay;
a is a real number. We shall discuss the three cases a = 0, — k2, + k2 respectively.
If we insert the values of yn+n yn+s, y'n+r, yn'+s in yn + 1 and yn + 1 in the algorithm,
we obtain

(3.1)

. h2tx fcV h6a3
i i i _i

2 24 720
3a2h3a

120 8640

h3a h5az

+ 2 + 24 + 1440 y»

For a = 0, we have: yn+l = yn + hy'n and y'n+1 = y'n. The solution of this
system can be written as y'n = y'o and yn = y0 + nhy'o, which is an expected
result.

We now consider the case a = — k2; the solution in this case is oscillating.
We therefore consider the eigenvalues of the matrix in (3.1). We find that eigen-
values have unit modulus for 0 ^ h2k2 :£ 6.8. The deviation of the modulus
of the eigenvalues from unity is less than 0.01 for 6.8 < h2k2 ^ 9.5. This shows
that the method is stable for a sufficiently wide range of the values of h2k2. The
same has also been observed in the case of sample examples computed for the
method. The Runge-Kutta method as studied for the above problem y" = — k2y
is stable for 0 ^ h2k2 ^ 7.756, and the range of stability for the Runge-Kutta-
Nystrom method for the same equation is 0 ^ h2k2 ^ 6.690.
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For the case y" = k2y, of which the solutiors are exponential in nature,
we rely on the analysis given by Rutishauser [11,12]. It is well known that the
solution of the differential equation y" = k2y, written in the matrix form is:

(3.2) = exp [(x - xo)M]
- 0 1

, where M =
-k2 :i

For the point x = x0 + nh, this solution can be written in the form (with a = fe2):

~ 'On

(3.3)

Ly'(x)J
It may be observed that:

Lt — !exp(M/i)-
h~*0 L \

where

-a21 a22

012

] m
"21

2k2

22

-o

o

o -
k6

1440 J

h2k h6k6

h3k2 h5k4

a21 =
h5k6

h2k2 6k6h6k
24 1440

This indicates that the present method is of order five by definition of Rutishauser.
In the case of a large number of integration intervals (large x, small h), the relative
error of this method, for equation y" = k2y can be considered as follows:

The maximum eigen-value of the matrix in (3.1) for a = k2 is given by:

X = (1/2)

- 1+MC

+ a22)+

h2k2 h3k3

+ +
h5k5 13/i7fc7

2 6 24 ' 720 2880

and therefore the relative error F (in the sense of Rutishauser) of the method is:

„ _ hk - l o g A
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log(e**)-logA

19ft6fc7

*° r ' a r S e x an& small ft.

Rutishauser (1960) calculates the relative error for the Runge-Kutta-Nystrom
method for the equation y" = k2y and finds that Fa <* (ft4fc5/320); for the
Runge-Kutta method he obtained Fx c* h*k5/l20.

4. Algorithm

To advance from xn to xn+t(xn+1 = xn + hi) we note that f(xn,yn,y'n) has
been computed in the previous step. The computation should proceed as follows:

Calculate,

W = yn +
 rly'n + I^y:

sh , s2h2 „
= yn + -jyn + -j-y"

,, t(5-3p)h y:

2(9p-20)
I * J

, _ (25+19p) (3 + 2p) (5 + 3p)ft (15 - p)
yn+s/2 = — ^ — y n + —j—yn H 4 Q — ^ •>—^—y»+,i2

2(9p + 20)
fr yn + r/2

Then,

yn+r = y* + rhy'n + ^-~lf(xn,yn, y'n) + 2 / (x n + r / 2 , yn+r,2, ^ + r / 2 ) ]

yn+s = yn + shy'n + ^j-U(xn,yn,y'n) + 2f(xn+s/2, yn+s/2, y'a+t,J]

(25-19p) .„ „ . , (5-3p)ft „ (15 -p)
y«+r = 2h

 yJy* + (3 - 2p)y'n +
 K

 20
y> yn

n +
y
 2h y.+r

• (9P-20)
H r
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(9p + 20)
h y'+r

Finally,

J.+ i = yn + hy'n + jgJ(xn,ymyd + 5{sf(xH+r,yH+r,y'm+r) + rf(xn+s,yn+s,y'n+s)}-]

Again calculate,

33 n , h „ 25(1 + p) , 25(1 - p) 8
j'.+i = --jy»-7y» ~Yyn +~~2ii—y"+r —2h—y»+° + -h-

Thus,

y' = y' + U(Xyy')

5. Numerical results of the method

For the purpose of computational comparison of this method with other
methods, we consider the following two examples. We have written programs
for the ICL 1909 Computer in FORTRAN IV (in single precision) for the method
under consideration and the results have been compared with the exact results
and the results obtained by other methods.

Example One

The differential equation

with initial conditions:

has the solution:

y(x)= ex/2cos(4ne-x).

We computed approximate values of y(x) at equally spaced points with h = 0,02
and obtained the approximate values listed in Table one.
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TABLE ONE

[8]

Nystrom Runge-Kutta New Method Exact

2.0
4.0
6.0
8.0
10.0

-000.35227603
007.19395636
020.07545103
054.59685889
148.41099023

-000.35227603
007.19395636
020.07545103
054.59685888
148.41099021

-000.35205017
007.19420981
020.07580847
054.59770481
148.41324328

-000.35205060
007.19420412
020.07579367
054.59766497
148.41313528

Example Two

The Legendre differential equation:

(1-*')£>-2* A-72,-0
dx2 dx

with initial conditions:

x = 0, y(0) = 0.2734375000, (^-) = 0
\ax)x=0

has the solution:
y(x) = (6435x8 - 12012*6 + 6930x4 - 1260*2 + 35)/128.

We computed approximate values of y(x) at equally spaced points with h = 0.02
and obtained the approximate values listed in Table two.

X

0.10
0.20
0.30
0.40
0.50

Nystrom

0.1803210877
-0.0395736736
-0.2390734252
-0.2669997410
-0.0736421547

TABLE TWO

Runge-Kutta

0.1803217228
-0.0395615211
-0.2390709065
-0.2669999266
-0.0736478032

6. Conclusion

N e w Method

0.1803207210
-0.0395647992
-0.2390745826
-0.2669992858
-0.0736388781

Exact

0.1803207215
-0.0395548000
0.2390745910

-0.2669993000
-0.0736389159

We observe that the one-step Lobatto method developed here compares
favourably with other methods. The relative error of this method is relatively
much smaller than the classical Runge-Kutta and Nystrom methods with only
(n + 1) additional functional evaluations for n steps.
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