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A B S T R A C T . The hypothesis is considered that the torsional wave observed on the Sun is an eigen-
mode oscillation excited in the presence of a weak poloidal magnetic field. We derive asymptotic 
linear equations for a perturbation with a large number of nodes along the radius, assuming the 
rotation to be slow and the characteristic perturbation period to be much longer than the rotational 
period. The results of a preliminary numerical study of the stability of the torsional mode indicate 
that the superadiabaticity of the solar convection may contribute to the excitation of this mode. In 
the present work the approximation of harmonic radial dependence of the perturbation has been 
used. 

1. I n t r o d u c t i o n 

Recently Howard and LaBonte (1980) m a d e a detailed analysis of d a t a on t he solar horizontal 
velocity field, and concluded t h a t a solar torsional wave exists, which manifests itself as a 
modula t ion of t he average rota t ional velocity. At a fixed l a t i tude t he velocity is changed 
with approximate ly an 11-yr period having an ampl i tude of close t o 10 m s - 1 (Howard and 
LaBonte , 1980; LaBonte and Howard, 1982). This wave is a travelling one showing s t rong 
symmet ry with respect to the equator . T h e whole p ic ture seems to b e repea ted with a 22-yr 
period. 

Many au thors consider t he torsional wave as a dynamo wave (Yoshimura, 1981; Schüssler, 
1981; Kleeorin and Ruzmaikin , 1984). However, t he corresponding theory has not been 
worked out in detai l since there have appeared difficulties, which solar d y n a m o theory itself 
has not yet overcome. 

Wilson (1987), Snodgrass (1987a, 1987b), and Snodgrass and Wilson (1987) have a quite 
different point of view. They suggest t h a t t he torsional wave observed is not in fact an 
oscillation, bu t represents a modula t ion of t he mean differential ro ta t ion caused by a system 
of giant az imutha l convective rolls with opposi te direction of ro ta t ion in any two adjacent 
rolls of t he same hemisphere . They also cite observational evidence t h a t giant-cell convection 
in t h e Sun takes t he form of equa torward migra t ing az imutha l rolls. However, it remains 
unclear whe ther a ro ta t ional velocity dis t r ibut ion exists which is self-maintained, and which 
satisfies t he constra ints of t he observational da t a . 

A suggestion tha t the solar torsional wave is excited due t o t h e instabil i ty of an appropri-
a t e eigen-mode has been considered by Vandakurov (1988). In this case we need to assume 
t h a t t he Sun has a weak, steady, poloidal magnet ic field not de tec table by current observ-
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ing techniques. For the oscillations in question, a toroidal magnetic field is generated, the 
magnetic energy being transformed into kinetic energy and vice versa. 

Torsional oscillations have been studied long ago by Walén (1948) and Layzer et al. (1955) 
in connection with a hypothesis that sunspot fields might represent loops of a toroidal mag-
netic field gererated by such oscillations and then being pulled up to the surface. However, 
the characteristic period of the torsional oscillations (for the fundamental mode with a mag-
netic field strength of around 2 G) turned out to be 25-100 times longer than the solar 
activity cycle (Layzer et al., 1955). 

Nevertheless, the difficulty with the long oscillation period can be eliminated if the tor-
sional mode has numerous nodes along the radius (Vandakurov, 1988). In this case the 
steady magnetic field is rather weak. An additional restriction of its value follows from the 
circumstance that in the presence of a steady poloidal magnetic field, an asymmetry should 
develop between the even- and odd-numbered solar cycles (Boyer and Levy, 1984; Pudovkin 
and Benevolenskaja, 1984). According to the latter two authors, a maximum value of 0.5 G 
for the dipole type field gives results consistent with the observations. Such a field can appar-
ently be in accordance with the value 11 yr for the period of the torsional mode (Vandakurov, 

The main question is whether the mode mentioned can be self-excited. This question 
is considered in the present paper. Asymptotic linear perturbed equations are derived, 
supposing that the perturbation has a large number of nodes along the radius, and that the 
torsional oscillation period is much longer than the stellar rotation period. We take into 
account different types of dissipation. Some results of this study have been discussed briefly 
in Vandakurov (1988). 

2 . A s y m p t o t i c p e r t u r b e d e q u a t i o n s 

Let us assume invariance with respect to φ, the azimuth angle, and consider movements of 
a viscous, gravitating, compressible medium with finite conductivity in the presence of a 
magnetic field B . We assume the pressure ρ and thermal flux F to be proportional to ρΤ/μ 

and V T , respectively, where ρ is the density, Τ the temperature, and μ the molecular weight. 
A different expression for F will be considered later. In the following τ,ΰ,φ are spherical 
coordinates, and e r , e^, and e v are unit vectors. 

Let us now write down the (^-component of the equation of motion, as well as the div and 
ê >- curl of the same equation: 

1988). 

e v · (dv/dt + Β χ curl Β/Απρ - z /V 2 v) = 0, 

d iv(dv/d* + Vp/p + Β χ curl Β/4πρ - uV2v) + AnGop = 0, 

βψ · curl(dv/d* + Β χ curl Β/Απρ - i / V 2 v ) - e v · (Vp χ Vp)/p2 = 0. 

(1) 

(2) 

(3) 

The other basic equations are 

dp/dt + div(y9v) = 0 , 

dBdt - curl(v χ Β ) - vBV
2 Β = 0 , 

dp/dt - (ip/p)dp/dt - ( 7 - l)(pe - div F ) = 0 , 

dp/dt = 0 . 

(4) 

(5 ) 

(6) 

(7) 
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Here ά/dt = d/'dt + ν · V , ν and vb a re kinematic and magnet ic viscosities, and v , Go, 7 , 
and e denote , respectively, t he velocity, gravi ta t ional cons tant , ra t io of specific hea t s , and 
energy product ion . 

We assume t h a t in equil ibrium the toroidal magnet ic field is absent , and 

ν = Βφτ^1 sin ΰ, Β = B 0 b , (8) 

where Ω and Bq a re cons tant , and b is t he dimensionless meridional vector. T h e equil ibr ium 
condit ions follow from Eqs . ( l ) - ( 7 ) if we insert expressions (8). We do not wri te t h e m down 
here. 

To ob ta in t he pe r tu rbed equat ions we insert , ins tead of p, v , e tc . , p + p*, e ^ r H sin Ό + ν * , 
e tc . , where p*(r,O^t) and v*(r, i?,<) are Eulerian components of t h e pe r tu rba t ion . In t he 
linear approximat ion it follows from Eqs . (3) and (5) t ha t 

dv* J 9 0 b - V ( £ * r s i n t f ) 

+ 2Ω < sin ΰ + t t f cos 0) - 0 V φ J- - ν 1{ν*φ) = 0, 9α 

dt 47T/9rsin# ψ 

dB* ν* 

- Bor s intfb · V ( ^ ) - uB L {Β*ψ) = 0, (96) 

where 

L = -—r2— + 1 ( d

 sintf A _ 1 ) 
r2 dr dr r 2 s i n # du d'à sini? 

To find the velocities ν* and in these equat ions , we need t o use t he equat ions of system 

( l ) - ( 7 ) . Let us wri te t h e m in t he approximat ions of slow ro ta t ion , very slow movements , 

and small /i*, t h e radial scale of t he pe r tu rba t ion , i.e., 

Γ Ω 2 / < 7 < 1 , | ω 2 | / Ω 2 < 1 , hm/hp<l, (10) 

where g = —dp/par is t he gravi ta t ional acceleration, and hv = — d r / d l n p is t h e radial scale 
of t he equil ibr ium pressure. If d/dt ~ to;, then the frequency ω will be of order Ω ^ Γ / Ζ Ι * as 
follows from Eq . (9) , wi th Ω2

Β = B^/Anpr2. 

One can see t h a t the main t e rms in Eq . (3) are t he last one and the one t h a t contains 
the angular velocity Ω. A similar approximat ion for slow mot ion (bu t for t h e case of large 
Lorenz force) has been used by Taylor (1963). Note fur thermore t h a t from Eq. (2) we obta in 
t h e es t ima te 

p'/p~(h./hp)(p*/p)- ( H ) 

T h u s , neglecting small te rms (bu t re ta ining those which are i m p o r t a n t a t small r ) , we get 

2 n j ^ ( t , ; s i n t f ) - 2Ωοο3ΰ^(νν*ψ) = 9 - ^ . (12) 

In addi t ion , t he equat ions of continuity and energy give 

1 d 1 d 
~^-r2v; + — — r - T T ^ s i n t f = 0, (13) 
r dr T r sin ν dv v y 
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where 

a _ 1 d l n p dlnp ^ _ d i n μ ß (7 - l)Fr Τ 

7 d l n r d l n r ' d l n r ' 7 p r 2 ( d T / d r ) ' 

Here we have taken in to account t h a t θμ*/θί = βμν*/^ Τ* /Τ = —ρ*/ρ+μ*/μ. Actually, all 
t e rms having an e x t r a factor of order ω2/Ω2 or h+/hp have been omi t t ed in Eqs . (12) - (14) . 
However, we re ta in te rms with a factor of order r2hpü

2lgh\. 
Eqs . (9 ) , (12)- (14) const i tu te a system for t he pe r tu rba t ion components ν , Βφ, and 

p*. T h e b o u n d a r y conditions are t he following. Near t he centre (under t h e condit ion t h a t 
br φ 0 ) , t h e t e r m with Ω in Eq. (9a) is small for t he pe r tu rba t ion in quest ion. Near the 
surface where ρ is small , this t e r m is also small . Thus t he bounda ry condit ions are t he same 
as those in t he absence of ro ta t ion , i.e., a t t he boundaries d(v^/r s'mty/dr = 0. 

W h e n deriving Eq. (14) we assumed t h a t t he hea t flux is propor t ional t o V T . In the 
convection zone where a < 0, this flux depends mainly on the entropy gradient . Let , for 
ins tance , Fr be propor t ional t o (—α) λ , where a < 0, and λ is a posit ive cons tant . T h e n , with 
our approximat ion , 

where K = r2b2Îl2

BLo — A.(d/dt — vLq), Λ = d/dt — t/BLo,y = cosd, a n d E is a dimensionless 
function of τ, y, and t. Subs t i tu t ion of these expressions in t he energy equat ion (14) yields 

where t he t e r m p*/fp is negligibly small . We see t h a t Eq . (14) holds t r u e if we pu t 5 = 0, 
and replace Ω ^ by Ω/rc , where 

(15) 

3 . M o d e l w i t h a r a d i a l s t e a d y m a g n e t i c f ie ld 

A simple solution of the above equat ions may be found for t he case of an idealized magnet ic 
field dis t r ibut ion: b = 6 r e r , where r2br = const , and br is positive (negative) if ΰ < π/2 (ΰ > 
π / 2 ) . In this case, t he field direction abrupt ly reverses when the equa tor is crossed. Besides, 
we re ta in in t he equat ions only t e rms wi th t he highest radial derivative of t he pe r tu rbed 
quant i t ies , assuming the la t i tudinal derivative not t o be large. For example , we replace the 
opera tor L by Lo = d2/dr2. In this approximat ion the t e r m with dv^/du in Eq.(12) may be 
omi t t ed . T h e solution of Eqs . (9) , (12), and (13) may be expressed in t he following form: 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 
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Here q = 4 Γ Ω 2 / g . 
One can see t h a t t he solution of this equat ion for one mode is 

E(r,y,t) = Y{y)exp(ikr + iut). (22) 

T hen 
1 - y2 dY 

ày [ y 2 dy \ 
(23) 

where j = const. , while t he frequency ω satisfies a cubic equat ion s tudied in Vandakurov 
(1988). In this paper Eq. (23) has also been invest igated. 

If ν and vb are small , the stabili ty condition is (Vandakurov, 1988) 

il2

Bilq(a - s) > 0, (24) 

i.e., t he rmal dissipation in zones with a superadiaba t ic t empe ra tu r e gradient serves t o self-
excite torsional modes with numerous nodes along t he radius . In cont ras t , bo th ord inary 
and magne t ic viscosity t end t o dampen these modes (Vandakurov, 1988). 

4 . A p p r o x i m a t i o n o f h a r m o n i c d e p e n d e n c e o f t h e p e r t u r b a t i o n o n r a d i u s 

T h e equil ibrium magnet ic field studied in t he preceding section h a d a steplike change near 
the equa tor . For a more realistic field dis t r ibut ion, one needs t o solve t he complicated system 
of equat ions in par t ia l derivatives. Since we s tudy pe r tu rba t ions having m a n y radial nodes , 
the dependence on the boundary conditions becomes of small significance. T h e n , t o form 
a general concept of the stabilizing or destabilizing contr ibut ion of some layer, i t seems 
sufficient t o use t he approximat ion of harmonic radial dependence of t he pe r tu rba t ion . Thus 
we assume the pe r tu rba t ion t o be proport ional t o exp(ifcr + iut), where k and ω a re constant . 
Besides, we do not use the approximat ion t h a t the la t i tudina l derivative of t h e pe r tu rba t ion 
is much smaller t han the radial one. Fur thermore , we assume the equil ibrium magnet ic field 
t o be 

br = 2 cos ΰ, οϋ = -β sin ϋ. (25) 

Here 0 = dln(r2br)/d\nr, and \ß/kr\ < 1. El iminat ing Β*φ from Eq. (9) , we find 

(26) 

(27) 

(28) 

(29) 
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where w* = v*/iu>r, W = w*/s in t f , Θ = T*/T. Here we pu t Vß « 0. 
These equat ions are equivalent t o six first-order differential equat ions for six variables: 

W, dW/dd, w*, w#, Θ, and ΘΘ/οϋ. In t he vicinity of t h e polar axis (ΰ = 0, or ΰ = π), t he 
following expansions are valid: 

W = W0 + W2 s in 2 ΰ + ..., w* = V0 + V2 s in 2 ΰ + . . . , Θ = Θ 0 + Θ 2 s in 2 ΰ + . 

where 

Wo = k2r 
Γ 2 Ω 

Wo (ikr - 2) Vo 

4 f t F 

V 2 

kr2uÇl -τ τ τ 
2 + Wo 

(30) 

(31) 

(32) 

(33) 

T h u s t h e constants Wo, Vo, and Θο remain unde te rmined . Th i s fact pe rmi t s us t o construct 
th ree independent solutions. T h e whole solution calculated with t he init ial poin t a t ΰ = 0 
coincides with t h a t found with t h e initial point a t ΰ = π if a t t h e equa tor (ΰ = π/2) t he 
quant i t ies dW/θΰ, ΘΘ/Θΰ, and w# a re zero. These condit ions give three linear algebraic 
equat ions for Wo, Vo, and 0 q . T h e condit ion t h a t these th ree equat ions are solvable, 

(35) 

Now Eqs. (35) and (29) reduce t o a system of four first-order differential equat ions for W, 
sint? dW/du, s i n # (d/dd)(sinu dW/dd), and w#. T h e velocity iurw* in these equat ions is 
de termined by Eq . (26). T h e expansions in t he vicinity of t h e polar axis t u r n ou t t o be given 

(34) 

provides an equat ion for t he complex eigenvalue ω. 

5. The case of a chemically homogeneous medium 

If θ = 0, Eqs . (26)-(29) need some modification. Differentiating Eqs. (26) and (27) with 
respect t o ΰ, and excluding (using also Eq. (28)) t he derivatives ΘΘ/Θΰ and div^/dti, we 
find 
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The excitation of the torsional wave observed on the Sun can occur due to the superadia-
baticity of the solar convection zone. In general the approximation that the perturbation 
has a large number of nodes along the radial direction is not well-founded in the case of the 
convection zone (Vandakurov, 1988). Nevertheless, some preliminary estimates can be made 
using Eqs. (35), (29), and (26). 

We have carried out a numerical solution of these equations considering the convec-
tion zone as a chemically homogeneous medium with a superadiabatic temperature gra-
dient (α < 0 ), with a turbulent viscosity, and, of course, with a convective thermal 
conductivity. We choose the following values for the parameters: kr = 10, a = —10~ 5 , 
i / = 1 . 3 x 1 0 1 2 c m 2 s " 1 , nFC = 5i/, r = 6 X 1 0 1 0 c m , ril = 2 χ 10 5 cm s " 1 , rïl2/g = 2x 1 0 " 5 , 
β = 0.5, Ω*3 = 9.72 χ 1 0 _ 1 9 α β , where αΒ is either equal to 1 or to 0.1. If ρ = 0.001 g c m - 3 , 
these values of Q B correspond to 6.6 G (if aB = 1) and 2.1 G (aB = 0.1). In the case of 
smaller values of Q ß , the computation becomes more time-consuming. 

Complex solutions of Eq. (36) were found by the Newton method generalized to cover 
the case of two-dimensional variables. We searched only for a solution with a positive real 
part of the quantity ιω. Such solutions imply instability. Note that attempts to find similar 
solutions for the case of some models with positive values of a did not succeed. 

It turns out that the dependence of Dm(ω) on some trial values of u; is extremely compli-
cated, so the procedure mentioned is convergent only if the trial ω-value is sufficiently close 
to an eigen-solution. Under the conditions ust = 0.006 and = 1, we found the solution 
ιω = (0.5285 - i 0.0116) x 1 0 ~ 8 s " 1 , where tist is the initial value of the angle ΰ. For other 
small values of the quantity ιω may differ from the above value by several percent, and 
fixing ιω exactly appears to be rather troublesome. However, the latitudinal dependence 
of the perturbation undergoes only minor changes during the procedure of making the fre-
quency ω more accurate. The dependence of w# on latitude is shown in Figure 1. Here we 
assume that at the pole (ΰ — 0) W is unity. In the region of ΰ £ 20° the perturbation 
amplitude is very small (if ΰ = 90°, then iy* = 9 X 1 0 ~ 9 ( 1 + i ) , and the real (imaginary) 
part of w* goes through zero at ΰ = 74°(80°)) . 

The radial velocity v* has many nodes in the vicinity and to the left of the point ΰ = 
where = 9 ° . l . This is because the coefficient in brackets on the left-hand side of Eq. (35) 
is small, lî ΰ < then the closer ΰ is to 7?*, the larger is w*, with a maximum value as 
large as - 5 2 2 0 + i 2590. We do not know whether these large values of w* are consistent 
with our approximations or not. 

In the case that a B = 0.1 we found a solution iu = (0.08145 - i 0.00538) Χ 1 0 " 8 s _ 1 which 
apparently belongs to the same mode as that considered above. These solutions correspond 
to nearly exponentially growing modes with a characteristic growth time of the order of 
several years. Overstable modes are possible if there are zones in which the perturbation is 
propagating. Thus the study of models having not only convective but also radiative zones 
is needed. 

6. N u m e r i c a l s t u d y of t h e u n s t a b l e m o d e s 

(36) 

by the first two expressions in Eq. (30), in which the constant W<i is determined by Eq. (31). 
One can see that the constants Vo and Wo are arbitrary, so by setting the variables dW/dti 
and it?3 at the equator (ΰ = π / 2 ) equal to zero, we find two equations for Vo and Wo- The 
determinant DJ ω) of these two equations should be equal to zero, i.e., the equation for ω is 
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-0.01 

0.01 

Figure 1. Real (solid curve) and imaginary 
(dashed curve) parts of ίο*, the dimension-
less azimuthal displacement, as functions of 
7τ/2 - ΰ, the latitude. 

Latitude 

Note in conlusion that the aforementioned nearly exponentially growing unstable mode 
can coexist together with the torsional wave found by Howard and LaBonte (1980). We 
suggest that this mode having large radial velocities in some zones near the poles is the 
cause of the solar activity observed at high latitudes (Makarov and Sivaraman, 1989). We 
may relate the existence of such a mode to the weak polar poloidal magnetic fields whose 
direction reverses periodically. Then the growth of the instability is supposed to begin after 
the new polar fields have formed. The growth time can be smaller than the cycle duration 
if the parameter Ωβ is larger than in the previous examples. 
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