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Strain fields and dislocations play an important role in determining the electronic properties of atomically-
thin two-dimensional (2D) crystals, especially laterally-stitched 2D heterojunctions1-3. Conventional TEM 
can identify defects and dislocations using the diffraction contrast from two-beam analysis or the diffuse 
scattering from electron beam dechanneling along a column of atoms. However, these methods fail in 2D 
materials, which are confined to atomic dimensions in the direction of beam propagation. While 
geometric phase analysis (GPA) on atomic-resolution images can provide strain maps for 2D materials4, 
the field-of-view is limited to a few tens of nanometers. When heterostructures or grains of 2D materials 
reach the more typical micron scales, measuring strain and dislocations at atomic resolution is arduous 
and inefficient, requiring thousands of images. Here, we developed a method using an electron 
microscope pixel array detector (EMPAD)5 to map the strain and topological defects in 2D crystals with 
high precision spanning at length scales from atomic to multimicron.  
 
The EMPAD is a high-speed, high dynamic range diffraction camera designed at Cornell that functions as 
a universal STEM detector5. Specifically, in STEM, a diffraction pattern is acquired at each scan position 
(Fig. 1a) at 0.86 ms/frame. It has a high sensitivity that can detect a single electron, allowing quantitative 
analysis of diffraction from a single atom6. In addition, its high dynamic range enables collection of all 
transmitted electrons, with primary beam unsaturated and diffracted beams clearly resolved (Fig. 1b). We 
show this by integrating the center beam (or one diffracted spot) to plot bright field (or filtered dark field) 
images, as shown in Fig. 1c and 1d. This high dynamic range provides high accuracy and simultaneous 
center-of-mass measurements (CoM) of all spots. In addition to mapping the mean inner potential of the 
monolayer from the CoM, we extract lattice information from the diffraction patterns at each scan 
position, obtaining lattice, strain and rotation maps in real space from the EMPAD’s four-dimensional 
dataset (x and y in real space and kx and ky in momentum space).  
 
We examined strained (Fig. 1d) and relaxed (Fig. 2a) WS2-WSe2 lateral heterojunctions. At the relaxed 
junction, the lattice constant (Fig. 2b) and uniaxial strain map (Fig. 2e) cleanly distinguish the two 
materials, showing the 4.5% lattice mismatch. The intensity histograms (Fig. 2c and 2f) show a resolution 
of better than three picometers and elucidate strain variations to below 0.18%, with local samples 
distortions placing an upper limit on the spread. The rotation map in Fig. 2d shows that the lattice strain is 
released by the periodic misfit dislocations appearing at the interface. In contrast, rather than forming 
misfit dislocations as in wide heterojunctions, narrow heterojunctions remain coherent and instead exhibit 
uniaxial strain parallel to the interface (Fig. 2g and 2h).    
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Figure 1. EMPAD Imaging. a, Schematic of the EMPAD operation, where a full diffraction pattern, 
including the unsaturated primary beam is recorded at each scan position. b, Diffraction images taken by 
EMPAD. The left panel shows the diffraction image of a 5 nm SiNx film, while the right panel displays 
the diffraction pattern of a WSe2 monolayer located on the 5 nm SiNx film. c and d show the bright field 
and filtered dark field images obtained by integrating the central and the labelled diffracted beam, as 
indicated on their top left sections.   

 
Figure 2. Strain Mapping. a, Annular dark field (ADF) image extracted from the EMPAD 4D data on 
WS2-WSe2 wide lateral heterojunction. The inner detector angle is 50 mrad. b, Lattice constant map of 
micron-sized triangles. c, Lattice constant histogram from b. The inset is the histogram from a flat region 
(gray box) in b, indicating a resolution of ~3 pm. d, The rotation map displaying periodic misfit 
dislocations that contribute to relaxing the lattice strain at the WS2-WSe2 junction. e, Uniaxial strain map 
showing most of the strain has been released. f, Strain histogram from e showing that the resolution is ~ 
0.18%. g,h, Lattice constant map (g) and the uniaxial strain map (h) of a narrow-stripe WS2-WSe2 
multijunction, which exhibits strong uniaxial strain parallel to the junctions, forming coherent structures 
free of dislocations. 
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