PROJECTIVE CONNECTIONS AND
PROJECTIVE TRANSFORMATIONS

NOBORU TANAKA

The main purpose of the present paper is to establish a theorem concerning
the relation between the group of all projective transformations on an affinely
connected manifold and the group of all affine transformations.

We shall say that an affine connection satisfies condition (E), if it is without
torsion and affinely complete and if the Ricci tensor field S(X, Y) is parallel.
Our theorem states that if an affine connection satisfies condition (E) and if the
quadratic form S(X, X) is zero or not negative semi-definite, then the two
groups coincide. This is just a generalization of the case of ordinary affine
space which is well known in analytic geometry.

The proof is based on the theory of normal projective connection introduced
by Elie Cartan; in particular, we make use of the “developing” process of this
connection. After some preliminaries, in which we follow the book of K. Nomizu
[5] for affine connections, we first formulate the normal projective connection
from a global point of view, as we shall see in Proposition 1. In §6, we prove
an important lemma (Lemma 8) by using the results in the previous sections
(Proposition 1, 2 and 3), from which the main theorem follows immediately. In
Appendix, we shall prove a known fact on the geometric charactrization of the
projective equivalence of two affine connections.

Finally we add that we have obtained some results about the relation
between the group of all conformal transformations on a Riemannian manifold
and the group of all isometries by using the method analogous to the projective
case. We hope to deal with this problem in another paper.

The author expresses his sincere thanks to Professor K. Nomizu for his

constant encouragement and interest in this work.

1. Definition of a projective transformation
on an affinely connected manifold

Let A be a connected manifold of class C*. We asume that the dimension
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n of M is =2. Under differentiability we shall always understand that of class
C”. We shall denote by M, the tangent vector space to M at p M. The set
X(M) of all veétor fields on M is a module over the ring F(M) of all differ-
entiable functions on M.

An affine connection ¥ on M is given by a mapping of ¥(M) x ¥(M) into
X(M) which satisfies the following conditions [5]:

a) For each X& ¥(M), the mapping Y - PyX is an endomorphism of
F(M)-module X(M);

b) For any X, Y, Z€ ¥(M) and f€ F(M),

Vx(Y+Z)=VxY+VxZ, fo‘Y-‘—‘f’VxY—!—Xf’Y.

Let 9 be the set of all affine connections on M whose torsion are zero. We
introduce a relation ~ in U as follows: 7 ~7, if and only if there exists a 1-form
p on M such that

(1.1) PxY=PzY+po(Y)X+0o(X)Y for all X, Y e X(M).

~ is clearly an equivalent relation, by which U is divided into equivalent classes.
The class P(7) containing ¥ € A consists of all affine connections 7 on M which
can be written as (1.1) with an arbitrary 1-form p on M. When F ~F, we
shall say that 7 is projective to ¥ and call p the associated 1-form of 7 with
respect to 7. It is known that 7 is projective to ¥ if and only if the systems
of geodesics for the two connections coincide (see Appendix).

Fix an affine connection 7 belonging to . Let f be a differentiable trans-
formation of M onto itself. We now define a mapping 7 of X(M) x X(M) into
X(M) by

(1.2) PxY=f""PufY for all X, YeX(M),

where fX denotes the vector field obtained by applying the differential of f to
X. We see that 7 belongs to . If 7 ~F, f is called a projective transfor-
mation of /. In this case, we shall call p the associated 1-form of f. The group
P(F) of all projective transformations of ¥ is a Lie group with respect to com-
pact open topology [4] and contains the group A(F) of all affine transformations
of 7.

In the following, we shall justify the word “projective” by considering the

normal projective connection corresponding to an arbitrary class of mutually
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projective affine connections. For this purpose, we begin with an ordinary

projective space.

2. Projective space

Let P, be an n-dimensional real projective space constructed from an (n+1)-
dimensional vector space Fn:: in the well known manner.

(2.1) We consider a fixed decomposition of Fj:1
Fn+1 = Fl + Fﬂ»

where F; and F, are 1- and n-dimensional subspaces of F,:.: respectively, and
we choose once for all a base (%) in Fi. We denote by F, the dual space of
F,. and by <£, E> the product between ¢ € F, and EE€ F..

(2.2) P, is a quotient space of Fr.;, where Fy.;=Fu. —(0). More
precisely, it may be regarded as the base space of a principal fiber bundle Fi .,
with the multiplicative group of non-zero real numbers as structure group. We
denote by o the projection of Fr., onto P and set o= ().

(2.3) P, may be regarded as a homogeneous space P(n)/P'(n), where
P(n) is the so-called projective transformation group on P, and P'(n) the
isotropy group of P(n) at o. We know that P(n) is expressible as a factor
group GL(Fns)/H!, where Hi denotes the 1-parameter subgroup (exptl,,:)
of GL(Fy+1), 1441 being the unit element of GL(F,.+;). The action of P(#n) on
P, is as follows: Let w be the projection of GL(F,:,) onto P(n). Then,

o(a) w(n) = wlon) for all o€ GL(Fy:1) and u &€ Fiyi.
(2.4) We define a homomorphism ¢ of GL(F,) into GL(F,.,) by
o(@)s=46; ¢(a)y=ay for »€ F.
For each E€ F;, let exp E be the element of GL(Fy+;) defined by
exp Efv=4; expEn=<y, ED&+17 for »€ Fa.

Then it is easily seen that P'(%) can be identified with the subgroup of GL(F,,)
composed of all the elements ¢(a) - exp E with ¢e€ GL(F,) and E€ F; (the
isomorphism is clear). Thus P’(%) can be expressed as

P'(n) =¢(GL(F,)) + exp Fr.

The expression ¢(a) « exp E is unique, and, in particular, ¢ is an isomorphism

https://doi.org/10.1017/50027763000021905 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000021905

4 NOBORU TANAKA

of GL(F,) into P'(n).
(2.5) We define a homomorphism [ of P'(n) onto GL(F,) by

l(¢(a) *exp E) = a.

(2.6) We see from (2.3) that the Lie algebra of P(n) is given by
gl(Fpny1)/ Hy, whére H,; denotes the 1-dimensional subalgebra of g{( Fn+1) spanned
by 14+1. Consider the formal direct sum p(7z) of three vector spaces Fy, al(Fn)
and Fi:

p(n) = Fn+ gl(Fn) + Fa.
For each ¢ € Fu, A€ gl(Fs) and E€ F, let £, A and E be the elements of

gl(Fpn.1) defined respectively as follows:
=8 Ep=0; A&=0, Ayp=An; E&=0, En=<, ED,
where y& F,. For A& p(n), define A€ gl(Fney) by A=+ S+E if A=¢
+ S+ E, where ¢€ F,, SEgl(F,) and E€ F,,. We now define a linear iso-
morphism f of p(n) with gl(Fu::)/Hy by f(A)=w(A), where » denotes the
projection of gl{Fy,+1) onto gl(F,+1)/H:. f being an isomorphism, we can transfer
the structure of Lie algebra of gl{(F,+:)/H; to p(n) in such a way that f becomes
an isomorphism of Lie algebras of p(%) with gl(Fu+)/H:. It is easy to see that
the bracket operation of p(#) is defined as follows:
£,81=0; [A Bl=AB-BA; [E E'1=0; [A, ¢1=As; [A El= -'AE;
[2, E] =the element of gl(F,) defined by [£, Ely=<¢, E>y+<y, EDE,
where 7, £, £’ Fn, A, BE gl(F;) and E, E'e F}. In the following, we shall
always identify p(z) with the Lie algebra of P(n). We here remark that the
notation exp E, introduced in (2.4), is legitimate, because we have generally
exp Aw(u) = w(exp Au) for all A€ p(n) and u € Fhrii.
The Lie algebra of P!/(n) is given by
p'(n) = gl(Fp) + F.
(2.7) The decomposition of p(z)
p(n) = Fu+p'(n)
is fundamental for our argument. We shall denote by As, and Ay, the Fur

and p'(n)-component of A € p(n) respectively.

(2.8) The adjoint representation of P'(zn) in p(#n) is given by
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ad¢(a)t =a?; ade(a)A =adad; ad¢(@)E="'a'E;
ad(exp B): =2+ [E, 21+ ;[E, [E 211; adlexpE)A= A [E, Al;
ad(expE)E' = E',

where a€ P'(n), € F,, A€ gl(F,) and E, E'E F;;. We have lla)? = (ad(a) ),
for all e P'(n) and €& F,, which shows that / may be considered as the
homomorphism of the isotropy group of P(n) at o onto the linear isotropy

group.
3. Connections in principal fiber bundles

We first recall definitions about principal fiber bundles and connections in
them [5].

Let P(M, G, =) be a differentiable principal fiber bundle over a base space
M with structure group G and with projection = of P onto M. Denote by G.
the subspace of P, (the tangent space to P at z& P) which is tangent to the
fiber through z. Let R; be the right translation on P induced by e & G For
an element A in the Lie algebra g of G, we denote by A" the vector field on
P which is induced by the 1-parameter group Ru: where a(t)=-exptA. For
each z € P, the set of all elements A with A€ g is equal to the subspace G..

A connection @ in P is a choice of a tangent subspace Q. at each z€ P

which satisfies the following conditions:

(Q.1) Q.+ G, = P, (direct sum) ;
(Q.2) RiQ:=Q:.0;
(Q.3) Q. depends differentiably on z.

Given a connection @ in P, a curve x(¢) in P is said to be horizontal, if,
for each ¢, the tangent vector x'(#) is contained in Qr). Let «u(¢) be a curve
through p € M. Then, for each x € P such that »(x) = p, there exists one and
only one horizontal curve through x which covers u(#). The curve x(t) is
called the lift of «(¢) through «.

Given two principal fiber bundles P'(M, G') and P(M, G) with the same
base space M, a mapping f of P’ into P is called a homomorphism if there is
a homomorphism / of G’ into G such that f(x'* a') =f(x') « f(a'), where x' & P’
and @' = G/, and if it induces the identity transformation of 3 onto itself.

Let M be an n-dimensional manifold and let P, be the bundle lof frames
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of M. By taking a base in F,, we may regard P as a principal fiber bundle
over the base space M with structure group GL(F,). Each element x of P,
gives an isomorphism of F, with M), where p =z.(x), =, being the projection
of P, onto M.

It is well known that an affine connection ¥ on M gives rise to an affine
connection in P, (in the sense of Cartan connection). Namely, to each 7 we
can associate a linear mapping of F, into ¥(P;) (¥(P.) may be regarded as a
vector space over the field R of all real numbers) which satisfies the following
conditions :

(A.1) Bi,+GL(Fp): = P, (direct sum), where B;, denotes the subspace of
Pr, composed of all the elements B.({). where £ € Fu;

(A.2) RuB.(¢) = BL(a’IE) ;
(A.3) nBr(é)x=x"¢.

Conversely, starting with (A.1), (A.2) and (A.3), we can define an affine con-
nection ¥ on M. For the relation between ¥ and B, see K. Nomizu’s book [5].
In virtue of (A.1) and (A.2), the assignment x — B;, defines a connection in
P,, which is often called the linear connection in P induced by the affine con-
nection in P, (or on M). By (A.1), we can set, for all x& P, and ¢, &' € F,,

—[Bi(£), Bu(8)]: = BL(Tx(&, &)+ Ru(8, &)Y,

where Ty(£, &') € F, and R.(%, &') € gl(F,). For each x&€ P, Tx and R, are
linear mappings of F, X F, into F, and g{(F,) respectively and are what corre-
spond to the torsion and curvature tensor fields respectively. For example, if
we denote by R(X, Y) the curvature tensor field of 7, then we have R.(¢, &)
=x' R(x+& x+&)x for all x& P, and &, &' F,. Now consider, for each
x € P;, a bilinear function S, on F, X F, defined by

Sx(§, §') = Tr(n ~ Ru(&, 7) €').

If we denote by S(X, Y) the Ricci tensor field of f, then it can be shown that
S:(5,8")=S(x-¢, x+¢') forall x& P, and &, & € F,. For later uses, we define

a linear mapping J» of F, into F, at each x € P, by the following formula:

L (Si(2, &) + nS«(&", £)).

(3.1) &, T80 = o

Let 7 and 7 be two affine connections on M which are mutually projective
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and let p be the associated 1-forth of F with respect to F. Let B, and B, be
the corresponding affine connections in P;, respectively. If we define a mapping
F of P, into F; by <% Fix)>=op(x+£) for all x € P; and £ € F,, then it can
be proved that (1.1) is equivalent to

(3.2) Eb(’s)x=BL(5)x“[$, F(x)l:(

4. Normal projective connection corresponding to a

class of mutually projective affine connections
The main purpose of this section is to prove

Prorosition 1. To each class P of mutually projective affine connections
on M there is associated a collection (P', I, B) as follows; P' is a principal
fiber bundle over the base space M with structure group P'(n); 1 is a homo-
morphism of P' onto Pp corresponding to the homomorphism | of P'(n) onto
GL(F,) defined in (2.5); B is a linear mapping of F. into X(P'); moreover,
the collection satisfies the following conditions:

(P.1) B.+ P'(n).= P, (direct sum), where B. denotes the subspace of P: com-
posed of all the elements B(§); where § € Fy;

(P.2) R.B(¢)=B((ad(a™*)8)r,) + (ad(a ") )5, s

(P.3) =B(£),=1Uz) - ¢, where r is the projection of P' onto M

(P.4) To each V& B there is associated a homomorphism h of P into P’
corresponding to the homomorphism ¢ of GL(F,) into P'(n) defined in (2.4)
such that

i) Lo h(x)=x;

1) hBL(8)x= B(&) i + (&) i), where By is the affine connection in Py

corresponding to V and J. is given by (3.1).

In the above proposition, let # and 7% be the corresponding homomorphisms
of ¥ and F (F, P& P) respectively. From (P.4) ii), we have 7o h(x)
=10 filx)=x for all x& P,. It follows from (2.4) and (2.5) that there is a
mapping F of P, into F; such that

(4.1) h(x)=nh(x) - exp Flx).

Let o be the associated 1-form of 7 with respect to 7. Then, it can be shown
that

(4.2) plx « £). =<2, F(x)>.
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(4.2) will be proved later. The conditions (P.1) and (P.2) correspond to the
ones for Cartan connections formulated by Ehresmann [3]. It can be proved
that, for each class, the collection satisfying the conditions indicated in Propo-
sition 1, is uniquely determined by the class up to an isomorphism (the meaning
of the isomorphism is clear). We shall call the collection (P’, /, B) the normal
projective connection corresponding to the class P [1].

Now we shall prove Proposition 1. The proof is divided into four steps.

I. We here assume that (P’, /, B) satisfies only (P.1), (P.2) and (P.3).
In this case, the collection will be called a projective connection. From now
on, we shall derive several fundamental formulae, which will be needed for our
purpose.

For each A € p(n), we define ATe X(P') by AT=B(Ar,)+ Aj,. Then

the following lemma follows immediately from (P.1) and (P.2).

Lemma 1.

i) For each z & P', every element of P, can be written in one and only
one way in the form A} with A€ p(n);

ii) For ae P'(n), A'€ p'(n) and A € p(n), we have

R:AT = (ad(a™") A)T, [A'*, AT1=[A', A]t.

Let f be a mapping of P’ into p(n). We define fT= X(P') by f;r =f(2)] for
z€ P'. By a formula on bracket operation [5], P.8, we can easily verify

LemMma 2. Let f and g be two mappings of P' into p(n). Then we get
[T, g1 =[/(DF, g1+ (f(D]g - g(2)i],
where f(z);rg means the result of applving ()} to g
By Lemma 1 i), we can set, for all z&€ P’ and ¢, §' € F,

—[B(&), B(2")1. = A2, 301,
Alg, 2 =Tu(5, 2) + Walg, &)+ Ja(2, &),

where T:(2, &) € Fu, Wi(&, &) €gl(F,) and J.(¢, ¢') € F;. Using Lemma 1 ii)
and the fact that [£, #’1=0 and /(@) £ = (ada?t)r,, We see that

Az.o(2 2 =ad(a™) Al(a) 8, (a)d').
It follows from (2.8) that
(4.8) 1) T:.4l8 2 =Ula) ' T\l a) 2 a)d');
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it) If T=0, then
W:.a(2, 2) =ad(lla)™) Wlla) 5. l(a) 2").

(4.3) means that T and W are “affine tensors” on M. T corresponds to what
is usually called the torsion tensor field of the projective connection.

It can be proved that there is at least one homomorphism, say %, of Py
into P’ such that /- h(x)=x for all x & P.. We fix such a homomorphism h.
We shall show that 7 induces an affine connection in P, which is closely related
to the given projective connection. Since, for each z& P/, z and k ° [(z) lie in

the same fiber in P’, we can set
(4.4) zealz) =hol(z)

with a2 mapping @ of P’ into P'(n). Since /° a(z) =1 (the unit element of

GL(Fy)) for all z& P’, we see from (2.5) that a(z) can be expressed as follows:
(4.5) a(z) =exp E(z),

where E is a mapping of P’ into F5. Itis easily seen that a(z+s)=0""'a(z)¢ » I(s)
holds for all z& P' and s €& P'(n). By differentiating the both sides of (4.4

in the direction B($)nx and using (4.5), we have
B(&)an+ (B8 hx By =k © IB(S) pix.

We now define a linear mapping of F, into X(P;) by Bi(8)y=IB({)nx. In
virtue of (P.1), (P.2) and (P.3), it is easily shown that B, satisfies (A.1),
(A.2) and (A.3) and hence it is an affine connection in P,. The affine con-
nection, thus obtained, is said to be induced by a homomorphism k. For each
% € P, we define a linear mapping Jr of F» into Fi by J«(%) =B E.
Then we have

(4.6) B(f)h(x)‘f‘fx(é)lf(x) = nBy($)..

If we define Ji(2)* € X(P') by Ji(5)F =Juz(5)F for z& P’ and { € F,, then
(4.6) means that B(2)+ Ji(£)* is h-related to B.(%) [2].
Applying Lemma 2 to the case where f(z)=~%+Jiz(5) and g(z) =4

+ Juz)(2") and using Lemma 1 ii), we have

[B() + Ji(8)*, B(E) + Ji(2)  Then
=[B(&) + J«(£)", B(Z") + Jo(&)  Inixy
+ (Bu($)2J(5") = Bl J(£))jim
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= — Ann (3 8o+ L8 Je&) Do + LJ2), &1
+ (Br(£)J(&") — BL(‘S')x](s));(x)y

where Br(£),J(£') means the result of applying B:($), to the mapping Pr3x
- J.(2) & Fy. On the other hand, we have
= [Bu(8), Bu(8")1x=Bu(Tu4, &))x+ Rul&, &)1,

where 7' and R are what correspond to the torsion and curvature tensor fields
respectively. Since [B(£) + Ji(§)*, B(&') + Ji(£")*] is h-related to [B.(%), B.(§')]
[2], it follows that
(4.7) 1) Twn &, &) =TuE 2);
i) Waa (8, &) =Re(§, £+ 18, J8)1+[Jx(8), §71.

Let % together with % be a homomorphism of P; into P’ such that [o h(x)
=« for all x& P.. We know - that there is a mapping F of P into F5 such
that (4.1) holds true. Let B be the affine connection in P induced by #.

We shall find the relation between B; and Bj;. By differentiating the both sides
of (4.1) in the direction Br(¢),, we obtain

RBu(§)x = Rosy © hBu&) s+ (Bu(8)2F)} 5
using (4.6), Lemma 1 ii) and (2.8),
RB:(8)x= B(£)hx — [F(x), 815,
+ (3 TR0, [F(x), £33+ Ju(8) + Bu&)<F )y

where we have set b(x) = exp F(x). Applying / to the both sides of this formula,
we see that B(£),=1B(&)jw — [F(x), £17. But, by definition of B, we have
IB(£)5x) = Br(£),. Consequently we have
Br(&),= EL(g)x - [F(X), 5];
II. We here assume that (P’, I, B) satisfies (P.1), (P.2), (P.3) and
(P.4) i) T=0;
il) Tr(yp - W.(&, ) &) =0.

In this case, the collection is called a normal projective connection.

Let % be a homomorphism of P; into P’ such that [~ h(x) = x for all x € P;.

We shall show that, in the case of normal projective connection, J. is given by

(3.1). In fact, from (4.7) ii), we get
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Whin (4, §)3" = Rx(s,. S EM 48N, JAE)02 4 K8, J8)0E"
=g, J(8)08 = L&, JL(8)22".
Passing to the contraction and using (P.4') ii), we obtain
0=Su(8, &) +<& J«(&)) = nls, J(6).
Interchanging £ and ¢/, we obtain
0= S8, £) —n<g, Jo(&)+ <&, J(&)).
From these two formulae, it follows immediately that

Lo (8dg, ) +mSue, 80,

{8, Ja8)0 =

nZ

which proves our assertion.
III. Let P be a class of mutually projective affine connections. Now con-
sider the following condition for (P, I, B):
(P.4") There exist a F € P and a homomorphism % of P, into P’ such that
i) Lo h(x) =x;
ii) BBL(8)y = B()n + J«(£)ii, where B, is the affine connection in P,

corresponding to ¥ and J. is defined by (3.1).

In the following, we shall show that if (P', [, B) satisfies (P.1), (P.2),
(P.3) and (P.4"), then it also satisfies (P.4) and hence, in this case, it is the
normal projective connection corresponding to the class 8. We first show that
(P', 1, B) satisfies (P.4'). Let us make use of the results in I. First of all,
we see that B, coincides with the affine connection induced by . From (4.7)
i), we get Tux (8, &)= TW(£, £') =0, because ¥ has no torsion. It follows im-
mediately from (4.3) i) that T=0. Using (4.7) ii) and (3.1), it is easily shown
that T7(y > Wa(&, 7)8') =0 (the reciprocal argument of II). It follows im-
mediately from (4.3) ii) that T7(n» > W.(§, %)&') =0. Thus we have seen that
(P!, I, B) satisfies (P.4'). Now we shall show that it satisfies (P.4). Let 7 be
an arbitrary but fixed element of B and p the associated 1-form of 7 with
respect to F. First, we define a homomorphism 7 of P into P’ by (4.1) with
the mapping F defined by (4.2). We have lo h(x) =x for all x= P,. Next,
we shall show that EB.(£):=B(£)ix +J«(£);,, where B; is the affine con-
nection in P corresponding to ¥ and J. is defined by (3.1) starting with By.
Let B} be the affine connection induced by % and let J. be the mapping of F,
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into F defined as in I starting with %. Since (P’, I, B) is a normal connection,
we see from II that J, is identical with the one defined by (3.1) starting with
B’. Hence we have only to prove that B, and B, coincide. But, by the argu-
ment in I, we see that B.(2), =B (£),—[2, F(x)]¥. On the other hand, from
(3.2) we have B.(%):=B.(2),— [, F(x)]¥. Therefore we have B.= BI.

IV. We shall finally show that for each class P there exists a collection
(P', I, B) which satisfies (P.1), (P.2), (P.3) and (P.4"). If this is proved,
Proposition 1 is an immediate consequence of IIIL

First, making use of the bundle of frames P, and the homomorphism ¢
of GL(F,) into P'(n), we define a principal fiber bundle P’ over the base space
M with structure group P'(n) together with a homomorphism % of P into P'.
Next, we define a homomorphism ! of P’ into P; by I(z) =x-l(a) if z=h(x)-a
where x € P, and a € P'(n). I(z) is independent of the expression z = k(%) * a.
! becomes clearly a homomorphism, and satisfies /° h(x) =x for all x € P;.
Finally, we shall define a linear mapping B of F, into ¥(P'). We fix a F €.
Let B: be the affine connection in P; corresponding to F and let J. be the
mapping defined by (3.1). Since I ° h(x) =« for all x € P;, we can set as (4.4)
and (4.5). Now define B by

B(sc)z = Ra(zrl ° hBL(f)l(z) - (]I(Z)(E) + (ad(a(z))&‘)p'(,,,));".

(P', 1, B), defined above, satisfies (P.1), (P.2), (P.3) and (P.4") with ¥ and h.
Indeed, using (A.1), (A.2), (A.3) and the fact that Jr.,='aJ.a for all x€ P,
and a € GL(F,) and ¢ 'a(2)¢ 2 l(¢) =alz * ¢) for all z€ P’ and ¢ € P'(n), we
can easily verify (P.1), (P.2) and (P.3). We have B(£)nu = B BL(2)x = J«(&) ki,
which shows that (P', /, B) satisfies (P.4"). Therefore, we have completed the
proof of Proposition 1.

Under the conditions of Proposition 1, we shall prove (4.2) as we promised.
Let B and B; be the affine connections in Py corresponding to 7 and F re-
spectively. From (P.4) ii), we have IB(£)ix = Bi(£)x, which shows that B;
coincides with the affine connection in P induced by A. In the same way, B,
coincides with the affine connection in P; induced by %. Therefore, by the argu-
ment in I in the proof of Proposition 1, we have Bp(£),= Bi(£).—[%, F(x)]Z.
On the other hand, if we define a mapping F' of P, into Fi by <2, F'(x))
=po(x+¢), then we know from (3.2) that B.(£). = Bn(8),—[£, F'(x)]¥. Hence
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¢, F(x)1=[2, F'(x)] holds for dll x& P, and £ F,. It follows that F=F",
which is nothing but (4.2).

Remark. As is seen from the proof of Proposition 1, to each normal pro-
jective connection over a base space M there corresponds a class of mutually
projective affine connections on M such that the given normal projective con-
nection becomes the normal projective connection corresponding to the class.
The correspondence 3 - (P’, [, B) of the set of all classes of mutually projective
affine connections into the set of all normal projective connections is one-to-one

and onto.

Remark. Let 7 be an affine connection without torsion and let (P’, I, B) be
the normal Projective connection corresponding to the class B(F). It can be
proved that every projective transformation f induces a bundle isomorphism 7
of P' which leaves B(Z) invariant for each 2 € F,. Conversely, such an 7
induces a projective transformation / in the sense of §1.

Let (P', I, B) be a projective connection over a base space M.

We shall denote by P,(p) the fiber at p & M of the associated fiber bundle
of P! with standard fiber P,. P.(p) is often celled the tangent projective space
to M at p. Each element z of P’ gives a one-to-one mapping of P, onto Pu(p),
where n(z) =p. The origin p* of the tangent projective space is a point in
P.(p) defined by p* =2z + 0 if n(2) =p with z& P’. The definition is independent
of the choice of z & P’ such that ={z) = p.

Making use of P’ and the injection of P'(») into P(n). we define a princi-
pal fiber bundle P over the base space M with structure group P(n). In this
case, we may identify P’ with a submanifold of P.

As is well known, the projective connection (P', I, B) gives rise to a con-
nection @ in P [3]. Indeed, for z € P/, let @; be the subspace of P, composed
of all the elements B(£),— &5 where £ € F,. For we& P, we define @y by Qu
=ReQ; if w=z+a with z& P’ and a€ P(n). By (P.2), we see that the
definition is consistent. Using (P.1) and (P.2), it is shown that the assignment
z > @, satisfies (Q.1) and (Q.2) and hence defines a connection in P, which
we shall call the projection connection in P induced by the projective connection
(P, 1, B).
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5. Projective development

We first recall definition of affine development [5]. Let B; be an affine
connection in the bundle of frames P: of a manifold M. Let p be a point of
M and let »(#) be a curve in M beginning at p. Fix a point x of P; such that
m(x)=p and let x(¢) be the lift of «(¢) through x with respect to the linear
connection. We see from the definition of linear connection that there is a
curve £(2) in F, such that x'(#) = B.(£(#))x«w;. Then the affine development of
u(t) at p is defined as the curve v(¢) =x « w(#) in the tangent space M, where
wl(t) = j:E( t)dt. o(t) is independent of the choice of x such that =:(x)=2.

Let (P, I, B) be a projective connection over a base space M and define
P and @ as in the preceding section. We now define projective development
as follows [3]: Let p be a point of M and let »(¢) be a curve in M beginning
at . Take an arbitrary curve »(¢) in P' which covers u(¢) (such a curve
necessarily exists) and let z(#) be the lift of #(#) through »(0) with respect to
the projective connection in P. There is a curve a(¢) in P(n) such that
2(t) « a(t) =y(¢). Then the projective development of «(t) at p is defined as
the curve #*(#) =(0) * a(t)o in the tangent projective space P.(p). Clearly
#*(¢) does not depend on the choice of a curve y(#) which coves #(?).

Let P be a class of mutually projective affine connections and let (P, I, B)
be the corresponding normal projective connection. Fix an affine connection 7
belonging to B. Let 2 be the corresponding homomorphism of P into P’ and
define J. by (3.1). In the following proposition, we identify F, and P, with
the tangent affine and projective spaces at p& M by x and h(x) respectively,

where (%) = p.

ProrosiTiON 2. Fix an arbitrary point x of Pr. Let u(t) be a curve in M
beginning at p=ri(x). Let v(t) and u*(t) be the developments of u(t) at p
into Fn and Pn with respect to the affine and projective connections respectively.
Then we have u*(t) = a(t)o, where a(t) is a curve in P(n) determined by the

Sollowing differential equation
(5.1) a(t)7'a' (1) = ' () + Jue)(0'(2))

with the initial condition a(0) = e, where x(t). denotes the lift of u(t) through x

with respect to the linear connection.
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Proof. Let z(t) be the lift of «(¢) through h(x) with respect to the pro-

jective connection Q. Then we can set
(5.2) 2(t)  alt) = h(x(2))

with a curve a(t) in P(n). We have a(0) =e. By definition of projective
development, we have #*(¢) =a(t)o. Therefore, it is sufficient to show that
a(t) is the solution of (5.1). By definition of affine development, we have
Br(v'(8))xe) = x'(¢). From (P.4) ii), we get

w'(t) = B(v'(¢) dwiey + Jxey (V' () )J‘;m,

where we have set w(¢) = 2(x(2)). On the other hand, by differentiating the
both sides of (5.2), we obtain

Ra)2'(2) + (a(t) @' () ey = w'(2).
It follows immediately from these two formulae that

Raty2'(1) + (a(8) 'a'(£))ibee)
= (B () —v'"()F)wey + (V' () + Jaey (V' () ioia).

But, by definition of @, the first term of the right side is contained in Qu;.
The first term of the left side is also contained in @), because z(¢) is a hori-
zontal curve with respect to @. Moreover, the second term in each side is
contained in P(%)ws. Therefore, by virtue of (Q.1), we see that a(¢) is the
solution of (5.1). q.ed.

We shall use the following proposition in the next section.

ProposiTiON 3. Let V and V be two affine connections on M which are
mutually projective and which are both affinely complete, and let o be the as-
sociated 1-form of V with respect to V. Let u(t) and u(t) be geodesics with
respect to V and V respectively such that #'(0) =u'(0). Then the mapping g of
the real line R into itself defined by

() :j:exp(j:2p<u'(t>)dt)dt

is onto, and we have u(t) =u(g(t)) for all t € R.

Proof. Let Br and B be the affine connections in P, corresponding to F
and 7 respectively. Let F be the mapping of P, into F, defined by (4.2).
Fix a point x of Pr such that mr(x)=u«(0) =%(0) and identify F, with My,
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by x. Set #'(0)=£{€& F,. Let x(¢) be the lift of #(#) through x with respect
to 7. u(t) being a geodesic such that #'(0) =4, we see that x(#) is an integral
curve of B.(£) [5]. Now define a curve a(t) in GL(F,) by the following differ-

ential equation
(5.3) a(t)'a'(t) =2, F(x($))]

with the initial condition a(0) =e. If we set ‘lim g(t) =a and lim g(¢) = b, then
> -0 t>x
we see that g is a homeomorphism of R onto (a, ). It follows that there is

a curve %(¥) in P, defined in (a, b) as follows:
(5.4) %(g()) » a(t) = x(2).

We show that %(f) is an integral curve of B.(£). Differentiating the both sides

of (5.4), we get
&' W) Rany ®(g(1)) + (a(t)'a'($))Fiey = %'(2).
From (5.3) and (3.2) and the fact Bi(£)x¢ = #'(¢), we obtain
&'()x'(g(2)) = Brlalt) $)zguw).

Since we have a(t)£ =g'(t)¢, it follows that %'(¥) = Bn(£)z7, for all 7 € (g, b),
which proves our assertion. z(7) being a geodesic such that #'(0) = ¢, we have
#(t) = (%(¢)) [5]. On the other hand, from (5. 4), we have n.(%(g(#))) = u(2).
Therefore we have #(g(t)) = u(¢) for all t€ R. We show that g is a homeo-
morphism of R onto itself. Consider the mapping g* of R into itself defined by

g*(1) = [ exp (- ['206()) dF ) .

Then, in the same manner as above, it can be proved that #(¥) = u(g*(¥)) for
dg” - g(t)
dt
which we see that g% g(#)=¢ for all t€ R. In the same way, we have

all 7 € R. An easy calculation shows that =1 for all t& R, from

gog¥(t)=t¢ for all te R It follows that g is a homeomorphism of R onto
itself. q.ed.

6. Relation between P(p) and 4(p)

Given an affine connection ¥ on M, we shall say that it satisfies condition

(E), if the following conditions are satisfied:
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i) without torsion;
ii) affinely complete;
iii) the Ricci tensor field is parallel.
For example, a complete affine symmetric space or a complete Einstein
space clearly satisfies condition (E).

The purpose of this section is to establish

TuroreM. Let V be an affine connection on M which satisfies condition (E)
and let S be the Ricci tensor field of V.

i) If S(X, X) is negative semi-definite, then, for each f& P(F) and p € M,
Sp(X, X) =0 is equivalent to Spp(fX, fX)=0, and, for XE My such that
Sp(X, X) =0, we have pp(X) =0, where p is the associated 1-form of f. In par-
ticular, if S(X, X) is zero, then P(V) coincides with A(F).

ii) In all other cases, P(V) coincides with A(F).

Proof. The proof is divided into three steps.
I. Consider a linear mapping J of F, into F.. We shall denote by @, the

quadric in P, defined by the following quadratic equation on Fy:::
(6.1) - ("2 +<y, J()> =0 (7 20+ 1 E Fue).

LemMA 3. Let £ be a non-zero element of Fn and set u*(t) =exp t(5 + J(£))o.
Putting <&, J(£)) = (&), u™(t) is computed as tollows:

sinh (Va(%) 1)
Yal(s)

'llv

a) If a(8) >0, then u*(t) = w(cosh (Va5 1) &+

b) If a(&) =0, then u'(t) = w(&+12);

sin(V=a(9)t) ),

c) If a(g) <0, then u™(t) =m<cos (V—a(5)t) &+ e E
V—al(f)

Proof. We have u*(#) = w(exp t(?-}-](;‘?)c‘o). If we set A= §+]($7, then

‘2/)1 h

we have A =a(2)"2,and A" 8 = a(2)™ for each integer m = 0. It follows

that

exp tAs, = (m ) a()(m) ):0+ (mi:o _(5(:;,(::7:)1 pm ) ..

Lemma 3 follows immediately from this formula. q.e.d.
LemMma 4. The notation is the same as above.

i) If lim u™(t) exists, then the limit is contained in @, ;

t>»
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-

i) For any q° € 0, there is a & such ihat lim ™ (#) = q*.
ts oo
Proof. 1) Using Lemma 3, we have easily

o) (ean;
. va(s) 7
b) If a(2) =0, then lim 27 (#) = (&) (eo0,);

>

¢) If a(2) <10, then lim #"(¢#) does not exist.
t

-

a) If a(2)>0, then lim a"(1) = o (5 +

ii) ¢° can be expressed as follows: q" =w(y"&%+7) where —(7°)*+aly)=0.
According as a(y) > 0 or aty) =0, we take £ = ;/lo»n or £ =7. Using this ¢, we
have ltLr? w'(t) =q". qed.

II. Let Y be a class of mutually projective affine connections on a manifold
M and let (P, I, B) be the corresponding normal projective connection. Fix
an affine connection 7 belonging to P and assume that it satisfies condition (E).
From now on, we use the notation in Proposition 2. For each point p of M,
we define a subset @(p) of P,(p) as follows:

(6.2) O(p) =N(x) 0, if =lx)=p,

where @,, is defined by (6.1) taking J=J.. The definition is independent of
the choice of x such that n.(x) = p.

LeMMA 5. Let p be a point of M and let u(t) be a geodesic with respect
to ¥ such that u(0) =p. Let u™(t) be the development of u(t) at p with respect
to the projective connection.

i) If im u™(t) exists, then the limit is contained in O(p).

t->>

ii) For any q* € 0(p), there is a geodesic u(t) such that lim #*(1) = q".

toro

Proof. Fix a point x of P, such that =.(x) =p. Let us make use of the
result of Proposition 2. If we set #'(0) =% (& F,), then we have v'(¢) = ¢,
because #(t) is a geodesic. Since the Ricci tensor field is parallel, we see that,
for any horizontal curve x(¢) in P, Sx: is constant and from (3.1) that Jx,
is constant. Hence the differential equation (5.1) can be written as a(¢) 'a'(¢)
=2+ J(£); namely, a(t) =exp &+ J.(5)). We have »"(#) =expt( i+ J:(£5))o.
Therefore, we have only to apply Lemma 4 to J=J.. q.e.d.

III. We now assume that 7 (& R) together with F satisfies condition (E).
Starting with 7, we define a subset @(p) of P,lp) in the same manner as @(p.).
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Lemma 6. @(p) =0(p) at’each point p of M.

Proof. We first show that @ p) C@(p). Let ¢° be an arbitrary point of
?(p). By Lemma 5 ii), we see that there is a geodesic u(t) with respect to &
such that Emi u*(t) =¢q". We know from Proposition 3 that there is a geodesic
u(f) with r;spect to 7 such that «(¢) = ' g(¢)), where g(#) is a homeomorphism
of R onto itself. Denoting by #"(¥) the development of () with respect to
the projective connection, we have 2 () =" (g(#)); lima™ () = }im (gt

= &1}1‘ u"(t) = ¢*. By Lemma 5 1), now applied to 7, we tsee that ¢® is contained
in @(p). Thus we have shown that @#(p) C@(p). In the same way, we have
O(p) C o(p). Therefore, we have @(p)=0(p). qed.

Let S and S be the Ricci tensor fields of 7 and F respectively and let o be

P

the associated 1-form of F with respect to I

Lemma 7. Al each point p of M, consider the following two quadratic
equations on R X My:
(D - (X024 t SptX, X)=0;

N n—1

(2) X0~ (X »ﬁ}].spm, X) <0,
Then, at each point p of M, in order that ‘X", X e a solution of (1), it is
necessary and sufficient that it is also a solution of (2).

Proof. Let x be a point ‘of F; such that =, (x)=p. Let /i be the homo-
morphism of P, into P' corresponding to F and let J, be the linear mapping

of F, into F, defined by (8.1) starting with . We have
(6.3) O(p) =hlx)+ 0y,
We know that there is a mapping F of P, into F, such that

(6.4) 1) hix)=n1(x)expF(x);
ii) plx - 2) =<8 Fix)).
It follows from (6.2), (6.3) and (6..1) i) that @(p) =0 (p) is equivalent to

(6.5) 0,,=exp F(x)DF,.

Lemma 7 follows immediately from (6.1), (6.4) i), (6.5) and the following

formulae :
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G T8> = 1y Sxeg 58

= 1., S(ys 2 .
g, Jal8)) = PR IE AR AR
q.ed.

LemMma 8. Let ¥ and V be two affine connections which are mutually pro-
Jective and which both satisfy condition (E). Let p be the associated 1-form of
7 with respect to V and let S and S be the Ricci tensor fields of ¥ and 7
respectively.

1) If both S(X, X) and S(X, X) are negative semi-definite, then, for each
point p of M, Sp(X, X) =0 is equivalent to S5;(X, X) =0, and, for X E M, such
that Sp(X, X) =0, we have o,(X) =0.

il) In all other cases, V and V coincide.

Proof. Let P be the class of mutually projective affine connections con-
taining ¥ and 7. We apply Lemma 7 to ¥ and 7.

i) The case where both S(X, X) and S(X, X) are negative semi-definite.
If Sp(X, X)=0, then (0, X) is clearly a solution of (1). Using Lemma 7, we
see that (0, X) is a solution of (2). It follows that pp(X) =0 and S;(X, X)=0.
In the same way, if Sy(X, X) =0, then we have p(X) =0 and Sp(X, X)=0.

ii) The case where either S(X, X) or S(X, X) is not negative semi-definite.
Without loss of generality, we can assume that S(X, X) is not negative semi-
definite. If S,(X, X) > 0, then there is a X°& R such that (X’ X) becomes
a solution of (1). In general, if (X, X) is a solution of (1), so is (X’ — X).
Therefore, by Lemma 7, both (X°, X) and (X’ — X) are solutions of (2). It
follows that X°,(X) =0, from which we obtain pp(X)=0. Thus we have
shown that if Sp(X, X) > 0, then p,(X) =0. Since the subset of M, composed
of all the elements X such that S,(X, X) >0 is open in M,, we see that
0p(X) =0 holds for all Xe M, and p€ M. Consequently we have p=0 and
hence 7 and 7 coincide. q.e.d.

We are now in a position to prove the theorem. Let f be an arbitrary
element of P(F). Let ¥ be the affine connection defined by (1.2). Then F and
VP are mutually projective, and the associated 1-form of ¥ with respect to 7 is
nothing but the associated 1-form of . We see that 7 satisfies condition (E)-
and S is given by Sp(X, X) =S (/X, fX). Therefore we have only to apply
Lemma 8 to ¥ and 7. Thus we have completed the proof of the theorem.
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Remark. An affine connection on a manifold M is called projectively com-
plete if the normal projective connection corresponding to the class which con-
tains the given affine connection is complete [3], that is, if, for each point p of
M, every curve through p* in the tangent projective space at p admits the
development into the base space. We can prove the following statements:

1) Let V be an affine connection satisfying condition (E) and let S be the
Ricci tensor field of V. If S(X, X) is not negative definite, then F is not pro-
Jectively complete ;

ii) A complete Einstein space with negative definite Ricci tensor field is
Drojectively complete.

i) and ii) indicate geometrical properties of an affine connection which satisfies
condition (E).

Appendix
In §1, we remarked that the projective equivalence of two affine connections
is characterized by the coincidence of the systems of geodesics for the two

connections. In the following, we shall give an exact formulation of this fact
and prove it.

ProrosiTioN. Let V and V be two affine connections on a manifold M whose
torsion are zero. A mecessary and sufficient condition that ¥ and V be mutually
profective, is given as follows: Let p be an arbitrary point of M and let V be
an arbitrary 1-dimensional subspace of My. Let u(t) be a curve in M beginning
at p. Then, for all t, the tangent vector w'(t) is contained in the result of
parallel displacement of V along the curve with respect to V, if and only if, for
all t, it is contained in the result of parallel displacement of V along the curve
with respect to 7.

Proof. Let B, and B be the affine connections in P, corresponding to ¥
and 7 respectively. To each x € Py, there is associated a linear mapping A, of
F, into g{(F,) such that

(V) B:(8):=B.(8):— Ax8)F.

It can be proved that A:..(2) =ad(a ')A«(a?). Let u(t) be a curve in M
beginning at a point » of M. Fix a point x € P, such that =.(x) = p and identify
F, with Mp by x. Let v(¢) and ¥(¢) be the developments of #(t) into F, with
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respect to ¥ and F respectively. Let x(¢#) and %(¢) be the lifts of #(¢) through
% with respect to ¥ and 7 respectively. We can set x(¢) =x(¢) - a(#) with a
mapping a(?) in GL(F,). By the argument analogous to the proof of Propo-

sition 2, we can derive

(2) 1) at)v'(t)=0'(¢);
i) a(t)'a'(t) = Axe, (' (2)).

It follows from these two formulae that
(3) Ay (v'(2))0'(t) =a(t) ' 0"(t) — v"(¢).

#'(¢) is contained in the result of parallel displacement of V along the curve
with respect to F, if and only if »'(¢) is contained in V.

Now assume that P and 7 are mutually projective. We know that there
is a mapping F of P into F, such that A.(&) =[%, F(x)]. If v'(#) is contained
in V, then it follows from (2) ii) that a(¢) leaves V invariant, because V is
stable under A (v'(¢)). Therefore we see from (2) i) that #'(¢) is contained
in V.

Now we shall prove the converse. It is sufficient to prove that there is a
differentiable mapping F of P, into F» such that A.(£) =[2, F(x)]. Indeed,
using the fact that Ax.,(£) =ad(a ')Ax(a?), it can be proved that F(x-a)
="'aF(x). It follows that there is a 1-form p on M such that p(x < £) =<, F(x))
for all x € P, and ¢ € F,. Using this p, we have 7.Y =7, Y +po(Y) X+ o(X)Y.
Let ¢ be an arbitrary non-zero element of F, and denote by V(¢) the 1-
dimensional subspace of F, spanned by ¢. If «(t) is a curve such that v'(#) =4,
then 2'(¢) is contained in V(¢). Since 7"(t) € V(£), we see from (3) that
A,(8)t e V(£). Thus we have seen that, for each x& P;, there is a function
ax such that 5 Ax(3)% = ax(2)2 for all £ € Fy and such that ax(0)=0. Since
F and F are both without torsion, it can be proved that A.(£)2' = A.(£')¢ for

all x€ P, and ¢, &' € Fo.

LemMma. Let Fn be an n-dimensional vector space. Let A be a linear

mapping of Fn X Fy into Fyn which satisfies the following conditions :

i) A(s, 7)) =A, &) for all &, 1€ Fu;

i1) There is a function a on Fy such that
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a) J A 5 =al$)$ for all $E Fy
b) «(0) =0.
Then « is a linear function on Fn. Therefore we have A(§, 1) = a(§) 7+ aly)é.

Proof. We have clearly a(1£) =Aa(%) for all A€ R and (¢ € F,. We shall
show thst a(2+7%) =a(8)+al(y) for all & n& F,. For this purpose, it is
sufficient to deal with the case where ¢ and 7 are linearly independent. We
have

(1) % A(x5+yn, x5+ yq)

= 1RGO+ mAG D+ YA .

We can set A(£, ) = A1é+ Asy. Since £ and % are linearly independent, it
follows from (1) and ii) a) that

(2) 1) a®) 2+ Aixy = a2+ y9)x;
i) a(n)y’+ Asxy = al(xi+ y7) .

It follows immediately that
a(B) Py + Aixy’ = aln) xy° + A’y for all x, yER.

Since x and y are arbitrary, we get a(£) = A, and A =a(y). Setting x =y=1
in (2) i), we have a($+79) =a(f)+aly). qed.

Applying the lemma to the case where A(S, 7) = Ax(&)n and a = ax, we
see that a, is a linear function and that Ax(5)7 = a.(£)y+ ax(y) s If we define
a mapping F of P, into Fj by ax(£) =<&, F(x)), then we have A.(2)=[%, F(x)].
The differentiability of F follows from the formula: <%, F(x)) = n—lF*I Tr(A«(5)).

Thus we have completed the proof of the proposition.
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