ON THE STRUCTURE OF CERTAIN BASIC SEQUENCES ASSOCIATED WITH AN ARITHMETIC FUNCTION

by DONALD L. GOLDSMITH[†] (Received 23rd July 1970)

1. Introduction

We have previously studied in some detail the multiplicative properties of a given arithmetic function f with respect to a fixed basic sequence \mathscr{B} (see, for example, (1), (2)). We investigate here the structure of M(f), the collection of all basic sequences \mathscr{B} such that f is multiplicative with respect to \mathscr{B} , and in particular we focus our attention on the maximal members of M(f). Our principal result will be a proof that each maximal member of M(f) contains the same set of type II primitive pairs. Moreover, we will give a simple criterion for determining, in terms of the behaviour of f, whether or not a particular primitive pair (p, p) is in any (and therefore every) maximal member of M(f).

A basic sequence \mathcal{B} is a set of pairs (a, b) of natural numbers for which

(1)
$$(1, k) \in \mathcal{B}, k = 1, 2, ...;$$

(2) if $(a, b) \in \mathcal{B}$, then $(b, a) \in \mathcal{B}$;

(3) $(a, bc) \in \mathcal{B}$ if and only if $(a, b) \in \mathcal{B}$ and $(a, c) \in \mathcal{B}$.

If Φ is any collection of pairs of natural numbers, we set $\Gamma[\Phi] = \bigcap \mathscr{E}$, where the intersection is taken over all basic sequences \mathscr{E} which contain Φ . If $\Phi = \emptyset$, then $\Gamma[\Phi] = \mathscr{S}$, where \mathscr{S} is the basic sequence consisting only of all pairs of the form (1, k) and (k, 1) (k = 1, 2, ...). A pair (a, b) of natural numbers is called a *primitive pair* if both a and b are primes. It is of type I if $a \neq b$, type II if a = b.

We assume, in order to avoid trivial situations, that no arithmetic function is eventually zero. An arithmetic function f is said to be *multiplicative* with respect to a basic sequence \mathscr{B} if f(m)f(n) = f(mn) for all $(m, n) \in \mathscr{B}$. The set of all arithmetic functions which are multiplicative with respect to \mathscr{B} is denoted by $M(\mathscr{B})$, and for a given arithmetic function f, M(f) represents the set of all basic sequences \mathscr{B} for which $f \in M(\mathscr{B})$.

A basic sequence \mathscr{B} is a maximal member of M(f) if $f \in M(\mathscr{B})$, but $f \notin M(\mathscr{B}')$ for any basic sequence \mathscr{B}' which properly contains \mathscr{B} . The set of maximal members of M(f) is denoted by $M^*(f)$. We prove in Lemma 2.1 that every member of M(f) is contained in a member of $M^*(f)$, hence for the study of M(f) it is sufficient to confine our attention to $M^*(f)$.

† This research was supported in part by Western Michigan University under a Faculty Research Fellowship.

E.M.S.----U

DONALD L. GOLDSMITH

2. The structure of $M^*(f)$

We will show first that for $M^*(f)$ to be non-empty it is both necessary and sufficient that f(1) = 1. This result is an easy consequence of

Lemma 2.1. If $\mathscr{B}_0 \in M(f)$, then there is a basic sequence \mathscr{B}' in $M^*(f)$ such that $\mathscr{B}_0 \subset \mathscr{B}'$.

Proof. The proof of the lemma will depend on Tukey's Lemma: Every non-empty family of sets of finite character has a maximal member. (A family \mathfrak{A} of sets is of *finite character* provided $A \in \mathfrak{A}$ if and only if every finite subset of A is in \mathfrak{A} . A is a maximal member of \mathfrak{A} if $A \in \mathfrak{A}$ and if there is no member A' of \mathfrak{A} such that A' properly contains A.)

Let Φ_0 be the set of primitive pairs in \mathscr{B}_0 (take $\Phi_0 = \emptyset$ if $\mathscr{B}_0 = \mathscr{S}$) and define \mathfrak{A} to be the family of all sets Φ of primitive pairs for which

$$f \in M(\Gamma[\Phi \cup \Phi_0]).$$

We will show that \mathfrak{A} is non-empty and of finite character. By Tukey's Lemma, \mathfrak{A} will then contain a maximal member, say Φ' , and it is clear that the basic sequence $\mathscr{B}' = \Gamma[\Phi']$ will satisfy the requirements of Lemma 2.1.

 \mathfrak{A} is non-empty, since $f \in M(\mathscr{B}_0) = M(\Gamma[\phi \cup \Phi_0])$, so $\phi \in \mathfrak{A}$.

Suppose that $\Phi \in \mathfrak{A}$ and that Ψ is any finite subset of Φ . Since

$$f \in M(\Gamma[\Phi \cup \Phi_0])$$

and since $\Gamma[\Psi \cup \Phi_0] \subset \Gamma[\Phi \cup \Phi_0]$, it follows that $f \in M(\Gamma[\Psi \cup \Phi_0])$; hence $\Psi \in \mathfrak{A}$.

Conversely, let Φ be a set of primitive pairs and suppose $\Psi \in \mathfrak{A}$ for every finite subset Ψ of Φ . Let (a, b) be any pair in $\Gamma[\Phi \cup \Phi_0]$ and let Ψ_1 be the set of all primitive pairs (p, q) for which $p \mid a$ and $q \mid b$. Clearly $\Psi_1 \subset \Phi \cup \Phi_0$. Now set

 $\Psi = \Psi_1 \cap \Phi.$

Then Ψ is a finite subset of Φ , so by assumption $\Psi \in \mathfrak{A}$. Therefore

 $f \in M(\Gamma[\Psi \cup \Phi_0]).$

But

$$(a, b) \in \Gamma[\Psi_1] = \Gamma[\Psi_1 \cap (\Phi \cup \Phi_0)]$$
$$= \Gamma[\Psi \cup (\Psi_1 \cap \Phi_0)] \subset \Gamma[\Psi \cup \Phi_0],$$

so f(ab) = f(a)f(b). It follows that $f \in M(\Gamma[\Phi \cup \Phi_0])$ and so $\Phi \in \mathfrak{A}$.

Thus A is of finite character and the proof is complete.

The result of Lemma 2.1 provides the basis for an easy proof of

Theorem 2.2. $M^*(f) \neq \emptyset$ if and only if f(1) = 1.

Proof. If f(1) = 1, then $f \in M(\mathcal{S})$, so $\mathcal{S} \in M(f)$. By Lemma 2.1 there is a basic sequence \mathcal{B}' in $M^*(f)$, therefore $M^*(f) \neq \mathcal{O}$.

306

On the other hand, if $f(1) \neq 1$, then $f \notin M(\mathcal{B})$ for any basic sequence \mathcal{B} ; that is, $M(f) = \emptyset$. But since $M^*(f) \subset M(f)$, we have $M^*(f) = \emptyset$.

The next theorem will yield not only the previously mentioned result about the type II primitive pairs in the members of $M^*(f)$, but also will provide information about the distribution of the type I primitive pairs. We will use the following notation: For a given basic sequence \mathcal{B} and a given prime p, we define

$$C_{\mathscr{B}}(p) = \{q \mid q \text{ prime, } (p, q) \in \mathscr{B}\}.$$

Theorem 2.3. If

$$f(p^{a}q^{b}) = f(p^{a})f(q^{b})$$
 (2.1)

for all natural numbers a and b, then the primitive pair (p,q) is contained in every basic sequence \mathscr{B} in $M^*(f)$ for which $C_{\mathscr{B}}(p) = C_{\mathscr{B}}(q)$.

Proof. Suppose that $\mathscr{B} \in M^*(f)$ and $C_{\mathscr{B}}(p) = C_{\mathscr{B}}(q)$, but that the primitive pair $(p, q) \notin \mathscr{B}$. Define the basic sequence \mathscr{B}' by

$$\mathscr{B}' = \Gamma[\mathscr{B} \cup (p, q)].$$

Since \mathscr{B}' properly contains $\mathscr{B}, f \notin M(\mathscr{B}')$.

Any element in $\mathscr{B}' - \mathscr{B}$ must be of the form $(p^a v, q^b w)$ or $(q^b w, p^a v)$ where $p \not\mid v$ and $q \not\mid w$, where $a \ge 1$ and $b \ge 1$, where v and w are divisible only by primes from $C_{\mathscr{B}}(p) (= C_{\mathscr{B}}(q))$, and where $(v, w) \in \mathscr{B}$. Since (p, v), (p, w), (q, v), (q, w) are all in $\mathscr{B}, (p^a q^b, vw)$ is also in \mathscr{B} . Therefore, for any pair $(p^a v, q^b w)$ in $\mathscr{B}' - \mathscr{B}$, we have

$$f(p^{a}q^{b}vw) = f(p^{a}q^{b})f(vw) = f(p^{a}q^{b})f(v)f(w),$$
(2.2)

$$f(p^{a}v) = f(p^{a})f(v), \quad f(q^{b}w) = f(q^{b})f(w).$$
(2.3)

On the other hand, since $f \notin M(\mathscr{B}')$ there is a pair (m, n) in $\mathscr{B}' - \mathscr{B}$ for which $f(mn) \neq f(m)f(n)$. So for some choice of a, b, v, w we have

$$f(p^a q^b v w) \neq f(p^a v) f(q^b w).$$
(2.4)

For this choice of a, b, v, w, relations (2.2), (2.3), (2.4) yield

$$f(p^{a}q^{b})f(v)f(w) \neq f(p^{a})f(q^{b})f(v)f(w),$$

and so $f(p^aq^b) \neq f(p^a)f(q^b)$.

Corollary 2.4. If \mathscr{B} and \mathscr{B}' are members of $M^*(f)$ and the primitive pair $(p,q) \in \mathscr{B}' - \mathscr{B}$, then $C_{\mathscr{B}}(p) \neq C_{\mathscr{B}}(q)$.

A prime p is said to be *isolated* from a basic sequence \mathscr{B} if $C_{\mathscr{B}}(p) = \emptyset$.

Corollary 2.5. If \mathcal{B} and \mathcal{B}' are members of $M^*(f)$ and the primitive pair $(p,q) \in \mathcal{B}'$, then either p or q (or both) is not isolated from \mathcal{B} .

If we set p = q in Theorem 2.3 we get the desired characterization of the type II primitive pairs in the members of $M^*(f)$.

DONALD L. GOLDSMITH

Theorem 2.6. Every basic sequence in $M^*(f)$ contains the same set of type II primitive pairs, namely, those pairs (p, p) for which p satisfies

$$f(p^n) = f^n(p) \quad (n = 1, 2, ...).$$
 (2.5)

Proof. If $f(1) \neq 1$, then $M^*(f)$ is empty and there is nothing to prove. Otherwise, suppose f(1) = 1 and $(p, p) \in \mathscr{B}_0$ for some basic sequence \mathscr{B}_0 in $M^*(f)$. Then $(p^a, p^b) \in \mathscr{B}_0$ and, since $f \in M(\mathscr{B}_0)$, (2.1) holds (with p = q). Since p = q implies $C_{\mathscr{B}}(p) = C_{\mathscr{B}}(q)$ for every basic sequence \mathscr{B} , it follows from Theorem 2.3 that (p, p) is in every member of $M^*(f)$. Thus the members of $M^*(f)$ contain the same type II primitive pairs, and these are clearly just the pairs (p, p) such that p satisfies (2.5).

3. An example

In the previous section we investigated the structure of $M^*(f)$, the set of maximal members of M(f). We may now ask the following question: Suppose the requirement that f be multiplicative with respect to \mathcal{B} is replaced by the less stringent requirement that f be non-singular with respect to \mathcal{B} (and, accordingly, M(f) is replaced by the larger collection N(f), consisting of those basic sequences \mathcal{B} such that f is non-singular with respect to \mathcal{B}). What can be said about the structure of $N^*(f)$, the maximal members of N(f)? We will show here (in Example 3.1) that there are arithmetic functions f for which N(f) has no maximal members, even though f(1) = 1 and N(f) is not empty (compare this with Lemma 2.1 and Theorem 2.2). Thus while the requirement f(1) = 1 is enough to guarantee that N(f) is not empty, it is not sufficient to ensure that $N^*(f)$ is not empty.

As a matter of convenience we repeat here the pertinent definitions (see (1) for a more complete exposition). For an arithmetic function f and a pair (m, n) of natural numbers we set

$$\alpha_f(m, n) = \begin{cases} \frac{f(m)f(n) - f(mn)}{f(m)f(n)| + |f(mn)|} & \text{if } |f(m)f(n)| + |f(mn)| > 0, \\ 0 & \text{if } f(m)f(n) = f(mn) = 0. \end{cases}$$

We say that the *index of multiplicativity* of f with respect to the basic sequence \mathscr{B} exists and has the value $I(f, \mathscr{B})$ provided

$$\lim_{k\to\infty}\alpha_f(m_k, n_k)=I(f,\mathscr{B})$$

for every sequence of pairs $\{(m_k, n_k)\}_{k=1}^{\infty}$ contained in \mathscr{B} for which

$$\lim_{k\to\infty}m_kn_k=\infty.$$

We say f is non-singular with respect to \mathscr{B} if $I(f, \mathscr{B})$ exists and has the value zero, and we denote the set of all functions which are non-singular with respect

to \mathscr{B} by $N(\mathscr{B})$. We denote by N(f) the set of basic sequences \mathscr{B} for which $f \in N(\mathscr{B})$, and by $N^*(f)$ the set of maximal members of N(f).

For any arithmetic function f, if $f \in M(\mathcal{B})$ then clearly $f \in N(\mathcal{B})$. Therefore

 $M(f) \subset N(f)$.

The above inclusion may or may not be proper; it is easy to find functions satisfying either alternative.

Example 3.1. Define f by

f(1) = 1, f(p) = 1 (p prime), f(n) = 0 otherwise.

We note that $M(f) = M^*(f) = \{\mathcal{S}\}$, for if (p, q) is any primitive pair, then $f(pq) = 0 \neq 1 = f(p)f(q)$.

The proof that $N^*(f)$ is empty will depend on the fact that $f \notin N(\mathscr{B})$ for any basic sequence \mathscr{B} which contains infinitely many type II primitive pairs. For suppose the sequence of primitive pairs $\{(p_n, p_n)\}_{n=1}^{\infty}$ is in \mathscr{B} , where we may suppose that $p_1 < p_2 < \dots$ Then

$$\alpha_f(p_n, p_n) = \frac{f^2(p_n) - f(p_n^2)}{f^2(p_n) + f(p_n^2)} = 1.$$

Therefore $\lim \alpha_f(p_n, p_n) \neq 0$ and so $f \notin N(\mathcal{B})$.

Suppose now that \mathscr{B} is any member of N(f) (these exist: \mathscr{S} , for example, or any basic sequence generated by a finite number of type II primitive pairs). By the remark above, \mathscr{B} can contain only finitely many type II primitive pairs. Suppose then that $(q, q) \notin \mathscr{B}$ for some prime q and let

$$\mathscr{B}' = \Gamma[\mathscr{B} \cup (q, q)].$$

Since \mathscr{B}' properly contains \mathscr{B} , it is sufficient to prove that $f \in N(\mathscr{B}')$.

Let $\{(m_v, n_v)\}_{v=1}^{\infty}$ be any sequence of pairs in \mathscr{B}' for which $m_v > 1$, $n_v > 1$, $m_v n_v \to \infty$. Split the sequence $\{m_v, n_v\}$ into two parts: (1) those (m_v, n_v) in \mathscr{B} , (2) those (m_v, n_v) in $\mathscr{B}' - \mathscr{B}$.

For (1) we have immediately
$$\lim \alpha_f(m_v, n_v) = 0$$
 since $f \in N(\mathcal{B})$.

Suppose then that $(m_v, n_v) \in \mathscr{B}' - \mathscr{B}$ and $m_v n_v > q^2$. Then

$$m_{\nu} = x_{\nu}q^{a_{\nu}}, n_{\nu} = y_{\nu}q^{b_{\nu}} \text{ with } a_{\nu} \ge 1, b_{\nu} \ge 1,$$
 (3.1)

and either $m_v > q$ or $n_v > q$, say $m_v > q$. If m_v were prime, then $m_v = q$ by (3.1). But $m_v > q$, so m_v is not prime and $f(m_v) = 0$. Hence $f(m_v)f(n_v) = 0$. On the other hand, $m_v n_v$ is not prime since $m_v > 1$ and $n_v > 1$, and therefore $f(m_v n_v) = 0$. Thus $f(m_v n_v) = f(m_v)f(n_v)$ and $\lim_{v \to \infty} \alpha_f(m_v, n_v) = 0$ as $m_v n_v \to \infty$ with (m_v, n_v) in $\mathscr{B}' - \mathscr{B}$.

It follows that $f \in N(\mathscr{B}')$ and the proof that N(f) has no maximal members is complete.

REFERENCES

(1) D. L. GOLDSMITH, On the multiplicative properties of arithmetic functions, *Pacific J. Math.* 27 (1968), 283-304.

(2) D. L. GOLDSMITH, A note on sequences of almost-multiplicative arithmetic functions, *Rendiconti di Matematica* 3 (6) (1970), 167-170.

Western Michigan University Kalamazoo Michigan 49001