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1. Introduction
We have previously studied in some detail the multiplicative properties of a

given arithmetic function / with respect to a fixed basic sequence 38 (see, foi
example, (1), (2)). We investigate here the structure of M(f), the collection
of all basic sequences 39 such that/ is multiplicative with respect to 3S, and in
particular we focus our attention on the maximal members of M(f). Our
principal result will be a proof that each maximal member of M(J) contains the
same set of type II primitive pairs. Moreover, we will give a simple criterion
for determining, in terms of the behaviour of/, whether or not a particular
primitive pair (p, p) is in any (and therefore every) maximal member of M(f).

A basic sequence 3$ is a set of pairs {a, b) of natural numbers for which

(1) (l,k)ea, * = 1 , 2 , . . . ;
(2) if (a, b) e 39, then (b, a)e38;
(3) (a, be) e 38 if and only if (a, b)e3S and (a, c) e 38.

If O is any collection of pairs of natural numbers, we set F[O] = (~)£, where
the intersection is taken over all basic sequences & which contain <P. If O = 0,
then F[O] = Sf, where Sf is the basic sequence consisting only of all pairs of
the form (1, k) and (k, 1) {k = 1, 2, ...)• A pair {a, b) of natural numbers is
called a primitive pair if both a and b are primes. It is of type I if a ^ b, type II
iia = b.

We assume, in order to avoid trivial situations, that no arithmetic function
is eventually zero. An arithmetic function / is said to be multiplicative with
respect to a basic sequence 3S if f(m)f(n) = f(mn) for all (m, n) e 38. The set
of all arithmetic functions which are multiplicative with respect to 36 is denoted
by M(3S), and for a given arithmetic function/, M(f) represents the set of all
basic sequences 3S for which fe M(3S).

A basic sequence 3S isa.maximal member of M(f) i f /e M(^), but /£ M(3§')
for any basic sequence 38' which properly contains 38. The set of maximal
members of M(J) is denoted by M*(f). We prove in Lemma 2.1 that every
member of M{f) is contained in a member of M*{f), hence for the study of
M(f) it is sufficient to confine our attention to M*(f).
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2. The structure of M*(f)
We will show first that for M*(f) to be non-empty it is both necessary and

sufficient that/(I) = 1. This result is an easy consequence of

Lemma 2.1. If38Qe M(f), then there is a basic sequence 38' in M*(f) such
that 48 c<%'

Proof. The proof of the lemma will depend on Tukey's Lemma: Every
non-empty family of sets of finite character has a maximal member. (A family
21 of sets is of finite character provided A e 21 if and only if every finite subset of
A is in 21. A is a maximal member of 31 if A e 21 and if there is no member
A' of 21 such that A' properly contains A.)

Let <I>0 be the set of primitive pairs in ^ 0 (take O0 = 0 if 3S0 = Sf) and
define 21 to be the family of all sets O of primitive pairs for which

We will show that 21 is non-empty and of finite character. By Tukey's Lemma,
21 will then contain a maximal member, say $', and it is clear that the basic
sequence 3S' = T[O'] will satisfy the requirements of Lemma 2.1.

21 is non-empty, since/e M(^o) = M(r[<£u <&<,])> so 0 6 21.
Suppose that <D e 21 and that ¥ is any finite subset of O. Since

and since r [ T u $ 0 ] c r [ O u $ 0 ] , it follows that fe M(rpFu<J>0]); hence
¥ 6 21.

Conversely, let O be a set of primitive pairs and suppose *P 6 21 for every
finite subset *F of O. Let (a, b) be any pair in r[<DuO0] and let 4^ be the set
of all primitive pairs (p,q) for which p \ a and q \ b. Clearly ^
Now set

Then *F is a finite subset of <&, so by assumption 4* e 21. Therefore

/ £ M ( r [ f u $ 0 ] ) .
But

(a,/.)er[>P1]=r[«i'1n((Du$0)]

so f(ab) = f(a)f(b). It follows that /e M(r[d>u<D0]) and so O 6 21.
Thus 21 is of finite character and the proof is complete.
The result of Lemma 2.1 provides the basis for an easy proof of

Theorem 2.2. M*{f) # 0 if and only iff (I) = 1.

Proof. If/(I) = 1, then fe M{$P), so Sf e M(f). By Lemma 2.1 there is
a basic sequence SI' in M*(f), therefore M*(/) ^ 0 .
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On the other hand, if / ( I ) # 1, t h e n / £ M(38) for any basic sequence 38;
that is, M(f) = 0 . But since M*(/)<= M(J), we have M*(/) = 0 .

The next theorem will yield not only the previously mentioned result about
the type II primitive pairs in the members of M*(f), but also will provide
information about the distribution of the type I primitive pairs. We will use
the following notation: For a given basic sequence 38 and a given prime p,
we define

Cg>{p) = {q\q prime, (p, q) e 38}.

Theorem 2.3. If

f(p°q") =f(PaMqb) (2.1)
for all natural numbers a and b, then the primitive pair (p, q) is contained in
every basic sequence 38 in M*(f)for which Cm(p) = Ca(q).

Proof. Suppose that 38 e M*(f) and Ca{p) = CJ^q), but that the primitive
pair (p, q) $ 38. Define the basic sequence 38' by

Since 38' properly contains 38, f£ M(38').
Any element in &' -38 must be of the form (p"v, #*w) or (qbw,p"v) where

pJCv and qjfw, where a ^ 1 and 6 ^ 1 , where v and w are divisible only by
primes from Cm(p) (= Ca(q)), and where (v, w)e38. Since (p,v), (p, W), (q, v),
(q, w) are all in 38, (/>V> vw) is also in 38. Therefore, for any pair (p"v, qbw) in
38'-38, we have

/(pY»w) =Kp"qb)f{vw) =f(paqbWv)f(w), (2.2)

f(p°v) =/(pa) / ( f) , / ( A O = / ( ^ ) / ( w ) . (2.3)

On the other hand, s ince/^ M(3S') there is a pair (w, n) in 38'—38 for which
f(mri) # f(tn)f(n). So for some choice of a, Z>, », w we have

f(paqbvw)*f(pav)f(qbw). (2.4)

For this choice of a, b, v, w, relations (2.2), (2.3), (2.4) yield

and so f(paqb)*f(p°Wqb).

Corollary 2.4. 1/38 and 38' are members of M*(f) and the primitive pair
(p,q)<=38'-38, then Cm{p) ± C^q).

A prime p is said to be isolated from a basic sequence 38 if Ca{p) = 0.

Corollary 2.5. If 38 and 38' are members of M*(J) and the primitive pair
(p, q) e 38', then either p or q (or both) is not isolated from 38.

If we set p = q in Theorem 2.3 we get the desired characterization of the
type II primitive pairs in the members of M*(f).
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Theorem 2.6. Every basic sequence in M*(f) contains the same set of type II
primitive pairs, namely, those pairs (p, j>)for which p satisfies

f(pn)=fn<J>) (« = 1,2,...). (2.5)

Proof. If / (I) # 1, then M*(f) is empty and there is nothing to prove.
Otherwise, suppose /(I) = 1 and (/>, p) e 88 0 for some basic sequence 380 in
M*(f). Then (j>a,pb)e880 and, since fe M(88O), (2.1) holds (with p = q).
Since p = q implies Ca(p) = Ca(q) for every basic sequence 38, it follows from
Theorem 2.3 that (p,p) is in every member of M*(f). Thus the members of
M*(J) contain the same type II primitive pairs, and these are clearly just the
pairs (p,p) such that/? satisfies (2.5).

3. An example
In the previous section we investigated the structure of M*(J), the set of

maximal members of M(f). We may now ask the following question: Suppose
the requirement that / be multiplicative with respect to 88 is replaced by the
less stringent requirement that /be non-singular with respect to 38 (and, accord-
ingly, M(f) is replaced by the larger collection N(f), consisting of those basic
sequences 38 such that / is non-singular with respect to 3$). What can be
said about the structure of N*(f), the maximal members of N(J)1 We will
show here (in Example 3.1) that there are arithmetic functions/for which N{f)
has no maximal members, even though./(I) = 1 and N(f) is not empty (compare
this with Lemma 2.1 and Theorem 2.2). Thus while the requirement/(I) = 1
is enough to guarantee that N(f) is not empty, it is not sufficient to ensure that
N*(f) is not empty.

As a matter of convenience we repeat here the pertinent definitions (see (1)
for a more complete exposition). For an arithmetic function / and a pair
(m, ri) of natural numbers we set

af(m, ri) =

1 0 if/(m)/(n)=/(mn)=0.

We say that the index of multiplicativity of/with respect to the basic sequence
38 exists and has the value /(/ , 38) provided

lim af(mk, nk) = / ( / , 38)
fc->OO

for every sequence of pairs {(mk, «*)}£°= t- contained in 88 for which

lim mknk = oo.
k-Kx>

We say / is non-singular with respect to 38 if / ( / 38) exists and has the value
zero, and we denote the set of all functions which are non-singular with respect
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to 3d by N(38). We denote by N(f) the set of basic sequences 38 for which
/ e N(38), and by N*(f) the set of maximal members of N(f).

For any arithmetic function/, iffe M(38) then clearlyfe N(38). Therefore

The above inclusion may or may not be proper; it is easy to find functions
satisfying either alternative.

Example 3.1. Define/by

/(I) = 1,/QO = 1 (p prime), /(«) = 0 otherwise.

We note that M(f) = M*(f) = {^}, for if (p, q) is any primitive pair, then

The proof that N*(J) is empty will depend on the fact that/£ iV(^) for any
basic sequence SB which contains infinitely many type II primitive pairs. For
suppose the sequence of primitive pairs {(pn, pn)}"= i is in 3&, where we may
suppose thatpx<p2<.... Then

Therefore lim <xf(pn, pn) ¥= 0 and so /£ N{3&).
n-*oo

Suppose now that 3$ is any member of N(f) (these exist: y, for example,
or any basic sequence generated by a finite number of type II primitive pairs).
By the remark above, 3d can contain only finitely many type II primitive pairs.
Suppose then that {q, q)£38 for some prime q and let

Since 38' properly contains 38, it is sufficient to prove that /e N(3S').
Let {(mv, «„)}"= ! be any sequence of pairs in 38' for which wv>l, nv> 1,

wv«v->oo. Split the sequence {mv, nv} into two parts: (1) those (wv, wv) in 3$,
(2) those (wv, «v) in 38'-3&.

For (1) we have immediately lim a.f(mv, nv) = 0 since/e iV(^).

Suppose then that (mv, nv) e 33'—38 and mv«v>g2. Then

mv = xvq
flv, «w = yvq

bv with av ^ 1, bv k 1, (3.1)

and either mv>q or «„><?, say mv>q. If mv were prime, then m, = q\>y (3.1).
But mv>q, so wv is not prime and/(mv) = 0. Hence/(wv)/(nv) = 0. On the
other hand, mvnv is not prime since wv> 1 and nv> 1, and therefore/(m^J = 0.
Thus/(/«,«„) =/(wv)/(«v) and lim <xf(mv, nv) = 0 as tnji^co with (wv»»v) m

v-»oo

It follows that /e N(3$') and the proof that N(f) has no maximal members
is complete.
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