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In microscopy employing electron and x-ray beams, advances in instrumentation and techniques have 
substantially improved the ability to image, track, and characterize materials at ever-higher resolution 
and precision. However, determining atomistic arrangements (i.e. configurations) from microscopy data 
remains a substantial challenge. Whether due to projection of a three-dimensional structure onto one or 
two dimensions as in pair distribution functions (PDF) and (scanning) transmission electron microscopy 
(STEM/TEM), or the reduction of a large number of matrix elements into an overall energy-dependent 
amplitude as in x-ray absorption spectroscopy (XAS) and electron energy loss spectroscopy (EELS), the 
result is that inversion of this mapping is time consuming, imprecise, and sometimes even fruitless, 
despite a large number of excellent tools which produces characterization data from input atomistic 
configurations, or further perform fitting to produce configurations from characterization data. The 
reasons for such difficulties include the extremely high dimensional search space for atomistic 
configurations, especially for nanostructures and defected or disordered solids.  
 
In order to tackle this challenge, we use first principles density functional theory (DFT) and DFT-based 
interatomic potential calculations to constrain the configurational space and guide microscopy data 
inversion. This approach is robust because (1) energetic information (and hence thermodynamic 
likelihood) is available for each atomistic configuration, (2) local structural optimization tools are 
widely available, and (3) configuration generation for equilibrium and non-equilibrium processes can be 
achieved through various deterministic and stochastic sampling approaches. A high-throughput 
framework is employed to enable the evaluation of a large number of configurations for energy and fit to 
microscopy data.  
 
The final ingredient that enables an efficient and effective march towards the physical configurations 
consist of machine learning and optimization techniques including genetic algorithms, basin hopping, 
and computer vision. These methods either drive the sampling of configurations towards optimal 
solutions, or allow matching between measured and simulated microscopy data, e.g. for two-
dimensional STEM/TEM images. Computer vision methods scale-invariant feature transform (SIFT) 
and histogram of oriented gradients (HOG) are used to select matches to the experimental image among 
hundreds or thousands of simulated images corresponding to different configurations. Figure 1 shows 
the selection of the correct match, among hundreds of simulated STEM images, of an experimentally-
obtained image of a CdTe interface [3]. 
 
Taken together, we have used a combination of first principles-based modeling to evaluate a large 
number of different atomistic arrangements, and used the results in conjunction with machine learning to 
enable inversion of microscopy data for the determination of atomic-scale structural information. The 

178
doi:10.1017/S143192761700157X

Microsc. Microanal. 23 (Suppl 1), 2017
© Microscopy Society of America 2017

https://doi.org/10.1017/S143192761700157X Published online by Cambridge University Press

https://doi.org/10.1017/S143192761700157X


results enhance the power of microscopy and atomistic modeling, as well as accelerate materials 
understanding and design [4]. 
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Figure 1. (Left) Target consists of STEM image measured from a grain boundary in CdTe. (Right) 
Using SIFT/HOG, a match among simulated images is obtained despite different overall orientation and 
scale, as well as noise in the experiment image.  
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