p-Radial Exceptional Sets and Conformal Mappings

Piotr Kot

Abstract. For $p>0$ and for a given set E of type G_{δ} in the boundary of the unit disc $\left.\partial \mathbb{D}\right)$ we construct a holomorphic function $f \in(\mathbb{O}(\mathbb{I}))$ such that

$$
\left.\int_{\mathbb{D} \backslash[0,1] E}|f|^{p} d \mathfrak{R}^{2}<\infty \quad \text { and } \quad E=E^{p}(f)=\{z \in \partial \mathbb{D}): \int_{0}^{1}|f(t z)|^{p} d t=\infty\right\}
$$

In particular if a set E has a measure equal to zero, then a function f is constructed as integrable with power p on the unit disc \mathbb{D}).

1 Preface

This paper deals mainly with radial exceptional sets of the holomorphic functions in the unit disc \mathbb{D}). The set

$$
\left.E^{p}(f)=\{z \in \partial \mathbb{D}): \int_{0}^{1}|f(t z)|^{p} d t=\infty\right\}
$$

is called a p-radial exceptional set for the holomorphic function $f \in(\mathbb{O})(\mathbb{D})$). The above definition was inspired by the questions posed by Peter Pflug and Jacques Chaumat. Peter Pflug ${ }^{1}$ asked whether there existed a domain $\Omega \subset \mathbb{C}^{n}$, a complex subspace M in \mathbb{C}^{n} and a function f holomorphic in Ω, square-integrable, such that $\left.f\right|_{M \cap \Omega}$ is non square-integrable.

A similar question was posed by Jacques Chaumat. ${ }^{2}$ He wondered whether there exists a function f holomorphic in the ball \mathbb{B}^{n} such that for any subspace M which is linear and complex in \mathbb{C}^{n}, the function $\left.f\right|_{M \cap \mathbb{B}^{n}}$ is non square-integrable.

We can find many papers $[1-4,6,8,9]$ in the literature inspired by the above questions. In particular, functions that are non-integrable along some set of complex or real subspaces are considered. We studied the exceptional sets of type G_{δ} for holomorphic functions in Hartogs domains [8]. We presented the construction of the holomorphic function in the unit ball which is non-integrable along a pre-selected set of complex directions of type G_{δ} and $F_{\sigma}[6]$. Due to $[1,4]$ we know that for a

[^0]convex domain Ω with a boundary of class C^{1}, it is possible to construct a holomorphic function f which is non-integrable with square along any real manifold M of the class C^{1} crossing a boundary Ω transversally.

This paper deals with functions that are non-integrable along a fixed set of real directions in the unit disc $\mathbb{D})$. Observe that if E is the p-radial exceptional set for a holomorphic function f, then E is a set of type G_{δ}. (Indeed, let $u_{\delta}(z):=\int_{0}^{1}|f(\delta t z)|^{p} d t$. We have $u_{\frac{n}{n+1}} \leq u_{\frac{n+1}{n+2}} \leq \cdots \leq \lim _{n \rightarrow \infty} u_{\frac{n}{n+1}}=u$ and $E_{\Omega}(f)=u^{-1}(\infty)$.) We present our main result which gives a complete description of the p-radial exceptional sets for the holomorphic functions in the unit disc.

Theorem 2.5 If $E \subset \partial \mathrm{D})$ is a set of type G_{δ} and $p>0$, then there exists a holomorphic function $f \in(\mathbb{O})(\mathbb{D}))$ such that $\int_{\mathbb{D} \backslash[0,1] E}|f|^{p} d \mathfrak{Q}^{2}<\infty$ and $E=E^{p}(f)$.

Observe that if E is a set which has a measure 0 , then a function f is squareintegrable.

2 Exceptional Sets

Denote $S(E)=[0.5,1] E$. Each pair (i, j) is assigned to a natural number $\lfloor i, j\rfloor \geq 1$ so that

$$
\lfloor i, j\rfloor<\lfloor k, l\rfloor \Leftrightarrow \begin{cases}i+j<k+l & \text { where } i+j \neq k+l \\ i<k & \text { where } i+j=k+l\end{cases}
$$

Lemma 2.1 Fix $p \geq 1$. If $E=\bigcap_{i \in \mathbb{N}} U_{i} \subset \cdots \subset U_{i+1} \subset U_{i} \subset \cdots \subset$ dD $)$, where $\left\{U_{i}\right\}_{i \in \mathbb{N}}$ is a sequence of open sets in $\left.\partial \mathrm{D}\right)$, then there exist the sequences of compact sets $\left\{T_{i, j}\right\}_{i, j \in \mathbb{N}},\left\{D_{i, j}\right\}_{i, j \in \mathbb{N}}$ in $\left.\partial \mathrm{D}\right)$ such that
(i) $U_{i}=\bigcup_{j \in \mathbb{N}} T_{i, j}$,
(ii) $T_{i, j} \cap D_{i, j}=\varnothing$,
(iii) $\partial \mathbb{D}) \backslash E \subset \bigcup_{n \in \mathbb{N}} \bigcap_{\lfloor i, j\rfloor \geq n} D_{i, j}$,
(iv) $\left.\quad \sum_{j \in \mathbb{N}}\left(\mathfrak{L}^{2}\left(S(\partial \mathbb{D}) \backslash\left(E \cup D_{i, j}\right)\right)\right)\right)^{\frac{1}{p}} \leq 9\left(\mathfrak{R}^{2}\left(S\left(U_{i} \backslash E\right)\right)\right)^{\frac{1}{p}}+2^{-i}$.

Proof Consider a sequence $\left\{r_{i, j}\right\}_{i, j \in \mathbb{N}}$ such that $0<\cdots<2 r_{i, j+1}<r_{i, j}$. Denote

$$
\begin{aligned}
T_{i, j} & :=\left\{z \in U_{i}: r_{i, j+1} \leq \inf _{w \in \partial U_{i}}\|z-w\| \leq r_{i, j}\right\}, \\
D_{i, j} & \left.:=\{z \in \partial \mathbb{D}): r_{i, j+1}-r_{i, j+2} \leq \inf _{w \in T_{i, j}}\|z-w\|\right\} \\
G_{i, j} & :=S\left(U_{i} \cap\left(\overline{U_{i} \backslash \bigcup_{1 \leq m \leq j} T_{i, j}}\right)\right) \\
H_{i, j} & \left.:=S(\partial \mathbb{D}) \backslash\left(D_{i, j} \cup E\right)\right) .
\end{aligned}
$$

Assume $T_{i,-1}=T_{i, 0}=\varnothing$. Select a sequence $\left\{r_{i, j}\right\}_{i, j \in \mathbb{N}}$. Let $r_{i, 1}=2$. Moreover, let $r_{i, 2}$ be so small that $\mathfrak{Q}^{2}\left(G_{i, 1}\right)<\frac{1}{9} 2^{-i-1}$ and $0<2 r_{i, 2}<r_{i, 1}$. The other numbers $r_{i, j+1}$
are selected so that $\mathfrak{L}^{2}\left(G_{i, j}\right)<\frac{1}{9} 2^{-i-j}$ and $0<2 r_{i, j+1}<r_{i, j}$. As $S\left(T_{i, j+1}\right) \subset G_{i, j}$, therefore we have

$$
\begin{equation*}
\sum_{j \in \mathbb{N}}\left(\mathfrak{L}^{2}\left(S\left(T_{i, j} \backslash E\right)\right)\right)^{\frac{1}{p}}<\left(\mathfrak{L}^{2}\left(S\left(U_{i} \backslash E\right)\right)\right)^{\frac{1}{p}}+\frac{1}{9} \sum_{j=1}^{\infty} 2^{-i-j} \tag{2.1}
\end{equation*}
$$

We show that the sets $T_{i, j}$ and $D_{i, j}$ fulfill conditions (i)-(iv).
Conditions (i) and (ii) result directly from the definition. Moreover, it can be easily seen that $\partial \mathrm{D}) \backslash U_{i} \subset D_{i, j}$.

Step 1: If $k-j \geq 2$, then we have the inequality $\|z-w\| \geq r_{i, j+1}-r_{i, j+2}$ for $z \in T_{i, j}$ and $w \in T_{i, k}$. Assume that $z \in T_{i, j}, w \in T_{i, k}$ and $\|z-w\|<r_{i, j+1}-r_{i, j+2}$. In this case there exists a point $u \in \partial U_{i}$ such that $\|u-w\| \leq r_{i, k} \leq r_{i, j+2}$. We can estimate

$$
r_{i, j+1} \leq\|u-z\| \leq\|u-w\|+\|w-z\|<r_{i, j+2}+r_{i, j+1}-r_{i, j+2} \leq r_{i, j+1}
$$

which is impossible.
Step 2: If $|k-j| \geq 2$, then $T_{i, k} \subset D_{i, j}$. Assume that $x \in T_{i, k} \backslash D_{i, j}$. Then there exists a point $y \in T_{i, j}$ such that $\|x-y\|<r_{i, j+1}-r_{i, j+2}$. If $k-j \geq 2$, then we get inconsistency with the inequality from Step 1 . If $j-k \geq 2$, then

$$
\|x-y\|<r_{i, j+1}-r_{i, j+2}<r_{i, j+1}<r_{i, k+2}<r_{i, k+1}-r_{i, k+2}
$$

which is also impossible on the basis of Step 1.
Step 3: We have property (iii). Fix $z \in \partial \Omega \backslash E$. If $z \notin U_{0}$, then $z \in D_{i, j}$ for any $i, j \in \mathbb{N}$, as $\partial \Omega \backslash U_{i} \subset D_{i, j}$ and $U_{i+1} \subset U_{i}$. If $z \in U_{0}$, then there exists $m \in \mathbb{N}$ such that $z \notin U_{i}$ for $i \geq m$ and $z \in U_{i}$ for $i<m$. Moreover, there exist numbers k_{i} for $i<m$ such that $z \in T_{i, k_{i}}$ for $i<m$. Let $n=2+\max \left\{m, k_{1}, \ldots, k_{m}\right\}$. From Step 2 it follows that $z \in D_{i, j}$, when $i+j>n$. If $\lfloor i, j\rfloor>\lfloor n, 1\rfloor$, then $i+j \geq n+1$. Therefore $z \in \bigcup_{n \in \mathbb{N}} \bigcap_{\lfloor i, j\rfloor>\lfloor n, 1\rfloor} D_{i, j}$, which finishes the proof of Step 3.

Step 4: We have the estimation

$$
\sum_{j \in \mathbb{N}}\left(\mathfrak{L}^{2}\left(H_{i, j}\right)\right)^{\frac{1}{p}} \leq 9\left(\mathfrak{L}^{2}\left(S\left(U_{i} \backslash E\right)\right)\right)^{\frac{1}{p}}+2^{-i}
$$

which is property (iv). As $T_{i, k} \subset D_{i, j}$, when $|k-j| \geq 2$ (Step 2) and $\partial \mathrm{D}$) $\backslash U_{i} \subset D_{i, j}$, therefore $\partial \mathbb{D}) \backslash D_{i, j} \subset \bigcup_{|k-j| \leq 1} T_{i, k}$. In particular $H_{i, j} \subset \bigcup_{|k-j| \leq 1} S\left(T_{i, k} \backslash E\right)$. Observe that if $0 \leq x_{i}, a_{i}$ and $x_{i} \leq a_{i-1}+a_{i}+a_{i+1}$, then

$$
\begin{aligned}
\sum_{i \in \mathbb{N}} x_{i}^{\frac{1}{p}} & \leq \sum_{i \in \mathbb{N}}\left(a_{i-1}+a_{i}+a_{i+1}\right)^{\frac{1}{p}} \leq \sum_{i \in \mathbb{N}}\left(3 \max \left\{a_{i-1}, a_{i}, a_{i+1}\right\}\right)^{\frac{1}{p}} \\
& \leq 3 \sum_{i \in \mathbb{N}}\left(a_{i-1}^{\frac{1}{p}}+a_{i}^{\frac{1}{p}}+a_{i+1}^{\frac{1}{p}}\right) \leq 9 \sum_{i \in \mathbb{N}} a_{i-1}^{\frac{1}{p}}
\end{aligned}
$$

Using the inequality (2.1) we can estimate the following:

$$
\begin{aligned}
\sum_{j \in \mathbb{N}}\left(\mathfrak{L}^{2}\left(H_{i, j}\right)\right)^{\frac{1}{p}} & \leq 9 \sum_{j \in \mathbb{N}} \mathfrak{L}^{2}\left(S\left(T_{i, j} \backslash E\right)\right)^{\frac{1}{p}} \\
& \leq 9\left(\mathfrak{Q}^{2}\left(S\left(U_{i} \backslash E\right)\right)\right)^{\frac{1}{p}}+2^{-i}
\end{aligned}
$$

Lemma 2.2 If $T=\bar{T} \subset \partial \mathbb{D}$, then there exists a function $h \in(O)(\mathbb{D})) \cap C^{\infty}(\overline{\mathbb{D})})$ such that
(i) $|h(z)| \leq|z|$ for $z \in \overline{\mathbb{D}}$;
(ii) $|h(z)|=1$ if and only if $z \in T$;
(iii) $\left|h^{\prime}(z)\right|<2$ for $z \in \overline{\mathbb{D}}$).

Proof There exists a domain U convex with a boundary of the class C^{∞} such that $T=\partial \mathbb{D}) \cap \partial U, \overline{\mathbb{D}} \backslash T \subset U$. Let g be a conformal mapping $g: U \rightarrow \mathbb{D})$ such that $g(0)=0$. On the basis of [10, Theorems 2.6, 3.6], we know that there exists an extension to a homeomorphism $g: \bar{U} \rightarrow g(\bar{U})=\overline{\mathbb{D}})$ of the class C^{∞} in such a way that $g^{\prime}(z) \neq 0$ for $z \in \bar{U}$. Therefore, there exists a natural number m such that $\left|g^{\prime}(z)\right|<\sqrt{m}-1$ and $\left|\frac{g(z)}{z}\right|>\frac{1}{\sqrt{m}}$ for $\left.z \in \overline{\mathbb{D}}\right)$. We define

$$
h(z):=\left(\frac{g(z)}{z}\right)^{\frac{1}{m}} z
$$

As $g^{-1}(0)=\{0\}$ and $g^{\prime}(0) \neq 0$, therefore the function h is a properly defined holomorphic function on \mathbb{D}). Moreover $h \in C^{\infty}(\overline{\mathbb{D}})$ and $|h(z)| \leq|z|$ for $z \in \mathbb{D}$). It can also be easily observed that $|h(z)|=1$ if and only if $z \in T$. We can estimate

$$
\left|h_{m}^{\prime}(z)\right| \leq \frac{1}{m}\left|\frac{g(z)}{z}\right|^{\frac{1}{m}-1}\left|\frac{g^{\prime}(z) z+g(z)}{z^{2}}\right||z|+\left|\frac{g(z)}{z}\right|^{\frac{1}{m}}<\frac{m}{m}+1=2
$$

for $z \in \overline{\mathbb{D}}$, which finishes the proof.
Theorem 2.3 Fix $p>0$. If $T=\bar{T} \subset \partial \mathrm{D})$, then for $\varepsilon>0$ and for each closed set D contained in $\overline{\mathbb{D})} \backslash T$ there exists a function $f \in(O)(\mathbb{D})) \cap C(\overline{\mathbb{D}})$ such that
(i) $\int_{0}^{1}|f(z t)|^{p} d t>1$ for $z \in T$;
(ii) $|f(z)| \leq \varepsilon$ for $z \in D$;
(iii) $\int_{0}^{1}|f(z t)|^{p} d t \leq 2$ for $z \in \partial \mathbb{D}$).

Proof Fix a set D which is closed and such that $D \subset \overline{\mathbb{D}} \backslash T$ and the number $\varepsilon>0$. On the basis of Lemma 2.2, there exists the function $h \in(O)(\mathbb{D})) \cap C^{\infty}(\overline{\mathbb{D}})$ and $\delta \in(1,2)$ such that

$$
\left.|h(z)| \leq|z| \text { for } z \in \overline{\mathbb{D}}, \quad|h(z)|=1 \Longleftrightarrow z \in T, \quad\left|h^{\prime}(z)\right|<\delta \text { for } z \in \overline{\mathbb{D}}\right)
$$

In particular

$$
\begin{aligned}
h(z)-h(w) & =\int_{0}^{1} \frac{d}{d t} h(z t+(1-t)(w-z)) d t \\
& =(z-w) \int_{0}^{1} h^{\prime}(z t+(1-t)(w-z)) d t
\end{aligned}
$$

and

$$
|h(z)-h(w)| \leq \delta|z-w|
$$

Obviously $|h(z)|<1$ when $z \in D$. In particular, there exists a natural number n such that $(2 n p+2)^{\frac{1}{p}}|h(z)|^{n} \leq \varepsilon$ for $z \in D$. Let $f(z)=(2 n p+2)^{\frac{1}{p}} h^{n}(z)$.

Obviously $f \in(\mathbb{O})(\mathbb{D})) \cap C(\overline{\mathbb{D}})$ and $|f(z)| \leq \varepsilon$ for $z \in D$.
If $z \in T$, then $|h(z)|=1$ and $1-|h(z t)| \leq|h(z)-h(z t)| \leq \delta(1-t)$ for $t \in[0,1]$. In particular, $1-\delta+\delta t \leq|h(z t)|$ for $z \in T$ and $t \in[0,1]$. We can estimate

$$
\begin{aligned}
\int_{0}^{1}|f(z t)|^{p} d t & =(2 n p+2) \int_{0}^{1}|h(z t)|^{n p} d t \\
& >(2 n p+2) \int_{1-\frac{1}{\delta}}^{1}(1-\delta+\delta t)^{n p} d t \\
& =\frac{2}{\delta}\left[(1-\delta+\delta t)^{n p+1}\right]_{1-\frac{1}{\delta}}^{1}=\frac{2}{\delta}>1
\end{aligned}
$$

for $z \in T$. Moreover,

$$
\int_{0}^{1}|f(z t)|^{p} d t=(2 n p+2) \int_{0}^{1}\left|h^{n}(z t)\right|^{p} d t \leq(2 n p+2) \int_{0}^{1} t^{n p} d t=2
$$

for $z \in \partial \mathbb{D}$), which finishes the proof.
Proposition 2.4 If $K \subset \partial \mathrm{D}$), the function u is any non-negative measurable function and $S(K)$ is a measurable set, then we have the following inequality

$$
\int_{S(K)} u d \mathfrak{Q}^{2} \leq 4 \mathfrak{Q}^{2}(S(K)) \sup _{w \in K} \int_{0}^{1} u(w t) d t
$$

Proof There exists a set $\Theta \subset[0,2 \pi]$ such that

$$
\begin{aligned}
\int_{S(K)} u d \mathfrak{Q}^{2} & =\int_{\Theta} \int_{0.5}^{1} u\left(r e^{i \theta}\right) r d r d \theta \leq \int_{\Theta} \int_{0.5}^{1} u\left(r e^{i \theta}\right) d r d \theta \\
& \leq \int_{\Theta} \sup _{\theta \in \Theta} \int_{0}^{1} u\left(t e^{i \theta}\right) d t d \theta \\
& \leq 4 \sup _{\theta \in \Theta}\left(\int_{0}^{1} u\left(t e^{i \theta}\right) d t\right) \int_{\Theta} \int_{0.5}^{1} r d r d \theta \\
& \leq 4 \mathfrak{L}^{2}(S(K)) \sup _{w \in K} \int_{0}^{1} u(w t) d t .
\end{aligned}
$$

Theorem 2.5 Fix $p>0$. If E is a set of type G_{δ} in $\partial \mathrm{D} D$, then there exists a holomorphic function $f \in(\mathbb{O})(\mathbb{D}))$ such that $E=E^{p}(f)$ and $\int_{\mathbb{D} \backslash \backslash[0,1] E}|f|^{p} d \mathbb{Q}^{2}<\infty$.

Proof If $p>1$, then let $q=p$. If $0<p \leq 1$, then $q=1$. There exist open sets U_{i} in $\partial \mathbb{D})$ such that $E=\bigcap_{i \in \mathbb{N}} U_{i} \subset \cdots \subset U_{i+1} \subset U_{i}$ and $\mathfrak{L}^{2}\left(S\left(U_{i} \backslash E\right)\right) \leq 2^{-q i}$. On the basis of Lemma 2.1, there exist two sequences of compact sets $\left\{T_{i, j}\right\}_{i, j \in \mathbb{N}},\left\{D_{i, j}\right\}_{i, j \in \mathbb{N}}$ in $\partial \mathrm{D})$ such that

- $U_{i}=\bigcup_{j \in \mathbb{N}} T_{i, j}$;
- $T_{i, j} \cap D_{i, j}=\varnothing$;
- $\partial \mathrm{DD}) \backslash E \subset \bigcup_{n \in \mathbb{N}} \bigcap_{\lfloor i, j\rfloor \geq n} D_{i, j} ;$
- $\left.\sum_{j \in \mathbb{N}}\left(\mathfrak{L}^{2}\left(S(\partial \mathrm{D}) \backslash\left(E \cup D_{i, j}\right)\right)\right)\right)^{\frac{1}{q}} \leq 9\left(\mathfrak{L}^{2}\left(S\left(U_{i} \backslash E\right)\right)\right)^{\frac{1}{9}}+2^{-i}$.

For the sets $T_{i, j}, D_{i, j}$ we select functions $\left.\left.f_{i, j} \in(\mathbb{O})(\mathbb{D})\right) \cap C(\overline{\mathrm{D}})\right)$ and real numbers $a_{i, j}, b_{i, j}$ such that
(i) $0 \leq a_{i, j}<b_{i, j}<a_{k, l}<\lim _{\lfloor n, m\rfloor \rightarrow \infty} a_{n, m}=1$ when $\lfloor i, j\rfloor<\lfloor k, l\rfloor$;
(ii) $\left|f_{i, j}(z)\right|^{p} \leq 2^{-2 q\lfloor i, j\rfloor}$ for $z \in K_{i, j}:=\overline{\left.a_{i, j} \mathrm{D}\right) \cup[0,1] D_{i, j}}$;
(iii) $\int_{a_{i, j}}^{b_{i, j}}\left|f_{i, j}(z t)\right|^{p} d t>\left(1-2^{-2\lfloor i, j\rfloor}\right)^{q}$ for $z \in T_{i, j}$;
(iv) $\int_{b_{i, j}}^{1}\left|f_{i, j}(z t)\right|^{p} d t \leq 2^{-2 q\lfloor i, j\rfloor}$ for $\left.z \in \partial \mathrm{D}\right)$;
(v) $\int_{0}^{1}\left|f_{i, j}(z t)\right|^{p} d t \leq 2$ for $\left.z \in \partial \mathrm{D}\right)$.

Let $a_{1,1}=0$. On the basis of Theorem 2.3, we select the function $f_{1,1} \in(O)(\Omega) \cap C(\bar{\Omega})$ (for the set $T_{1,1}$) such that the conditions (ii), (iii), and (v) are fulfilled (for $b_{1,1}=1$). As $f_{1,1} \in C(\overline{\mathbb{D}})$, therefore there exists a number $b_{1,1} \in\left(a_{1,1}, 1\right)$ such that

$$
\int_{a_{1,1}}^{b_{1,1}}\left|f_{1,1}(z t)\right|^{p} d t>\left(1-2^{-2\lfloor 1,1\rfloor}\right)^{q}
$$

for $z \in T_{1,1}$ and

$$
\int_{b_{1,1}}^{1}\left|f_{1,1}(z t)\right|^{p} d t \leq 2^{-2 q\lfloor 1,1\rfloor}
$$

for $z \in \partial \mathbb{D})$. Therefore a triplet $\left(a_{1,1}, b_{11}, f_{1,1}\right)$ was properly selected.
Now fix indices i, j. Assume that we have already selected triplets $\left(a_{k, l}, b_{k, l}, f_{k, l}\right)$ such that conditions (i)-(v) are fulfilled when $\lfloor k, l\rfloor<\lfloor i, j\rfloor$. Let $a_{i, j} \in(0,1)$ be such that $b_{k, l}<a_{i, j}$ and $2\left(1-a_{i, j}\right) \leq 1-a_{k, l}$ when $\lfloor k, l\rfloor<\lfloor i, j\rfloor$. On the basis of Theorem 2.3, there exists a holomorphic function $\left.f_{i, j} \in(\mathbb{O})(\mathbb{D})\right) \cap C(\overline{\mathrm{D}})$ such that

- $\int_{0}^{1}\left|f_{i, j}(z t)\right|^{p} d t>1$ for $z \in T_{i, j} ;$
- $\left|f_{i, j}(z)\right|^{p} \leq 2^{-2 q\lfloor i, j\rfloor}$ for $z \in K_{i, j}$;
- $\int_{0}^{1}\left|f_{i, j}(z t)\right|^{p} d t \leq 2$ for $\left.z \in \partial \mathbb{D}\right)$.

As $f_{i, j} \in C(\overline{\mathbb{D})})$ and $\left.a_{i, j} \mathbb{D}\right) \subset K_{i, j}$, therefore there exists $b_{i, j} \in\left(a_{i, j}, 1\right)$ such that

$$
\int_{a_{i, j}}^{b_{i, j}}\left|f_{i, j}(z t)\right|^{p} d t>\left(1-2^{-2\lfloor 1,1\rfloor}\right)^{q}
$$

for $z \in T_{i, j}$, and

$$
\int_{b_{i, j}}^{1}\left|f_{i, j}(z t)\right|^{p} d t \leq 2^{-2 q\lfloor i, j\rfloor}
$$

for $z \in \partial \mathrm{D} D$. Observe that a triplet $\left(a_{i, j}, b_{i, j}, f_{i, j}\right)$ has the properties (i)-(v).
We show that the function f defined by the formula $f(z)=\sum_{i, j \in \mathbb{N}} f_{i, j}(z)$ fulfills required conditions. As $\lim _{\lfloor i, j\rfloor \rightarrow \infty} a_{i, j}=1$, therefore $\bigcup_{i, j \in \mathbb{N}} K_{i, j}=\mathbb{D}_{i, j}$. In particular, condition (ii) implies that f is a holomorphic function.

Let $z \in E$. If $z \in T_{i, j}$, then using the conditions (ii)-(iv) we can estimate as follows:

$$
\begin{aligned}
&\left(\int_{a_{i, j}}^{b_{i, j}}|f(z t)|^{p} d t\right)^{\frac{1}{q}} \geq\left(\int_{a_{i, j}}^{b_{i, j}}\left|f_{i, j}(z t)\right|^{p} d t\right)^{\frac{1}{q}}-\sum_{\lfloor k, l\rfloor<\lfloor i, j\rfloor}\left(\int_{a_{i, j}}^{b_{i, j}}\left|f_{k, l}(z t)\right|^{p} d t\right)^{\frac{1}{q}} \\
&-\sum_{\lfloor k, l\rfloor>\lfloor i, j\rfloor}\left(\int_{a_{i, j}}^{b_{i, j}}\left|f_{k, l}(z t)\right|^{p} d t\right)^{\frac{1}{q}} \\
&> 1-2^{-2\lfloor i, j\rfloor}-\sum_{\lfloor k, l\rfloor<\lfloor i, j\rfloor}\left(\int_{b_{k, l}}^{1}\left|f_{k, l}(z t)\right|^{p} d t\right)^{\frac{1}{q}} \\
&-\sum_{\lfloor k, l\rfloor>\lfloor i, j\rfloor} \sup _{z \in a_{k, l \mid}}\left|f_{k, l}(z)\right|^{\frac{p}{q}} \\
& \geq 1-2^{-2\lfloor i, j\rfloor}-\sum_{\lfloor k, l\rfloor<\lfloor i, j\rfloor} 2^{-2\lfloor k, l\rfloor}-\sum_{\lfloor k, l\rfloor>\lfloor i, j\rfloor} 2^{-2\lfloor k, l\rfloor} \\
&> \\
& \\
&=\sum_{m=1}^{\infty} 2^{-2 m}=\frac{2}{3} .
\end{aligned}
$$

There exists a sequence $\left\{k_{i}\right\}_{i \in \mathbb{N}}$ such that $z \in T_{i, k_{i}}$ for $i \in \mathbb{N}$. In particular, we can estimate

$$
\int_{0}^{1}|f(z t)|^{p} d t \geq \sum_{i=1}^{\infty} \int_{a_{i, k_{i}}}^{b_{i, k_{i}}}|f(z t)|^{p} d t>\sum_{k=1}^{\infty}\left(\frac{2}{3}\right)^{q}=\infty
$$

Fix $z \in \partial \mathrm{D}) \backslash E$. As $\partial \mathbb{D}) \backslash E \subset \bigcup_{n \in \mathbb{N}} \bigcap_{\lfloor i, j\rfloor \geq n} D_{i, j}$, therefore there exists $m \in \mathbb{N}$ such that $z \in D_{i, j}$ when $\lfloor i, j\rfloor>m$. Using condition (ii) we may estimate as follows:

$$
\begin{aligned}
\left(\int_{0}^{1}|f(z t)|^{p} d t\right)^{\frac{1}{q}} & \leq \sum_{\lfloor i, j\rfloor<m}\left(\int_{0}^{1}\left|f_{i, j}(z t)\right|^{p} d t\right)^{\frac{1}{q}}+\sum_{\lfloor i, j\rfloor \geq m}\left(\int_{0}^{1}\left|f_{i, j}(z t)\right|^{p} d t\right)^{\frac{1}{q}} \\
& \leq \sum_{\lfloor i, j\rfloor<m}\left(\int_{0}^{1}\left|f_{i, j}(z t)\right|^{p} d t\right)^{\frac{1}{q}}+\sum_{\lfloor i, j\rfloor>m} 2^{-2\lfloor i, j\rfloor}<\infty
\end{aligned}
$$

for $z \in \partial \mathbb{D}) \backslash E$. So $E=E^{p}(f)$.
We show also that $\int_{\mathbb{D} \backslash S(E)}|f(z t)|^{p} d \mathfrak{L}^{2}<\infty$. Let $\left.H_{i, j}:=\partial \mathbb{D}\right) \backslash\left(D_{i, j} \cup E\right)$. On the basis of Proposition 2.4 and due to property (v), we can estimate as follows:

$$
\int_{S\left(H_{i, j}\right)}\left|f_{i, j}\right|^{p} d \mathfrak{R}^{2} \leq 4 \mathfrak{Q}^{2}\left(S\left(H_{i, j}\right)\right) \sup _{w \in H_{i, j}} \int_{0}^{1}\left|f_{i, j}(w t)\right|^{p} d t \leq 8 \mathfrak{Q}^{2}\left(S\left(H_{i, j}\right)\right)
$$

Now it is enough to prove that $\int_{S(\partial \mathbb{D} \backslash E)}|f|^{p} d \mathfrak{Q}^{2}<\infty$. On the basis of property (ii) it follows that

$$
\begin{aligned}
\left(\int_{S(\partial D D \backslash E)}|f|^{p} d \mathfrak{Q}^{2}\right)^{\frac{1}{q}} & \leq \sum_{i, j \in \mathbb{N}}\left(\int_{S(\partial \mathbb{D} \backslash E)}\left|f_{i, j}\right|^{p} d \mathfrak{Q}^{2}\right)^{\frac{1}{q}} \\
& \leq \sum_{i, j \in \mathbb{N}}\left(\int_{S\left(D_{i, j}\right)}\left|f_{i, j}\right|^{p} d \mathfrak{Q}^{2}+\int_{S\left(H_{i, j}\right)}\left|f_{i, j}\right|^{p} d \mathfrak{Q}^{2}\right)^{\frac{1}{q}} \\
& \leq 2 \sum_{i, j \in \mathbb{N}}\left(\int_{S\left(D_{i, j}\right)}\left|f_{i, j}\right|^{p} d \mathfrak{Q}^{2}\right)^{\frac{1}{q}}+2 \sum_{i, j \in \mathbb{N}}\left(\int_{S\left(H_{i, j}\right)}\left|f_{i, j}\right|^{p} d \mathfrak{Q}^{2}\right)^{\frac{1}{q}} \\
& \leq 2 \sum_{i, j \in \mathbb{N}} 2^{-2\lfloor i, j\rfloor}+2 \sum_{i, j \in \mathbb{N}}\left(8 \mathfrak{Q}^{2}\left(S\left(H_{i, j}\right)\right)\right)^{\frac{1}{q}} \\
& \leq 2+2 \sum_{i \in \mathbb{N}} 72\left(\mathfrak{L}^{2}\left(S\left(U_{i} \backslash E\right)\right)\right)^{\frac{1}{q}}+2^{-i} \\
& \leq 2+145 \sum_{i \in \mathbb{N}} 2^{-i}<\infty .
\end{aligned}
$$

References

[1] J. Globevnik, Holomorphic functions which are highly nonintegrable at the boundary. Israel J. Math. 115(2000), 195-203.
[2] P. Jakóbczak, The exceptional sets for functions from the Bergman space. J. Port. Math. 50(1993), no. 1, 115-128.
[3] The exceptional sets for holomorphic functions in Hartogs domains. Complex Variables Theory Appl. 32(1997), no. 1, 89-97.
[4] ——Highly nonintegrable functions in the unit ball. Israel J. Math 97(1997), 175-181.
[5] ——Exceptional sets of slices for functions from the Bergman space in the ball. Canad. Math. Bull. 44(2001), no. 2, 150-159.
[6] P. Kot, Description of simple exceptional sets in the unit ball. Czechoslovak Math. J. 54(129)(2004), no. 1, 55-63.
[7] \longrightarrow, Maximum sets of semicontinuous functions. Potential Anal. 23(2005), no. 4, 323-356.
[8] Exceptional sets in Hartogs domains. Canad. Math. Bull 48(2005), no. 4, 580-586.
[9] , Exceptional sets in convex domains. J. Convex Anal. 12(2005), no. 2, 351-364.
[10] C. Pommerenke, Boundary Behavior of Conformal Maps. Grundlehren der Mathematischen Wissenschaften 299, Springer-Verlag, Berlin, 1992.

Politechnika Krakowska
Instytut Matematyki
ul. Warszawska 24
31-155 Kraków
Poland
e-mail: pkot@usk.pk.edu.pl

[^0]: Received by the editors July 12, 2005.
 AMS subject classification: 30B30, 30E25.
 Keywords: boundary behaviour of holomorphic functions, exceptional sets.
 (c)Canadian Mathematical Society 2007.
 ${ }^{1}$ Fourth Symposium on Classical Analysis, Kazimierz 1987.
 ${ }^{2}$ Oral communication, Seminar on Complex Analysis at the Institute of Mathematics at Jagiellonian University, 1988.

