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1. Introduction. Let D be an integrally closed domain with identity 
having quotient field L. If { Va) is the set of valuation overrings of D and if A 
is an ideal of D, then A = D aA Va is an ideal of D called the completion of A. 
If X is an indeterminate over D a n d / G D[X], then we denote by Af the ideal 
of D generated by the coefficients of / . The Kronecker function ring DK of D 
is defined by DK = {f/g\ f, g £ D[X], Âf ç Ag) (4, p. 558); and the domain 
D(X) is defined by D(X) = {f/g\ f, g £ D[X], AQ = D) (5, p. 17). In this 
paper we wish to relate the ideal theory of D to that of DK and D(X) for the 
case in which D is a Priifer domain, a Dedekind domain, or an almost Dedekind 
domain. 

2. Preliminary results. The Kronecker function ring was defined by 
Priifer in (6) and was further investigated by Krull in (4). In (4) Krull 
showed that DK is an integral domain having quotient field L(X), where L is 
the quotient field of D, and that DK C\ L = D. He further showed that DK is 
a Bezout domain, where a Bezout domain is defined to be a domain in which 
each finitely generated ideal is principal. 

By a valuation overring of D we shall mean a valuation ring V such that 
D Çj F Çj L. Thus, let F be a valuation overring of D and suppose that v is a 
valuation associated with F. If / G L[X] - {0}, / = f0 + fiX + . . . + fnX

n, 
we define 

i*(f) = min {v(ft)\ft9*0}. 

Then v* defines a valuation on L(X) which is called the trivial extension of v to 
L(X), and if F* is the valuation ring of L{X) associated with v*, then F* is 
called the trivial extension of V to L(X). (We note that v and v* have the same 
value group, thus F and F* have the same rank.) With this notation and 
terminology, we state the following theorem which was proved by Krull 
(4, p. 560). 

THEOREM 1. Let D be an integrally closed domain with identity, let DK be the 
Kronecker function ring of D, and let {Wa) be the collection of valuation overrings 
of DK. If Va = Wa n L, then {Va) is the collection of valuation overrings of D, 
Wa = Va*for each a, and DK = C\ « C 
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Let R be a commutative ring with identity and let 5 = {/ G R[X]\ Af = R}. 
In (5, p. 17), Nagata showed that 5 is a multiplicative system of R[X] which 
contains only regular elements, and he then defined R(X) = (R[X])s. I t is 
easily seen that if {Mp} is the collection of maximal ideals of R, and if Mp[X] 
denotes the extension of M$ to R[X], then we also have that 5 = 
R[X] — U pMp[X], We now state the following theorem which was proved 
by Nagata (5, p. 18). 

THEOREM 2. The set {MpR(X)\ M$ is a maximal ideal of R\ is the collection 
of maximal ideals of R(X). 

We now consider D (X), where D is a domain with identity having quotient 
field L. In particular, we relate the structure of D(X) to that of quotient rings 
oîD. 

LEMMA 1. If S is a multiplicative system in D and if P is a prime ideal of D 
such that P C\ S = 0, then DP = (DS)PDS-

Proof. Since PDs C\ D = P and D ^DSjit follows that DP C (D8)PDs. 
To show the reverse containment, suppose that 8 = d/m G (DS)PDSJ where 
d G D s and m Ç Ds — PDS. Then d = d\/s, where d± Ç D and s £ S, and 
m = mi/t, where m\ G D — P and / G S. Therefore, 8 = drf/mis, where 
dit G D and m^s G D — P; that is, 8 G -Dp.Thus, (Ds)PDs Ç DP and Lemma 
1 follows. 

LEMMA 2. / / P is a prime ideal of D, then (D[X])P[X] = (DP[X])PDp[x] = 
DP(X). 

Proof. Let S = D — P. Then 5 is a multiplicative system of D[X] and 
(D[X])S = DS[X] = DP[X]. Further, P[X] is a prime ideal of D[X] such that 
P[X]r\S = fd. Therefore, by Lemma 1, we have that (D[X])P[X] = 
(D[X])PD[X] = (D[X]S)PD[X]S = (DP[X])PDplx].Tha.t (DP[X])PDp[x] = DP(X) 
follows from the fact that PDP is the unique maximal ideal of DP. 

THEOREM 3. If {M$} is the collection of maximal ideals of D, then D(X) = 
r\$DM3(x). 

Proof. We have seen that {MpD{X)\ is the collection of maximal ideals of 
D(X). Therefore, D(X) = n^D(X))MpD(x). Let S = D[X] - U pMp[X]. 
From Lemmas 1 and 2 we have that (D(X))M^Dix) = (D[X]S)M^X]D[X]S = 
(D[X])M3[X] = (DM8[X])MBDM [x] = DMQ{X) for each /3. Therefore, D(X) = 
npDMfi(x). 

We now observe that if D is an integrally closed domain, then D(X) Ç DK. 
For, if 8 G D(X), then by definition of D(X) there exists/ , g G D[X] such 
that A g = D and such that 8 = f/g. Therefore, ÂfQÂg = D, that is, 8 G DK. 
It then follows that D Q D{X) C £>* and 2? = Z)(X) C\ L = DK C\ L. 
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3. Related ideal theory of D, DK, and D(X). An integral domain D 
with identity is said to be a Prûfer domain provided that each finitely generated 
non-zero ideal of D is invertible. Clearly then, a Bezout domain is a Prùfer 
domain; thus, it follows that DK is a Prûfer domain. Krull has shown (4, 
p. 554) that an integral domain D is a Prùfer domain (multiplikationsring in the 
terminology of Krull) if and only if each valuation overring of D is determined 
uniquely as the quotient ring of D with respect to its centre on D. From this, 
it is easily seen that if {Mp} is the collection of maximal ideals of D, then D is 
a Prûfer domain if and only if the quotient ring DM& is a valuation ring for 
each j8. D is said to be almost Dedekind if for each non-zero proper prime ideal 
P of D, Dp is a rank one discrete valuation ring (3, p. 813). We now relate the 
ideal theory of D, DK, and D(X) for the case in which D is a Prùfer domain, a 
Dedekind domain, or an almost Dedekind domain. Since the ideal theory of 
such a domain is so closely related to the ideal theory of its valuation overrings, 
our results will depend on the relationship between the domains V, VK, and 
V(X), where F is a valuation overring of D. Thus, we prove the following 
lemma. 

LEMMA 3. Let V be a valuation ring having quotient field L. Then V(X) = 
F* = VK, where VK is the Kronecker function ring of V and F* is the trivial 
extension of V to L{X). 

Proof. Let { Va] be the collection of valuation overrings of V. Since V Ç { Va), 
if A is an ideal of V, we have that A = p|« A Va = (A V) C\ (Da AVa) = A. 

Now, let v be a valuation associated with F and let v* be its trivial extension 
to L(X). If / , g e V[X] - {0}, / = ZUftX* and g = E?«ag / ' , then 
v* (f) ^ v* (g) if and only if 

min {v(ft)\fi * 0} è min {v(gj)\ gi * 0} ; 

that is, if and only if Af C AQ. We then have that V* = {f/g\ / , g Ç V[X] 
- {0}, v*(f) è v*(g)} U {0} = {f/g\ / , g e V[X], g 9*0, AfQ Ag) = V*. 
Further, if 

v(gt) = min {vig^gj ^ 0}, 

then it follows that v(ft) è v(gt) for each/^ ^ 0, 0 S i è n, and v{gf) ^ g* 
for each g3- ^ 0, 0 ^ j ^ ra. Therefore, there exists r* 6 V such that /* = r*gj, 
0 ^ i ^ n, and there exists s;- Ç F such that g;- = Sjgt, O g j ^ m . If 
/ ' = I W ^ and g' = ZUsjX\ then / / g = g ^ / g * ' =f/g>, and .4,, = 
F since st = 1. Consequently, / / g G F(X) and we have that V* = 
VK C F(X) . But we have already seen that D (X) C Z>x for an integrally closed 
domain D. Therefore, V* = VK = F(X) as we wished to show. 

THEOREM 4. If D is an integrally closed domain with identity, then the 
following conditions are equivalent: 
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(1) D is a Priifer domain; 
(2) D(X) = DK; 
(3) D(X) is a Priifer domain; 
(4) DK is a quotient ring of D[X]\ 
(5) Each prime ideal of D(X) is the contraction of a prime ideal of DK; 
(6) Each prime ideal of D{X) is the extension of a prime ideal of D. 

Proof. (1) => (2). If {Mp} is the collection of maximal ideals of D> then by 
Theorem 3, we have that D(X) = H/3 DM^(X). Since D is a Priifer domain, 
DMp is a valuation ring for each (3, and by the previous lemma, DMj3(X) = 
{DMp)*, where (DMjS)* is the trivial extension of DMj3 to L(X). But 

DKQ r)e(DMp)* = D(X). 

Therefore, £>* = D(X). 
(2) => (3). This is immediate since DK is a Priifer domain. 
(3) => (1). Let M be a maximal ideal of P . Then MD(X) is a maximal 

ideal of D(X) so that D(X)MD{X) is a valuation ring. But in the proof of 
Theorem 3 we showed that D{X)MD{X) = DM(X). Therefore, since DM = 
DM(X) r\ L, DM is a valuation ring. It then follows that D is a Priifer domain. 

Clearly, (2) implies both (4) and (5). 
(4) =^ (2). If DK is a quotient ring of D[X], then DK = (D[X])s, where 5 

is the set of elements of D[X] such that 1/f G DK. But 1// G DK if and only if 
D ÇL Af and therefore, if and only \î D = Af. Consequently, 5 = {/ G £>IX]| 
yl / = D}, and (2) follows. 

To show that (5) implies (6), we need the following lemma. 

LEMMA 4. IfP' is a prime ideal of DK and if P = P' C\D, then P' C\ D[X] = 
P[X]. 

Proof. I t is clear that P[X] C P' C\ D[X]. To show the reverse containment, 
let / G P' C\ D[X], f = /o + fiX + . . . + fnX

n. From the proof of (4, Satz 
14, p. 559), we see that (/0, . . . , fn)D

K = (f0 + f,X + . . . + fnX
n)DK Q P'. 

Thus, ft £ P' r\D = P îor each i, 0 ^ i ^ n; that i s , / G P[X]. 

(5) => (6). Let Q be a prime ideal of D(X) and suppose that Q = 
P' r\D(X), P' a prime ideal of DK. From Lemma 4 we have that P[X] = 
P' C\ D[X], where P = P' C\D.lt then follows that 

Q n x>[x] = (P' n D(Z)) n z?[x] = P' r\ B\X\ = P[x]. 
Since D(X) is a quotient ring of D[X], Q = P[X]D(X) = PD(X). 

(6) => (1). Let P be a proper prime ideal of D. We show that Z)P is a 
valuation ring by showing that for / G L — {0}, either / G Z)P or 1// Ç DP. 

Let P ' be a proper prime ideal of D[X] such that P' C U^ M^X] . Then 
PrD(X) is a proper prime ideal of -D(X); thus by assumption, there exists a 
prime ideal M of D such that P'D(X) = MD(X) = ikf[X]£>(X). Therefore, 
P r = P'D(X) r\ D[X] = M[X]D(X) r\ D[X] = M[X], and it then follows 
that P' C\D = M[X] r\D = M ?± (0). 
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Now let t Ç L and let Q be the kernel of the canonical D-homomorphism <j> 
from D[X] onto D[t] such that 4>(X) = /. Since <j>{d) = d for d Ç D, we have 
that Q H D = 0. Then from what we have just observed, Q $£ U/3 M^[X]. 
But P[X] C U^f -ST] ; thus there exists f(X) G Q - P[X]; that is, there 
exists/(X) € £>[X] such t h a t / ( 0 = 0 butf(X) £ P[X]. I t then follows that 
either / or 1/t is in DP (8, p. 19). This completes the proof of Theorem 4. 

THEOREM 5. If D is an integrally closed domain with identity, then the following 
statements are equivalent: 

(1) D is almost Dedekind; 
(2) D(X) is almost Dedekind; 
(3) DK is almost Dedekind. 

Proof. (1) => (2). Since an almost Dedekind domain is a Prufer domain, it 
follows from Theorem 4 that D(X) is a Prùfer domain. If M$D(X) is a maximal 
ideal of D(X), M$ a maximal ideal of D, then D(X)M^D(X) = DM^{X) = (Z>Mj8)*. 
But Z } ^ is a rank one discrete valuation ring; thus CD^)* is also a rank one 
discrete valuation ring. Therefore, D{X) is one-dimensional and for each 
proper prime ideal P of D(X), D(X)P is a rank one discrete valuation ring. 
Thus, D(X) is almost Dedekind. 

(2) =» (3). If D(X) is almost Dedekind, then it is also Prufer; thus D(X) = 
DK by Theorem 4. 

(3) => (1). If DK is almost Dedekind, then it is one-dimensional; thus by 
(1, Corollary 2) each valuation overring of D has dimension less than or equal 
to one. Since D C L, it follows from a theorem proved by Gilmer (2, p. 212) 
that D is a one-dimensional Prùfer domain. 

If P is a proper prime ideal of D, then Z}P is a valuation overring of ZP; thus 
(Dp)* is a valuation overring of DK. But since DK is a Prufer domain, (DP)* = 
(DK)P> for some prime ideal P r of Z)K. In particular, (DP)* is a rank one 
discrete valuation ring. Therefore, DP is a rank one discrete valuation ring and 
it follows that D is almost Dedekind. 

If D is an integral domain with identity, then D is said to be a Krull domain 
provided there exists a collection { Va] of valuation overrings of D such that the 
following properties hold: 

(Ei) Each Va has rank one and is discrete; 
(E2) D = HaVa; 
(E3) Each non-zero element of D is a unit in all but a finite number of the 

Va; 
(E4) For each a, Va is a quotient ring of D with respect to its centre on D. 

THEOREM 6. If D is an integrally closed domain, then the following statements 
are equivalent: 

(1) D is a Dedekind domain] 
(2) D(X) is a Dedekind domain; 
(3) DK is a Dedekind domain; 
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(4) DK is Noetherian; 
(5) DK is a Krull domain. 

Proof. (1) => (2). Since a Dedekind domain is almost Dedekind, it follows 
from Theorem 5 that D(X) is almost Dedekind. But D[X] is Noetherian since 
D is, and D(X) is a quotient ring of D[X], Therefore, D{X) is Noetherian, and 
consequently, D(X) is a Dedekind domain (7, p. 275). 

(2) => (3). Since D(X) is a Dedekind domain, it is also a Priifer domain. 
Hence, D(X) = DK and DK is a Dedekind domain. 

That (3) implies (4) is immediate, since Dedekind domains are Noetherian, 
and that (4) implies (5) follows from the fact that integrally closed Noetherian 
domains are Krull domains (8, p. 82). 

(5) =» (3). If DK is a Krull domain, then any quotient ring of DK is also a 
Krull domain (5, p. 116). In particular, if P is a proper prime ideal of DK, then 
(DK)P is a Krull domain. Therefore, (DK)P is an intersection of rank one 
discrete valuation rings. But (DK)P is itself a valuation ring; thus it is rank 
one and discrete. It then follows that each proper prime ideal of DK is minimal, 
and consequently, DK is a Dedekind domain (8, p. 84). 

(3) => (1). If DK is a Dedekind domain, then it follows from Theorems 4 
and 5 that DK = D(X) and D is almost Dedekind. 

Gilmer has shown that if D is a domain with identity which is almost 
Dedekind, then D is Dedekind if and only if each non-zero proper ideal of D 
is contained in only finitely many maximal ideals (3, p. 815). Thus, let A be a 
non-zero proper ideal of D and let {Mp} be the collection of maximal ideals of 
D. Then, by Theorem 2, {MpDK} is the collection of maximal ideals of DK. 
Further, since DK is a Dedekind domain, ADK is contained in only finitely 
many of the maximal ideals of DK\ thus it follows that A C Mp for only 
finitely many /3's. Therefore, D is a Dedekind domain. 
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