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Abstract. We consider random walks on the group of orientation-preserving homeomor-
phisms of the real line R. In particular, the fundamental question of uniqueness of an
invariant measure of the generated process is raised. This problem was studied by Choquet
and Deny [Sur l’équation de convolution μ = μ ∗ σ . C. R. Acad. Sci. Paris 250 (1960),
799–801] in the context of random walks generated by translations of the line. Nowadays
the answer is quite well understood in general settings of strongly contractive systems.
Here we focus on a broader class of systems satisfying the conditions of recurrence,
contraction and unbounded action. We prove that under these conditions the random
process possesses a unique invariant Radon measure on R. Our work can be viewed as
following on from Babillot et al [The random difference equation Xn = AnXn−1 + Bn

in the critical case. Ann. Probab. 25(1) (1997), 478–493] and Deroin et al [Symmetric
random walk on HOMEO+(R). Ann. Probab. 41(3B) (2013), 2066–2089].

Key words: ergodic measure, group of homeomorphisms, invariant measure, random
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1. Introduction
Let Homeo+(R) denote the group of orientation-preserving homeomorphisms of the real
line R. We shall consider the (left) random walk on Homeo+(R), that is, the sequence of
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random homeomorphisms

�n := gn · · · g1

obtained by iterated composition products of a sequence (gn)n∈N of independent and
identically distributed (i.i.d.) Homeo+(R)-valued random variables. We denote by μ the
common distribution of the gn. We shall always assume that μ is a discrete probability
measure on Homeo+(R). This sequence of random transformations induces a stochastic
dynamical system (or an iterated random function system) on the real line, that is, the
Markov chain (Xx

n)n∈N defined recursively for any starting value Xx
0 = x ∈ R by the

formula

Xx
n := gn(X

x
n−1) = �n(x) for n ≥ 1.

The associated Markov kernel is of the form

Pf (x) :=
∑
g∈�

f (g(x))μ(g) for any bounded Borel-measurable function f on R.

Here � denotes the discrete support of μ, that is, � := {g ∈ Homeo+(R) : μ(g) > 0}.
We are interested in the case when the Markov chain (Xx

n)n∈N does not escape to infinity.
Namely, we always suppose that the following hypothesis is satisfied.
(R) The Markov chain is (uniformly topologically) recurrent, that is there exists a compact

interval I ⊂ R such that for every x ∈ R the sequence (Xx
n)n∈N visits I infinitely often

almost surely (a.s.).
Condition (R) entails immediately that there exists an invariant Radon measure ν for the
system generated by μ, that is, a measure, finite on compact sets, satisfying∫

R

f (x) dν(x) =
∫
R

Pf (x) dν(x)

for any f ∈ CC(R), the space of continuous functions with compact support. This measure
can be either finite or infinite.

The fundamental question of this paper is to decide whether an invariant measure is
unique up to a multiplicative constant. This problem has been widely studied for different
kind of systems: the now classical Choquet–Deny theorem [12] can been seen as one of the
first results in this direction. It says that the Lebesgue measure on R is the unique Radon
invariant measure for systems generated by translations that are recurrent and do not have
discrete orbits. Among other interesting results we would like to mention fundamental
works on strongly contractive systems initiated by Furstenberg [17]; see also [14, 22, 27].
In these works, under various contracting assumptions, it was proved that there exists a
unique invariant probability measure.

A weaker contraction property (called local stability) has been proposed to deal with
systems that have infinite Radon invariant measures. This property was first used by
Babillot, Bougerol and Elie [5] in the case of systems generated by centred random
affinities. Next it was studied in a much more general setting by Benda [6], Peigné
and Woess [26] and Deroin et al [13]. The latter paper contains a detailed study of
the uniqueness of an invariant measure for random walks on Homeo+(R) under the
hypothesis of the measure μ being symmetric. Using a conjugation of the reals to
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some open interval, say (0, 1), we obtain some results for random walks on the group
of orientation-preserving homeomorphisms of the interval (0, 1). Initially such walks
were considered by L. Alsedà and M. Misiurewicz who studied some function systems
consisting of piecewise linear homeomorphisms and proved the existence of a unique
probability measure (see [1]). More general function systems were investigated by Gharaei
and Homburg in [19]. Recently D. Malicet obtained unique ergodicity as a consequence
of the contraction principle for time-homogeneous random walks on the topological group
of homeomorphisms defined on the circle and interval (see [24]). His proof, in turn, is
based upon an invariance principle of Avila and Viana (see [4]). A simple proof of unique
ergodicity on the open interval (0, 1) for a wide class of iterated function systems is
given in [10].

The main goal of this paper is to show that the uniqueness of an invariant measure can
be obtained assuming, besides recurrence, the following two conditions that only involve
the action of � (the support of μ) on R.
(C) Contraction (or proximality) of the action. There exists an interval I ⊂ R such that

for any compact set K ⊂ R there is some g belonging to the semigroup generated by
� such that g(K) ⊂ I.

(U) Unboundedness of the action. For every x ∈ R we have g1(x) < x < g2(x) for some
g1, g2 ∈ �.

The first of this conditions says that it is possible to shrink any bounded set at finite
distance. We will see that the second condition is equivalent to the question of whether
one can reach +∞ and −∞ from any starting point x.

From now on, uniqueness will mean the existence of a unique, up to a scalar factor,
invariant Radon measure. The main purpose of the paper is to prove that under the above
conditions the invariant measure is unique.

THEOREM 1.1. Assume that a stochastic dynamical system, generated by a discrete
distribution μ on Homeo+(R), satisfies assumptions (R), (C) and (U). Then the system
admits a unique invariant Radon measure ν.

The study of invariant measures is strictly related to the issue of closed �-invariant
sets, that is, closed sets M ⊆ R such that gM ⊆ M for all g ∈ �. In fact, for any
invariant measure ν its support supp ν is a closed �-invariant subset of R. One of the
crucial questions that the present paper explores is whether a closed �-invariant set
can be contained in the support of different invariant ergodic measures. Recall that an
invariant measure ν is ergodic if for any A ⊆ R such that νA, the restriction of ν to A, is
invariant, we obtain that either νA = ν or νA ≡ 0. The following theorem gives a quite
complete answer to this question under the recurrence and unboundedness hypotheses
only.

THEOREM 1.2. Assume that a stochastic dynamical system, generated by a discrete
distribution μ on Homeo+(R), satisfies assumptions (R) and (U).
(1) Let ν1 and ν2 be two ergodic invariant Radon measures such that supp ν1 ⊆ supp ν2

and supp ν1 is not discrete. Then ν1 = Cν2 for some constant C > 0.
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(2) The support of every ergodic invariant Radon measure ν either is minimal among the
closed �-invariant sets or contains a �-invariant discrete set.

(3) For any minimal closed �-invariant set M there exists a unique ergodic invariant
Radon measure ν such that M = supp ν.

The proof of Theorem 1.2 will be given in §3. In §4 we will show that Theorem 1.1
is a consequence of this result together with the contraction hypothesis and the ergodic
decomposition of invariant measures. We would like to point out that the results of these
two theorems are quite optimal and that conditions (R), (C) and (U) are all needed to ensure
uniqueness. In §5 we shall provide a number of examples and discuss our hypothesis.

In this paper we would also like to show how the general theorem (Theorem 1.1) can
be applied to several specific but interesting situations. For instance, we will prove that
an immediate consequence is the uniqueness of an invariant measure for recurrent affine
recursions.

COROLLARY 1.3. Let μ be a discrete measure on � ⊂ Homeo+(R). Assume that every
g ∈ � is of the form g(x) = A(g)x + B(g) for x ∈ R. Moreover, assume that there exists
g0 ∈ � such that A(g0) < 1. Then, if conditions (R) and (U) hold, the corresponding
stochastic dynamical system admits a unique invariant measure ν.

This result is well known but we give here a new proof of it. In particular, it is not
based on the Lipschitz property of affine transformations. The proof is valid both in the
contractive case (when there exists a stationary probability measure [17]) and in the centred
case (when the invariant measure has infinite mass [5]).

The recurrence (R) and contraction (C) conditions can be easily verified when
homeomorphisms are repulsive at±∞. In Lemma 5.1 we will present some general criteria
for systems that are asymptotically linear, such as affine recursions. As a consequence,
using a conjugation, one can obtain the following results for C2-diffeomorphisms of the
interval.

COROLLARY 1.4. Let μ be a finitely supported measure on the group of increasing
diffeomorphisms in C2([0, 1]). Assume that:
(R′)

∑
h∈supp μ μ(h) ln h′(0) ≥ 0 and

∑
h∈supp μ μ(h) ln h′(1) ≥ 0;

(C′) there exists h ∈ supp μ such that h′(0) > 1 and h′(1) > 1;
(U′) for every x ∈ (0, 1) there exist h1, h2 ∈ supp μ such that h1(x) < x < h2(x).
Then there exists a unique invariant Radon measure on (0, 1).

In §A we shall discuss some seminal results on ergodic invariant measures for
Markov–Feller processes on locally compact metric spaces. In particular, we will give an
explicit proof of the ergodic decomposition of a general invariant Radon measure as an
integral over all ergodic Radon measures.

2. Basic notions and preliminary results
In this section we give the fundamental notions and basic facts about invariant Radon
measures that will play an important role in the sequel.
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2.1. Random walks on Homeo+(R) and associated dynamical systems. We denote by
Homeo+(R) the set of orientation-preserving homeomorphisms of the real line. We
consider the left random walk on Homeo+(R), that is, the Markov chain

�n := gn · · · g1

obtained by composition product of a sequence (gn)n∈N, which is a sequence of i.i.d.
Homeo+(R)-valued random variables whose distribution is a discrete measure μ. Let

� := {g ∈ Homeo+(R) : μ(g) > 0} ⊂ Homeo+(R)

be the discrete support of μ. The space of trajectories of the random walk is then the infinite
product space �N. This space will be equipped with the product measure (�N, μ⊗N). The
associated probability law will be denoted by P. We denote by

�∗ := {g = g1 · · · gn ∈ Homeo+(R) for some gi ∈ �}
the semigroup generated by �. Observe that �∗ is countable and may be equipped with the
discrete topology.

We denote by B(R) the collection of all Borel subsets of R, by B(R) the family of all
Borel-measurable bounded (real-valued) functions with the supremum norm ‖ · ‖∞ and by
C(R) the subspace of B(R) consisting of all continuous functions. The subfamily of C(R)

consisting of all continuous functions with compact support is denoted by CC(R).
Since the semigroup �∗ acts on R, we can introduce the stochastic dynamical system

on the real line (Xx
n)n∈N corresponding to the left random walk on Homeo+(R), that is,

for any x ∈ R we define the Markov chain

Xx
n := gn(X

x
n−1) = �n(x) for n ≥ 1

and Xx
0 = x. The transition probability for this Markov chain is given by the formula

P(x, A) =
∑
g∈�

1A(g(x))μ(g) for x ∈ R and A ∈ B(R).

It induces a positive contraction P on B(R) defined by

Ph(x) :=
∑
g∈�

h(g(x))μ(g) for h ∈ B(R). (1)

For any Radon measure ν on R, let Pν be the measure defined on the trajectories of
the Markov chain (Xn)n∈N where X0 is distributed according to ν. More precisely, Pν

is a measure on the space R
N (endowed with the product σ -algebra) such that for any

finite collection of compact intervals Ii , i = 0, . . . , n, the measure of the cylinder [I ] =
I0 × · · · × In × R× · · · is defined by

Pν([I ]) = Pν(X0 ∈ I0, . . . , Xn ∈ In)

:=
∑

g1,...,gn∈�
μ(g1) · · · μ(gn)

∫
R

1I0(x)1I1(g1(x)) · · · 1In(gn · · · g1(x)) dν(x).

Observe that if ν is a Radon measure of infinite mass then Pν is not a probability measure
but it is finite on the cylinders whose bases Ii are compact intervals.
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2.2. Invariant measure and recurrence. An invariant Radon measure for the system
induced by a measure μ is a Borel measure ν that is finite on compact sets and satisfies

ν(f ) =
∫
R

Ef (Xx
1 )ν(dx) =

∑
g∈�

∫
R

f (g(x))ν(dx)μ(g) = ν(Pf )

for any f ∈ CC(R). In short, we shall say the ν is invariant for μ, or that ν is a μ-invariant
measure. It is easy to check that if ν is invariant for μ, then the measure Pν is invariant for
the shift τ of RN.

It is well known that recurrence hypothesis (R) immediately entails the existence of a
μ-invariant Radon measure. Indeed, it is easy to see that the operator P is topologically
conservative, that is, there exists a bounded set K ⊂ R such that

∞∑
k=0

P k1K(x) = ∞ for every x ∈ R.

Actually, (R) implies that this condition holds with K = I. Then Lin’s result [23, Theorem
5.1] ensures the existence of a μ-invariant Radon measure ν.

2.3. Support of an invariant measure and closed �-invariant sets. The analysis of
μ-invariant measures is strictly related to the study of closed �- invariant sets of R, that is,
closed sets M ⊆ R such that gM ⊆ M for all g ∈ �. In fact, for any μ-invariant measure
ν its support

supp ν := {x ∈ R : ν(Vx) > 0 for every open neighbourhood Vx of x}
is a closed �-invariant set of R. To check �-invariance, take x ∈ supp ν, g0 ∈ � and V an
open neighbourhood of g0(x). Then

ν(V ) =
∑
g∈�

μ(g)ν(g−1V ) ≥ μ(g0)ν(g−1
0 V ) > 0,

since g−1
0 V is an open-neighbourhood of x.

If (R) holds then, thanks to Lin’s theorem, any closed �-invariant set contains the
support of at least one μ-invariant Radon measure ν. In particular, if there exist two disjoint
closed �-invariant sets, there are at least two different invariant measures.

To decide whether a �-invariant set can be (or contains) the support of different
invariant measures it is essential to characterize minimal closed �-invariant sets, that is,
closed �-invariant sets not containing other closed �-invariant sets except the empty set
and itself.

2.4. Unboundedness hypothesis. The last of the fundamental hypotheses of our paper is
as follows.
(U) Unboundedness of the action. For every x ∈ R we have g1(x) < x < g2(x) for some

g1, g2 ∈ �.
This guarantees that any closed �-invariant set is unbounded. In fact, we have the following
easy lemma.
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LEMMA 2.1. Hypothesis (U) is satisfied if and only if for any x ∈ R,

sup
g∈�∗

g(x) = +∞ and inf
g∈�∗ g(x) = −∞.

In particular, if condition (U) is satisfied then any non-empty �-invariant set is unbounded
on both sides.

Proof. Suppose first that (U) holds and x0 = supg∈�∗ g(x) <∞. Then for all g0 ∈ �,

g0(x0) = sup
g∈�∗

(g0g)(x) ≤ sup
g∈�∗

g(x) = x0,

which contradicts (U).
Conversely, assume that there is an x ∈ R such that g1(x) ≤ x for all g1 ∈ �. Since all

the homeomorphisms preserve the order, g2(g1(x)) ≤ g2(x) ≤ x for all g1, g2 ∈ �. Thus
the induction argument yields g(x) ≤ x for all g ∈ �n and n ∈ N. This finally implies that
supg∈�∗ g(x) ≤ x.

In particular, under condition (U) the support of any invariant measure is unbounded in
both directions. Note also that if (U) holds for � it also holds for �−1.

2.5. Ergodic measures and ratio ergodic theorem. Among μ-invariant measures,
ergodic measures play a special role. We present here the main facts and we refer to
§A for a more detailed discussion.

For any measurable A ⊆ R denote by νA the restriction of ν to A. The restriction is
called trivial if either ν(A) = 0 or ν(R \ A) = 0. We say that a measure ν is ergodic if for
any A ∈ B(R) such that the restriction νA is invariant, it must be also trivial. In our setting
we can say that if an invariant measure is ergodic, then any closed �-invariant set M either
is null or has full measure: ν(M) = 0 or ν(R \M) = 0. In §A.2 we give a more detailed
discussion of other equivalent characterizations of ergodic measures.

Ergodic measures can be seen as atomic bricks that are used to construct any invariant
measure. In fact, any invariant measure ν can be decomposed into ergodic components, in
the sense that there exist a measurable set Eν of ergodic measures and a finite measure ην

on Eν such that

ν(f ) =
∫
Eν

νe(f )dην(e) for all f ∈ CC(R). (2)

In Theorem A.6 we provide a proof of this decomposition for conservative Markov–Feller
processes. Note that the above decomposition entails that if there are two different invariant
measures, there must exist at least two different ergodic measures. Another consequence is
that if ν is invariant, there exists an ergodic measure νe such that supp νe ⊆ supp ν. In fact,
for ην-almost all e ∈ Eν we have νe(R \ supp ν) = 0. Hence we have supp νe ⊆ supp ν.

A fundamental property of ergodic μ-invariant Radon measures, which we will often
use in the sequel, is the ratio ergodic theorem (or the Chacon–Ornstein theorem), which
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gives the asymptotic behaviour of the partial sum defined by

Snφ(x) := φ(gn · · · g1(x))+ · · · + φ(g1(x))+ φ(x) =
n∑

k=0

φ(Xx
n) (3)

for any measurable function φ ∈ L1(R, ν) and x ∈ R. Observe that if φ is the indicator
function of some set A, then Snφ(x) = Sn1A(x) is the number of visits in A up to time n

for the Markov chain (Xx
n)n∈N starting at x.

Whenever recurrence condition (R) is satisfied, it follows that for any arbitrary function
	 whose support contains a recurrent interval I we have Sn	(x)→+∞ for any x ∈ R,
as n→∞.

If ν is ergodic for any non-negative function 	 ∈ L1(R, ν) we have ν(	) > 0 if and
only if Sn	(x)→+∞ for ν-almost all x and in this case the Chacon–Ornstein theorem
[11] guarantees that for any φ ∈ L1(R, ν) the limit

lim
n→∞

Snφ(x)

Sn	(x)
= ν(φ)

ν(	)
(4)

exists for μN-almost all sequences (g1, g2, . . .) ∈ �N and ν-almost all x ∈ R. This is a
consequence of the fact that the shift τ is a contraction on the space L1(RN, Pν) and that
Pν is ergodic, if ν is ergodic (see §A and, in particular, Corollary A.5 for a more complete
discussion of these results).

2.6. Measures with atoms. The following lemma is useful when we have to deal with
some invariant measures ν that have atoms, that is, for which there exists x ∈ R such that
ν({x}) > 0. It essentially says that one can have invariant measures with atoms only if the
orbits of action of �−1 are somehow discrete.

LEMMA 2.2. Assume that condition (R) is satisfied. Let ν be a μ-invariant Radon measure
with atoms, and let K be a compact interval that contains the recurrence interval I and
some atoms. Then there exists x0 ∈ K such that the orbit (�−1)∗x0 ∩K is finite.

Proof. Let ν be a μ-invariant Radon measure with atoms. We shall abbreviate ν({x}) to
ν(x). Analogously, we shall also write 1x for 1{x}. Note first that because ν is a Radon
measure, there are at most countably many atoms and the mass of all atoms in K is finite.
Therefore supx∈K ν(x) is finite, and there is xK ∈ K such that ν(xK) = supx∈K ν(x)

(note, however, that it could be not uniquely determined). We will prove that for any
compact set K containing some atoms of ν,

ν(y) = ν(xK) for any y ∈ (�−1)∗xK ∩K . (5)

Since the total mass of K is finite, this will imply that (�−1)∗xK ∩K is finite.
Let O = (� ∪ �−1)∗xK be the orbit of xK under the action of the group generated by �

endowed with the discrete topology. Note that O is a �- and �−1-invariant countable set.
We can define on O a countable Markov chain Xn (which is just the restriction to O of the
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Markov chain defined on R) with the transition kernel

p(x, y) = P(g1(x) = y) =
∑
g∈�

1y(g(x))μ(g) for any x, y ∈ O.

Let ν be the measure on O defined by ν(x) := ν(x). Observe that ν = ν|O and ν remains
μ-invariant, that is,

ν(x) =
∑
y∈O

p(y, x)ν(y) =
∑
g∈�

∑
y∈O

1x(g(y))μ(g)ν(y) =
∑
g∈�

μ(g)ν(g−1(x)) for x ∈ O.

(6)
In fact, we have∑

g∈�

∑
y∈O

1x(g(y))μ(g)ν(y) =
∑
g∈�

∫
R

1O(y)1x(g(y)) dν(y)μ(g)

=
∑
g∈�

∫
R

1x(g(y)) dν(y)μ(g) = ν(x).

Consider the induced Markov chain on OK = O ∩K defined by the kernel

pK(x, y) := Px(XT = y, T <∞) =
∞∑

n=1

∑
x∈On(x,y)

p(x1, x2) · · · p(xn−1, xn) (7)

for x, y ∈ OK , where T := inf{n ≥ 1 : Xn ∈ OK} is the first hitting time of OK and

On(x, y) := {x ∈ ON : x1 = x, xn = y and xi �∈ OK for all 1 < i < n}.
Since K contains I, the stopping time T is finite μ⊗N-a.s. for every x ∈ OK , thus the

kernel is stochastic, that is,

pK(x, OK) = 1 for x ∈ OK . (8)

The restriction of ν to OK is an invariant measure for the Markov kernel pK (see, for
instance, [25, Proposition 10.4.6 and Theorem 10.4.7]), that is,

ν(y) =
∑

x∈OK

pK(x, y)ν(x).

Consider now the reversed Markov chain X̂n on O defined by recursive action of the g−1
i

with the kernel

p̂(x, y) := P(g−1
1 (x) = y) = P(x = g1(y)) = p(y, x) for any x, y ∈ O, (9)

and the induced kernel on K ,

p̂K(x, y) := Px(X̂T̂ = y, T̂ <∞),

where T̂ = inf{n ≥ 1 : X̂n ∈ OK}. Observe also that, by (7) and (9), p̂K(x, y) =
pK(y, x). Thus for every n ∈ N,

ν(xK) =
∑

y∈OK

ν(y)pn
K(y, xK) =

∑
y∈OK

ν(y)p̂n
K(xK , y).

https://doi.org/10.1017/etds.2021.31 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.31


2216 S. Brofferio et al

Since the kernel p̂K(x, y) is sub-stochastic,
∑

y∈OK
p̂K(x, y) = Px(T̂ <∞) ≤ 1 and

ν(y) ≤ ν(xK) for y ∈ OK , it follows that ν(y) = ν(xK) whenever there exists n such that
p̂n

K(xK , y) > 0, that is, if y ∈ (�−1)∗xK . This completes the proof.

3. Minimality of the supports. Proof of Theorem 1.2
In this section we will prove Theorem 1.2. We need to consider the reverse random walk
with step law given by the probability on Homeo+(R) defined as

μ̂(g) := μ(g−1),

and the associated Feller kernel

P̂ f (x) :=
∑
g∈�

f (g−1(x))μ(g) =
∑

g∈�−1

f (g(x))μ̂(g).

Theorem 1.2 will be a consequence of Propositions 3.1 and 3.2 which will be stated
and proved below. We will see in the proof that these two propositions cover two
complementary cases. The proof of the second proposition shares some arguments with
the paper of Deroin et al [13] on symmetric random walks.

PROPOSITION 3.1. Let ν1 and ν2 be two μ-invariant ergodic measures such that
supp ν1 ⊆ supp ν2. Assume that there are a set M unbounded on both sides and an
open interval J having at least two common points with supp ν1 such that for any u ∈ M ,

N(g, u) = sup{n : �−1
n (u) ∈ J } <∞

for μ⊗N-almost all g = (g1, g2, . . .). Then ν1 = Cν2 for some constant C > 0.

Proof. Note that to prove the result it is sufficient to ensure that for arbitrary a, b ∈ M

such that I ⊂ (a, b) and any z ∈ (a, b),

ν1[a, z)

ν1[a, b)
= ν2[a, z)

ν2[a, b)
. (10)

Indeed, taking the difference, we obtain that for all a < z1 < z2 < b,

ν1[z1, z2) = C(a, b)ν2[z1, z2)

with C(a, b) = ν1[a, b)/ν2[a, b) ∈ (0,∞). Thus ν1 and ν2 coincide up to a constant on
[a, b). Observe that νi[a, b) ≥ νi(I) > 0. To extend this equality to the whole line it is
sufficient to appeal to unboundedness of M . Taking sequences (an)n∈N, (bn)n∈N ⊂ M such
that an →−∞ and bn →+∞, we deduce the equality of both measures on R.

We now turn to the proof of (10). Fix a, b ∈ M such that the recurrent set I is
contained in (a, b). The assumptions of the proposition assure that there exist two
distinct y1, y2 ∈ J ∩ supp ν1; we can assume y1 < y2. Taking two sufficiently small
neighbourhoods of these points, we can find two disjoint intervals J1 and J2 such that
ν1(Ji) > 0 and Ji ⊂ J , i = 1, 2. Note that for any xi ∈ Ji (i = 1, 2), z > a and any
n ≥ N(g) := max{N(g, a), N(g, b)} + 1 we have

1[a,z)(�n(x1)) = 1[�−1
n (a),�−1

n (z))
(x1) ≥ 1[�−1

n (a),�−1
n (z))

(x2) = 1[a,z)(�n(x2)) (11)
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since x1 < x2 and �−1
n (a) /∈ J ⊃ [x1, x2]. Similarly, one can check that

1[a,b)(�n(x1)) = 1[a,b)(�n(x2)) (12)

using that also �−1
n (b) /∈ J for appropriately large n.

Observe that also ν2(Ji) > 0, because yi ∈ supp ν1 ⊆ supp ν2. By the Chacon–Ornstein
theorem (4) there exist x1 ∈ J1 and x2 ∈ J2 such that for μ⊗N-almost every (a.e.)
(gi)n∈N ∈ �N,

lim
n→∞

Sn1[a,z)(x1)

Sn1[a,b)(x1)
= ν1[a, z)

ν1[a, b)
and lim

n→∞
Sn1[a,z)(x2)

Sn1[a,b)(x2)
= ν2[a, z)

ν2[a, b)
. (13)

Appealing to the definition of Sn given in (3), formulas (11) and (12) yield for any n >

N(g),

Sn1[a,z)(x1)− SN(g)1[a,z)(x1) ≥ Sn1[a,z)(x2)− SN(g)1[a,z)(x2)

and

Sn1[a,b)(x1)− SN(g)1[a,b)(x1) = Sn1[a,b)(x2)− SN(g)1[a,b)(x2).

Recall that since the recurrent set I is a subset of (a, b), Sn1[a,b)(xi)→∞ for i = 1, 2
μ⊗N-a.s. Hence on a set of probability 1 we have

ν1[a, z)

ν1[a, b)
= lim

n→∞
Sn1[a,z)(x1)

Sn1[a,b)(x1)

= lim
n→∞

SN(g)1[a,z)(x1)

Sn1[a,b)(x1)
+ Sn1[a,z)(x1)− SN(g)1[a,z)(x1)

Sn1[a,b)(x1)− SN(g)1[a,b)(x1)

· Sn1[a,b)(x1)− SN(g)1[a,b)(x1)

Sn1[a,b)(x1)

≥ lim
n→∞

Sn1[a,z)(x2)− SN(g)1[a,z)(x2)

Sn1[a,b)(x2)− SN(g)1[a,b)(x2)
= lim

n→∞
Sn1[a,z)(x2)

Sn1[a,b)(x2)
= ν2[a, z)

ν2[a, b)
,

the penultimate equality by the fact that Sn1[a,b)(x2)→∞ as n→∞. Interchanging in
(13) the role of measures ν1 and ν2, that is, choosing x1 ∈ J1 and x2 ∈ J2 such that

lim
n→∞

Sn1[a,z)(x2)

Sn1[a,b)(x2)
= ν1[a, z)

ν1[a, b)
and lim

n→∞
Sn1[a,z)(x1)

Sn1[a,b)(x1)
= ν2[a, z)

ν2[a, b)
,

we arrive at the converse inequality

ν1[a, z)

ν1[a, b)
≤ ν2[a, z)

ν2[a, b)
,

thus concluding (10). This completes the proof.

PROPOSITION 3.2. Let ν1 and ν2 be two ergodic invariant measures such that supp ν1 ⊆
supp ν2 and ν1 has no atoms. Suppose that there exists a μ̂-invariant Radon measure ν̂

such that supp ν1 ⊆ supp ν̂. Then ν1 = Cν2 for some positive constant C.

The existence of the measure ν̂ enables us to ensure that the number of visits to a given
interval of processes (Xx

n)n∈N and (X
y
n)n∈N starting from two different points x and y does
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not differ too much if x and y are close enough. Our arguments are partially inspired by
the techniques introduced in [13].

LEMMA 3.3. Assume that (R) is satisfied. Let ν be an ergodic μ-invariant measure, and
let ν̂ be a μ̂-invariant Radon measure. Let a and b be two points of the support of ν̂ such
that ν[a, b) > 0. Fix two constants p, ε ∈ (0, 1), and let δ = min{̂ν(Ia,ε), ν̂(Ib,ε)} > 0,
where Ic,ε := [c, c + ε) for arbitrary c ∈ R. Then for ν-a.e. y and any x < y satisfying
ν̂[x, y) < (1− p)δ,

μ⊗N
({

g : lim
n→∞

∣∣∣∣Sn1[a,b)(x)

Sn1[a,b)(y)
− 1

∣∣∣∣ ≤ ν(Ia,ε)+ ν(Ib,ε)

ν[a, b)

})
≥ p.

Proof. We start with an observation that if two points x and y are close with respect to the
distance measured by ν̂, that is, if ν̂[x, y) < (1− p)δ, then with probability at least p the
distance between two trajectories (Xx

n)n∈N and (X
y
n)n∈N remains small, that is,

P( lim
n→∞ ν̂[Xx

n , X
y
n) < δ) = μ⊗N({g : lim

n→∞ ν̂[Xx
n , X

y
n) < δ}) ≥ p. (14)

This fact was proved in [13, Lemma 6.6], nevertheless for the reader’s convenience we
present here a complete argument. Note first that since the measure ν̂ is μ̂-invariant,
the sequence ν̂[Xx

n , X
y
n) forms a positive martingale, thus by the martingale convergence

theorem it converges to a non-negative random variable v(x, y). Fatou’s lemma entails
that

Ev(x, y) ≤ lim
n→∞ E[̂ν[Xx

n , X
y
n)] = ν̂[x, y)

and, finally, by the Markov inequality we obtain

P({v(x, y) > δ}) ≤ P

({
v(x, y) >

ν̂[x, y)

1− p

})
≤ (1− p)Ev(x, y)

ν̂[x, y)
≤ 1− p,

thus completing the proof of (14).
To proceed further we need an additional auxiliary inequality. Namely, note that for any

x < y we have

|1[a,b)(x)− 1[a,b)(y)| = 1[a,b)(y)1(−∞,a)(x)+ 1[a,b)(x)1[b,+∞)(y)

≤ 1Ia,ε (y)+ 1{[x,y)⊇Ia,ε}(y)+ 1Ib,ε (y)+ 1{[x,y)⊇Ib,ε}(y)

≤ 1Ia,ε (y)+ 1Ib,ε (y)+ 1{̂ν[x,y)≥ν̂(Ia,ε)}(y)+ 1{̂ν[x,y)≥ν̂(Ib,ε)}(y)

≤ 1Ia,ε (y)+ 1Ib,ε (y)+ 2 · 1{̂ν[x,y)≥δ}(y).

Replacing x, y by �k(x) and �k(y) respectively, and then summing over k, we obtain for
any x < y and n ≥ 0.

|Sn1[a,b)(x)− Sn1[a,b)(y)|
≤ Sn1Ia,ε (y)+ Sn1Ib,ε (y)+ 2card{k ≤ n : ν̂[Xx

k , X
y
k ) ≥ δ}. (15)
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Since ν[a, b) > 0, the Chacon–Ornstein theorem (4) entails that

lim
n→∞

Sn1Ia,ε (y)+ Sn1Ib,ε (y)

Sn1[a,b)(y)
= ν(Ia,ε)+ ν(Ib,ε)

ν[a, b)
(16)

for ν-a.e. y. Furthermore, for ν-a.e. y, Sn1[a,b)(y) converges to +∞, since ν[a, b) >

0. Now, fix a y for which the above limit exists and take arbitrary x < y such that
ν̂[x, y] < (1− p)δ. Then, in view of (14), on a set of probability at least p we have
limn→∞ ν̂[Xx

n , X
y
n) < δ. Thus invoking (15) on the intersection of this set with the set

of full measure for which (16) holds, we obtain

lim sup
n→∞

∣∣∣∣Sn1[a,b)(y)− Sn1[a,b)(x)

Sn1[a,b)(y)

∣∣∣∣ ≤ lim
n→∞

Sn1Ia,ε (y)+ Sn1Ib,ε (y)

Sn1[a,b)(y)

= ν(Ia,ε)+ ν(Ib,ε)

ν[a, b)

and the proof of the lemma is complete.

Proof of Proposition 3.2. We will now prove that for any a, b ∈ supp ν1 ⊆ supp ν̂ such
that ν1[a, b) > 0 and ν2[a, b) > 0, and for any z ∈ (a, b],

ν1[a, z)

ν1[a, b)
= ν2[a, z)

ν2[a, b)
. (17)

The desired result will be shown by the same argument as in the proof of Proposition 3.1,
using the fact that supp ν1 is unbounded.

Step 1. First we will prove that (17) holds for z ∈ supp ν̂ such that ν1[a, z) > 0. Fix
p ∈ (1/2, 1), choose ε > 0 such that the intervals Ia,ε, Ib,ε and Iz,ε are pairwise disjoint
and put

δ := min{̂ν(Ia,ε), ν̂(Ib,ε), ν̂(Iz,ε)} > 0.

We claim that there exist two disjoint open intervals I1, I2 and an interval I0 ⊃ I1 ∪ I2

such that

sup{x ∈ I2} ≤ inf{x ∈ I1}, ν1(I1) > 0, ν1(I2) > 0 and ν̂(I0) < (1− p)δ.

In fact, let I be an open interval such that supp ν1 ∩ I �= ∅. Since ν1 has no atoms,
supp ν1 ∩ I contains infinitely many points. Thus there exists a strictly monotone sequence
zn ∈ supp ν1 ∩ I. Suppose that zn is increasing (the decreasing case is similar). Consider
the open neighbourhood of zn defined by Jn := ((zn + zn−1)/2, (zn + zn+1)/2). Intervals
J ′n = [(zn + zn−1)/2, (zn + zn+1)/2) for n ∈ N are disjoint and contained in the bounded
interval I, whence ν̂(J ′n) converges to 0 and thus ν̂(Jn) < (1− p)δ/2 for any sufficiently
large n. We take I2 = Jn, I1 = Jn+1 and I0 = J ′n ∪ J ′n+1.

Since ν1(I1) > 0 and ν1[a, b) > ν1[a, z) > 0, by the Chacon–Ornstein theorem (4),
and appealing twice to Lemma 3.3 (first for points a, b and then for a, z), we deduce that
there exists x1 ∈ I1 such that μ⊗N-a.s.,

lim
n→∞

Sn1[a,z)(x1)

Sn1[a,b)(x1)
= ν1[a, z)

ν1[a, b)
, (18)
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and for all x2 ∈ I2 with probability greater than 1− 2(1− p) = 2p − 1 > 0,

lim sup
n→∞

∣∣∣∣Sn1[a,b)(x2)

Sn1[a,b)(x1)
− 1

∣∣∣∣ ≤ ν(Ia,ε)+ ν(Ib,ε)

ν[a, b)
,

lim sup
n→∞

∣∣∣∣Sn1[a,z)(x2)

Sn1[a,z)(x1)
− 1

∣∣∣∣ ≤ ν(Ia,ε)+ ν(Ib,ε)

ν[a, z)
.

Now since ν2(I2) > 0 and ν2[a, b) > 0 we can chose x2 ∈ I2 such that μ⊗N-a.s.,

lim
n→∞

Sn1(a,z)(x2)

Sn1(a,b)(x2)
= ν2[a, z)

ν2[a, b)
. (19)

Thus, with μ⊗N probability at least 2p − 1 > 0, we can write∣∣∣∣ ν1[a, z)

ν1[a, b)
× ν2[a, b)

ν2[a, z)
− 1

∣∣∣∣ = lim
n→∞

∣∣∣∣Sn1[a,b)(x2)

Sn1[a,b)(x1)
:

Sn1[a,z)(x2)

Sn1[a,z)(x1)
− 1

∣∣∣∣
≤

(
ν1(Ia,ε)+ ν1(Ib,ε)

ν1[a, b)
+ ν1(Ia,ε)+ ν1(Iz,ε)

ν1[a, z)

)
:
(

1− ν1(Ia,ε)+ ν1(Iz,ε)

ν1[a, z)

)
,

where for the last inequality we used the inequality |(1+ εn)/(1+ ηn)− 1| ≤ |εn| + |ηn|/
(1− |ηn|). Since the measure ν1 is atomless, sending ε to 0 in the last estimates proves (17).

Step 2. We will now prove that (17) holds for any a, b ∈ supp ν1 and any z ∈ (a, b]. Let

z := min{x : x ∈ supp ν1 ∩ [z, +∞)} ∈ supp ν1,

z := max{x : x ∈ supp ν1 ∩ (−∞, z]} ∈ supp ν1.

In particular, ν1[z, z] = 0 because ν1 has no atoms. For all c < z ≤ z we have

ν1[c, z) = ν1[c, z)+ ν1[z, z) = ν1[c, z), (20)

ν1[c, z) = ν1[c, z)+ ν1(z, z) = ν1[c, z). (21)

Since (U) holds there exists a0 ∈ supp ν1 such that ν1[a0, a) > 0 and ν2[a0, a) > 0, by the
fact that supp ν1 ⊂ supp ν2. Since supp ν1 ⊆ supp ν̂, by step 1 for any z ∈ (a, b] ∩ supp ν1

we have

ν1[a0, z) = Cν2[a0, z) and ν1[a0, z) = Cν2[a0, z), (22)

with C := ν1[a0, b)/ν2[a0, b) ∈ (0,∞). Observing that a ≤ z ≤ z ≤ b and applying (20),
(21) and (22), one obtains

ν1[a, z) = ν1[a, z) = ν1[a0, z)− ν1[a0, a) = Cν2[a0, z)− Cν2[a0, a)

= Cν2[a, z) ≥ Cν2[a, z)

and

ν1[a, z) = ν1[a, z) = ν1[a0, z)− ν1[a0, a) = Cν2[a0, z)− Cν2[a0, a)

= Cν2[a, z) ≤ Cν2[a, z).

Thus ν1[a, z) = Cν2[a, z) and (17) follows taking the quotient. The proof is complete.
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Proof of Theorem 1.2. To prove (1), let ν1 and ν2 be two ergodic invariant Radon measures
such that supp ν1 ⊆ supp ν2 and supp ν1 is not discrete in R.

We will consider the following two complementary cases:
(a) there exists an open interval J having at least two common points with supp ν1 such

that

CJ :=
{
x ∈ R

∣∣∣∣
∞∑

k=0

P̂ k1J (x) <∞
}

is not empty;
(b) for all open intervals J ⊂ R having at least two common points with supp ν1 we have

∞∑
k=0

P̂ k1J (x) = ∞ for any x ∈ R.

The theorem is a consequence of Proposition 3.1 for case (a) and Proposition 3.2 for
case (b).

Case (a). We claim that, in this case, the set CJ is unbounded on both sides and for any
u ∈ CJ ,

N(g, x) := sup{n : g−1
1 · · · g−1

n (x) ∈ J } <∞ (23)

for μ⊗N-a.e. g = (g1, g2, . . .). Then the fact that ν1 = Cν2 is a consequence of
Proposition 3.1, with M = CJ .

To prove the claim observe that
∞∑

k=0

P̂ k1J (x) = E

[ ∞∑
n=0

1J (g−1
1 · · · g−1

n (x))

]
= E(card{n : g−1

1 · · · g−1
n (x) ∈ J }).

In particular, for x ∈ CJ the sequence g−1
1 · · · g−1

n (x) visits J finitely many times with
probability 1, that is, N(g, x) <∞ μ⊗N-a.s.

Observe also that the set CJ is �−1-invariant. In fact, if x ∈ CJ and g0 ∈ �, then

∞ >

∞∑
k=0

P̂ k1J (x) ≥
∞∑

k=1

P̂ k1J (x) =
∑
g∈�

∞∑
k=0

P̂ k1J (g−1x)μ(g)

≥
∞∑

k=0

P̂ k1J (g−1
0 x)μ(g0).

Thus g−1
0 x ∈ CJ , since μ(g0) > 0. In particular, since (U) holds also for �−1, Lemma 2.1

entails that CJ is unbounded.
Case (b). We will prove that under condition (b), ν1 has no atoms and there exists

a μ̂-invariant Radon measure ν̂ such that supp ν1 ⊆ supp ν̂. Then the fact that ν1 is a
multiple of ν2 follows from Proposition 3.2.

We first prove that ν1 cannot have atoms. Let K be a compact set that contains the
recurrence interval and an accumulation point of supp ν1. If ν1 had an atom in K then,
according to Lemma 2.2, there would exist an x0 ∈ K such that its �−1-orbit M0 (=
(�−1)∗x0) has a finite number of points in K . But since K contains an accumulation
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point of supp ν1, there exists an interval J ⊂ Mc
0 that contains at least two distinct points

y1 and y2 of supp ν1. By �−1-invariance of M0 we deduce that for any x ∈ M0, g−1x /∈ J

for g ∈ �∗. Thus M0 ⊂ CJ �= ∅, which leads to a contradiction.
Since there exists a compact interval J such that CJ = ∅, the Feller kernel

P̂ f (x) :=
∑
g∈�

f (g−1(x))μ(g) =
∑

g∈�−1

f (g(x))μ̂(g)

is topologically conservative and therefore it has at least one invariant Radon measure
ν̂ (see Lin’s theorem [23, Theorem 5.1]). The set M0 := supp ν̂ is then closed and
�−1-invariant. Suppose now that there exists y ∈ supp ν1 but y �∈ supp ν̂. Since supp ν̂

is closed and ν1 has no atoms, there exists J̃ ⊆ R \ supp ν̂ that contains at least two
distinct points y1 and y2 of supp ν1. By �−1-invariance of supp ν̂ we conclude as above
that for any x ∈ supp ν̂, g−1x /∈ J̃ for any g ∈ �∗, that is, supp ν̂ ⊂ C

J̃
�= ∅. This leads to

a contradiction.
To prove (2), take ν to be an ergodic invariant measure and suppose it does not contain a

�-invariant discrete set. Let M ⊆ supp ν be a non-empty closed �-invariant set. Then, by
recurrence, there exists an ergodic invariant measure ν1 such that supp ν1 ⊆ M . If supp ν

does not contain a discrete set, then we can apply the first part of the theorem, obtaining
that supp ν1 = supp ν. Hence M = supp ν. This proves that supp ν is minimal.

Conversely, to prove (3), take a minimal closed �-invariant set M . Then, by recur-
rence (R), there exists an ergodic invariant measure ν1 such that supp ν1 ⊆ M . By
minimality of M we have supp ν1 = M . Take now another ergodic measure ν2 such that
supp ν2 = M = supp ν1. If M is not discrete we can apply the first part of the theorem to
conclude that ν1 and ν2 coincide up to a multiplicative constant. If M is discrete observe
that any x ∈ M is an atom for both ν1 and ν2, thus, invoking the Chacon–Ornstein theorem,
we obtain that for any bounded function φ with compact support and for all x ∈ M ,

ν1(φ)

ν1(	)
= lim

n→∞
Snφ(x)

Sn	(x)
and

ν2(φ)

ν2(	)
= lim

n→∞
Snφ(x)

Sn	(x)
.

From this we finally obtain that ν1 = Cν2 with C = ν1(	)/ν2(	). This completes the
proof of (3).

4. Uniqueness of an invariant measure: proof of Theorem 1.1
We start with the following lemma.

LEMMA 4.1. Assume that hypotheses (C) and (U) hold. Then any two non-empty and
closed �-invariant sets M1 and M2 have non-empty intersection, that is, M1 ∩M2 �= ∅.
Proof. Assume to the contrary that M1 ∩M2 = ∅ for some �-invariant sets M1 and M2.
Consider the class of all open intervals such that

J = {J = (a, b) : a ∈ M1, b ∈ M2 and (a, b) ⊂ (M1 ∪M2)
c}.

Observe that all the intervals belonging to J are disjoint. Furthermore, note that if the sets
M1 and M2 are disjoint, then for all pairs m1 ∈ M1, m2 ∈ M2 such that m1 < m2 there
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exists J = (a, b) ∈ J such that J ⊂ (m1, m2). Indeed, one can just take a = sup{m ∈
M1 : m ≤ m2} and b = inf{m ∈ M2 : m ≥ a}.

Let I be the compact interval that appears in (C). We claim that there are only finitely
many intervals J ∈ J which are subsets of I. Indeed, suppose that there are infinitely many
elements Ji = (ai , bi) of J such that Ji ⊂ I for i ∈ N. Since both sequences {ai}i∈N and
{bi}i∈N are contained in the compact interval I, there exists a subsequence {ik}k∈N of N
such that sequences {aik }k∈N and {bik }k∈N are convergent. We denote by a0 and b0 their
corresponding limits. Recalling that both sets Mi are closed, we deduce that a0 ∈ M1 and
b0 ∈ M2. On the other hand, since all the intervals Jik are disjoint and contained in the
compact set I, their diameters |bik − aik | converge to zero. Thus a0 = b0 ∈ M1 ∩M2 and
we obtain a contradiction.

Denote by J1, . . . JN all the disjoint intervals, elements of J, contained in I. In
view of Lemma 2.1, since the sets M1 and M2 are �-invariant, they are unbounded.
Thus there exists an additional interval JN+1 ∈ J disjoint from I and all the remaining
chosen intervals Ji for i ≤ N . Condition (C) entails the existence of g ∈ �∗ such that
g(J1 ∪ · · · ∪ JN ∪ JN+1) ⊂ I. Since g is a homeomorphism preserving the order, for
every i ≤ N + 1 it maps intervals Ji = (ai , bi) onto open intervals g(Ji) = (g(ai), g(bi)).
Observe also that g(ai) ∈ M1 ∩ I and g(bi) ∈ M2 ∩ I, thus for every i ∈ {1, . . . , N + 1}
there exists ji ∈ {1, . . . , N} such that g(Ji) ⊇ Jji

and then the pigeonhole principle
entails that ji1 = ji2 for some i1 �= i2. This means that both g(Ji1) and g(Ji2) contain Jj1

and therefore cannot be disjoint. Moreover, Ji1 ∩ Ji2 ⊃ g−1(Jj1) �= ∅, thus contradicting
the choice of the intervals Ji1 and Ji2 as disjoint sets. So, we finally arrive at the conclusion
that two closed and �-invariant sets M1 and M2 must have a non-empty intersection. This
completes the proof.

Proof of Theorem 1.1. Suppose that there exist two different invariant Radon measures.
Without loss of generality, using ergodic decomposition, we may assume that there exist
two different ergodic Radon measures ν̃1 and ν̃2. We claim then that there are two different
invariant ergodic Radon measures ν1 and ν2 such that supp ν1 ⊆ supp ν2.

If supp ν̃1 = supp ν̃2 the result holds by taking ν1 = ν̃1 and ν2 = ν̃2.
Consider now the second case when supp ν̃1 �= supp ν̃2. Both sets supp ν̃i are

�-invariant, therefore in view of Lemma 4.1 they must have non-empty intersection, that
is, K = supp ν̃1 ∩ supp ν̃2 �= ∅. Since K is �-invariant, by (R) there exists an invariant
ergodic Radon measure, say ν1, whose support is contained in K . Keeping in mind that
both sets supp ν̃1 and supp ν̃2 are different, at least one of them, say supp ν̃2, must be
greater than K . Then the couple ν1 and ν2 := ν̃2 satisfies the claim.

Observe that conditions (C) and (U) imply that M1 := supp ν1 is not discrete. Indeed, if
I is the interval appearing in (C), then for all compact intervals J ,

Card(M1 ∩ J ) = Card(g(M1 ∩ J )) ≤ Card(M1 ∩ I),

where g ∈ � is such that g(J ) ⊆ I, by the fact that M1 is �-invariant. Further,
since M1 is unbounded one can choose a sequence of compact intervals Jn such that
Card(M1 ∩ Jn)→∞. Hence Card(M1 ∩ I) = ∞.
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Point (1) of Theorem 1.2 yields ν1 = Cν2, which leads to a contradiction. The proof is
complete.

5. Examples and applications
We will provide in this section some criteria to ensure recurrence and contraction of the
system. In particular, we will focus on the study of systems induced by homeomorphisms
whose behaviour we can control at the end points, such as asymptotically linear homeo-
morphisms and C2-diffeomorphisms of the interval.

5.1. Asymptotically linear systems. In this section we will focus on the study of systems
induced by homeomorphisms that have a linear bound in the sense that for all g ∈ supp μ

there exist three positive numbers +A(g), −A(g) and B(g) such that

− −A(g)x− − B(g) ≤ g(x) ≤ +A(g)x+ + B(g) for all x ∈ R, (24)

where x+ = max{0, x} and x− = max{0, −x}.

+Ax++B g(x)

x

–Ax––B

It can be easily shown that g ∈ Homeo+(R) satisfies (24) if the limits

+A(g) := lim sup
x→+∞

g(x)

x
, −A(g) := lim sup

x→−∞
g(x)

x

are finite, and

lim sup
x→+∞

[g(x)− +A(g)x] <∞ and lim inf
x→−∞[g(x)− −A(g)x] > −∞.

These are sufficient conditions for (24) but examples of systems which do not satisfy
these conditions, but for which (24) still holds, might be easily provided. Processes
of this kind appear in many contexts of probability and related fields and have been
investigated in several paper in the last years; see, for example, [2, 3, 7, 8, 14, 20]. A
fundamental example that has been widely studied is the affine recursion where g(x) =
A(g)x + B(g) (see [9] for a general overview). We refer to [8, §6] for a more detailed
presentation of possible applications. In particular, condition (24) holds, after conjugation,
for any increasing C2-diffeomorphism h of the interval [0, 1], as we will see in the next
section.

One expects that if +A and −A are sufficiently often smaller than 1, then the system will
often be repelled away from infinity and thus will be recurrent or contracting. For instance
one can prove the following sufficient criteria for hypothesis (C) and (R).
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LEMMA 5.1.

(1) Suppose that there exists g ∈ supp μ such that (24) holds with +A(g) and −A(g)

smaller than 1. Then (C) holds.
(2) Suppose that (24) holds for every g ∈ supp μ. Then (R) holds in any of the following

cases:
(a) log ±A(g) and log+ B(g) are μ-integrable and

∫
log ±A(g) dμ(g) < 0;

(b) the support of μ is finite and
∫

log ±A(g) dμ(g) ≤ 0;
(c) −A = +A = A, log ±A(g) and log+ B(g) are (2+ ε)-integrable for some ε > 0,

and
∫

log A(g) dμ(g) = 0.

Proof. We will use the linear bound assumed in (24) to compare the Markov chain Xx
n =

�n(x) = gn · · · g1(x) with the affine recursions

+Yx
n : = +An

+Yn−1 + Bn, +Y0 = x+,
−Yx

n : = −An
−Yn−1 + Bn, −Y0 = x−,

where +An = +A(gn),
−An = −A(gn) and Bn = B(gn). It can then be verified by the

inductive argument that

− −Yx
n ≤ gn · · · g1(x) ≤ +Yx

n . (25)

Proof of (1). Let g ∈ supp μ be such that

A := max{+A(g), −A(g)} < 1,

and set B := B(g). It can be verified by induction (or applying (25) when gi = g for all i)
that

− Anx− −
n−1∑
k=0

AkB ≤ gn(x) ≤ Anx+ +
n−1∑
k=0

AkB. (26)

In particular, if β :=∑∞
k=0A

kB then |gn(x)| ≤ An|x| + β. Fix I := [−2β, 2β] and take
any interval J = [a, b]. Then for any sufficiently large n we obtain

gn(J ) ⊆ [−An|a| − β, An|b| + β] ⊆ I .

Proof of (2): (a) and (c). It is known that under hypothesis (a) or (c) the two-dimensional
Markov chain {(+Yn, −Yn)}n∈N is recurrent in R

2, that is, there exists a constant K > 0
such that for any starting point, with probability 1, max{|+Yn|, |−Yn|} < K for infinitely
many n (see [5] and [9, §4.4.10]). From (25) it follows that Xx

n visits the interval I =
[−K , K] infinitely often.

Proof of (2): (b). Under hypothesis (b) one needs to be more careful. In fact, in this
case each of the one-dimensional affine recursions +Yn and −Yn is recurrent, but the joint
process (+Yn, −Yn) may not be.

Let K > 0 be such that for all x ∈ R we have

P(|+Yx
n | < K i.o.) = 1 and P(|−Yx

n | < K i.o.) = 1. (27)
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If at some moment n one has Xx
n ≤ +Yx

n < K , and at some later moment n′ > n one has
−K < −Yx

n′ ≤ Xx
n′ , then

Xx
m ∈ [−K , K ∨max

g∈� g(−K)],

where m = min{n′′ ∈ [n, n′] : Xx
n′′ > K}. Since this event holds P-a.s., by (27), the proof

is complete.

5.2. C2-diffeomorphisms of the interval. Our main theorems and the above-mentioned
results concerning asymptotically linear systems can be applied to stochastic dynamical
systems on the interval generated by an increasing C2-diffeomorphism of [0, 1]. Similar
iterated function systems have been extensively studied recently (see [1, 10, 19, 24]). A
sufficient criterion for the uniqueness of an invariant measure in this situation has been
stated in Corollary 1.4 and is a direct consequence of Theorem 1.1, Lemma 5.1 and the
following result.

LEMMA 5.2. Take the diffeomorphism of (0, 1) onto R defined by r(u) := −(1/u)+
1/(1− u). Then for any increasing C2-diffeomorphism h of [0, 1], the conjugated
homeomorphism

hr := r ◦ h ◦ r−1 ∈ Homeo+(R)

satisfies (24) with

+A(hr) = 1
h′(1)

and −A(hr) = 1
h′(0)

.

Furthermore, if μ is a finitely supported measure on the family of increasing diffeomor-
phisms in C2([0, 1]) and μr is the conjugated measure on Homeo+(R), a Radon measure
ν on (0, 1) is μ-invariant if and only if the Radon measure on R of the form

νr(f ) = r∗ν(f ) =
∫

[0,1]
f (r(x)) dν(x)

is μr -invariant.

Proof. We have

+A(hr) = lim sup
x→+∞

hr(x)

x
= lim sup

x→+∞
r(h(r−1(x))

r(r−1(x))

= lim sup
u→1−

r(h(u))

r(u)
change of variable u := r−1(x)

= lim sup
u→1−

1/(1− h(u))

1/(1− u)
since r(u) ∼ 1

1− u
for u ∼ 1−

= lim sup
u→1−

1− u

h(1)− h(u)
= 1

h′(1)
since h(1) = 1.
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Furthermore, since h is C2(0, 1), we have h(u) = 1+ h′(1)(1− u)+O((1− u)2). Thus
finally

lim sup
x→+∞

[
hr(x)− x

h′(1)

]
= lim sup

u→1−

[
1

1− h(u)
− 1

h′(1)(1− u)

]

= lim sup
u→1−

O((1− u)2)

h′(1)2(1− u)2 <∞.

Similar calculations can be done near −∞ and 0.
The second part of the lemma is obvious.

5.3. Counterexamples to Theorems 1.1 and 1.2. In this section we intend to provide
some examples of stochastic dynamical systems that have more than one invariant measure
to explain that neither condition (C) nor (U) is sufficient alone to guarantee uniqueness.

5.3.1. Contraction but not unboundedness. Consider the stochastic dynamical systems
generated by a set � of homeomorphisms that fix two distinct points a and b of R and are
all repulsive at the end point. For instance, take μ that gives mass 1/2 to h(x) = x1/3 and to
k(x) = x1/5. Then μ is contracting because hn[−K , K] = [−K1/3n

, K1/3n
] is in [−2, 2]

for any large n. The interval [−2, 2] is also recurrent for similar reasons. This system does
not have a unique invariant measure since δ0 and δ1, the Dirac measures in 0 and 1, are
both μ-invariant.

5.3.2. Unboundedness but not contraction. An example of a recurrent stochastic
dynamical system that satisfies (U) but not (C) is just given by the simple random
walk on Z ⊂ R. In fact, take μ that gives mass 1/3 to h0(x) = x, h+(x) = x + 1 and
h−(x) = x − 1 ∈ Homeo+(R). It defines a recurrent Markov chain and is obviously
unbounded. It possesses infinitely many Radon ergodic invariant measures given by the
counting measures on Z+ a ⊆ R for any a ∈ [0, 1). The Lebesgue measure on R is also
invariant, but it is not ergodic.

5.3.3. Ergodic measures with non-minimal support. We give here an example to prove
that an ergodic measure may have support that is not minimal. The idea is to start
with a stochastic dynamical system generated by a measure μ on the set of increasing
C2-diffeomorphisms of [0, 1] that has a unique Radon measure ν whose support is the
whole interval (0, 1). It follows then that ν is ergodic. Let � = supp μ. For any g ∈ �

define three homeomorphisms of R:

g0(x) := g({x})+ �x�, g+(x) := g({x})+ �x� + 1, g−(x) := g({x})+ �x� − 1,

where {x} is the fractional part of x and �x� the floor function. Heuristically the function
g0 fixes each integer interval [n, n+ 1] and acts on each one of them as g, while g± do
the same but are then composed with a translation by ±1. Let μ be the measure charging
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g0, g± with mass equal to μ(g)/3. Then it can be proved that the measure

ν(f ) :=
+∞∑

k=−∞

∫ 1

0
f (y + k) dν(y)

is a μ-invariant Radon ergodic measure whose support is the whole of R. On the other
hand, Z ⊂ R is a discrete closed invariant set for μ (and the counting measure on Z is
another ergodic measure).

5.3.4. Non-recurrent system. A classical example that shows that for non-recurrent
systems a closed minimal �-invariant set can be a support of several invariant measures is
a non-centred random walk on Z. Suppose that g(x) = x + B(g) with B(g) ∈ Z. Further,
suppose also that E(B(g1)) �= 0 and that there exists α �= 0 such that E(e−αB(g1)) = 1.
Then both the counting measure on Z and the measure on Z such that ν(x) = eαx for any
x ∈ Z are invariant.

5.3.5. Non-Radon invariant measures. The restriction to Radon measures in Theorem
1.1 is indispensable. In the family of Borel measures the uniqueness of the invariant
measure can easily be broken; see, for example, [5, Remark 2].
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Center, Poland (Sonata Bis, grant number DEC-2014/14/E/ST1/00588).

A. Appendix: Some results on ergodic invariant measures for Markov–Feller processes
This part of our paper is devoted to the description of ergodic measures and to the
proof of an ergodic decomposition for Markov–Feller processes on locally compact metric
spaces (2). Some of the results of this section seem to be classical and have often been used
in a different context in several works in this fields. They are based on the classical theory
of positive contractions of L1-spaces that is a powerful and general tool. However, we
could not find a comprehensive reference specifically adapted to Markov–Feller processes
with an invariant Radon measure. So we give a quick survey of the results that we need in
our paper and explain how they can be deduced from the general theory. In particular, we
give an explicit proof of the ergodic decomposition of a general invariant Radon measure
as an integral over the class of ergodic Radon measures.

For a complete overview on the ergodic theory and related infinite measures,
L1-contractions and Markov processes we refer to the books by Foguel [16], Garsia [18]
and Revuz [29]. For a glimpse at the theory we also suggest the nice informal survey of
Zweimüller [30].

A.1. Markov–Feller processes and L1-contractions. Let (X, ρ) be a locally compact
metric space, and let (X, B(X), ν) be a σ -finite measure space with Radon measure ν. Let
P be an operator on L1(X, ν) and L∞(X, ν) such that:
• P is positive, that is, Pf ≥ 0 for f ≥ 0;
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• P 1X(x) = 1X(x) for ν-a.e. x ∈ X;
• P is a contraction of L1(X, ν), that is, the operator norm ‖P ‖1 on this space is less

than 1. This last condition is equivalent to the property of the measure ν called an
excessive measure, that is,∫

X

Pf (x) dν(x) ≤
∫

X

f (x) dν(x) for f ∈ L1(X, ν), f ≥ 0.

We shall call the quadruple (X, B(X), ν, P) a Markov process. This process is said to
be Feller if additionally we assume that Pf ∈ C(X) for f ∈ Cc(X). Here C(X) denotes
the space of continuous functions and Cc(X) the subspace of continuous functions with
compact support. A Radon measure ν will be called invariant for a given Markov–Feller
process if ν(Pf ) = ν(f ) for f ∈ L1(X, ν).

Using the duality between L1(X, ν) and L∞(X, ν), we can define a dual operator P ∗
on both L1(X, ν) and L∞(X, ν). More precisely, for any f ∈ L1(X, ν) (respectively, f ∈
L∞(X, ν)) P ∗f is the unique function in L1(X, ν) (respectively, in L∞(X, ν)) such that∫

X

P ∗f (x)g(x) dν(x)

=
∫

X

f (x)Pg(x) dν(x) for all g ∈ L∞(X, ν) (respectively, g ∈ L1(X, ν)).

It can also easily be checked that P ∗ is a positive contraction of L1(X, ν).
We can associate to a Markov operator P with an invariant measure ν the space of

the trajectories of the associated Markov chain (Xn)n∈N, that is, the product space XN

equipped with the measure Pν such that for any finite collection of compact sets Ii ⊂ X,
i = 0, . . . , n, the measure of the cylinder [I ] = I0 × · · · × In × R× · · · is given by the
formula

Pν([I ]) = Pν(X0 ∈ I0, . . . , Xn ∈ In)

:=
∫
R

n+1
1In(xn) · · · 1I0(x0)P (xn−1, dxn) · · · P(x1, dx2)P (x0, dx1)ν(dx0).

Recall that P(·, ·) : X × B(X)→ [0, 1] denotes the transition probability for the Markov
chain (Xn)n∈N given by the formula

P(x, A) = P ∗1A(x) for x ∈ X and A ∈ B(X).

The shift τ on XN, that is, the map x = (x0, x1, . . .) �→ τx = (x1, x2, . . .), induces the
operator on L1(XN, Pν) (and on L∞(XN, Pν)) that will also be denoted by τ and defined
by the formula τf (x) = f (τx). If ν is P -invariant, then Pν is τ -invariant. Thus τ is a
positive contraction of L1(XN, Pν).

More generally, let (W , ω) be a σ -finite measure space. A linear operator T of L1(W , ω)

is a positive contraction if it is positive (Tf ≥ 0 whenever f ≥ 0) and ‖T ‖1 ≤ 1. We may
define the adjoint operator T ∗ : L∞(ω)→ L∞(ω) by the formula∫

W

T ∗gf dν =
∫

X

gTf dν for g ∈ L∞(ν) and f ∈ L1(ν).
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As we have seen above, we can associate to a Markov kernel P with a P -invariant
measure ν at least three different contractions: the contraction P on L1(X, ν), the
contraction P ∗ also on L1(X, ν) and the shift τ on L1(XN, Pν). All of them possess
interesting properties, but this abundance also generates some confusion. We will be
mainly interested in the contractions P and τ . Let us just notice that the contraction P ∗
is particularly adapted to and widely used in the study of Harris recurrent Markov chains
(see, for instance, Revuz [29] and Foguel [16]), but this is not so in our case.

These three contractions are deeply related and the dynamical systems they engender
share often the same ergodic properties, as will be shown below. For some results in this
direction see also the recent paper of Pène and Thomine [28, §2].

A.2. Ergodic measures. A fundamental property of L1-contractions is ergodicity,
saying that the space cannot be decomposed into smaller invariant pieces. More precisely,
a Borel set A is called T -invariant (or invariant ) if T ∗1A = 1A (or equivalently if νA, the
restriction of ν to A, is a T -invariant measure). An invariant measure ν is called ergodic if
either ν(A) = 0 or ν(X \ A) = 0 for any T -invariant set A ⊂ X.

For the contractions induced by a Markov operator P , we have in principle at least three
definitions of ergodicity (for P , P ∗ and τ ), but all of them coincide. Observe that the
σ -algebras of invariant sets defined by the contractions P and P ∗ on L1(X, ν) coincide
(see [29, Ch. 4, Proposition 3.4]). Thus ν is P -ergodic if and only if it is P ∗-ergodic.
Furthermore, we have the following lemma.

LEMMA A.1. Let P be a Markov–Feller operator, and let ν be an invariant measure. If ν

is P -ergodic, then Pν is ergodic for the shift τ .

Proof. Let A ⊂ XN be τ -invariant, that is, τ−1A = A up to a Pν-null measure set. Let

u(x) = Px(A) = Px((Xn)n≥0 ∈ A).

Observe that for ν-a.e. x,

u(x) = Px(τ
−1A) = Px((Xn+1)n≥0 ∈ A) = Ex(PX1(A)) = Pu(x).

Thus u is P -invariant and, since ν is P ∗-ergodic, u(x) = u0 for some constant u0.
Now take Bn in σ(X0, X1, . . . , Xn), the σ -algebra generated by the first n+ 1

coordinates. Then

Pν(Bn ∩ A) = Pν(Bn ∩ τ−(n+1)A) = Eν(1BnPXn+1(A)) = u0Pν(Bn).

Since the set of functions 1Bn spans a dense subset of L1(Pν), we see that 1A = u0 must
be constant, that is, A is Pν trivial. This completes the proof.

In the specific context of this paper where P is induced by the action of a discrete
measure μ on the group of Homeo(X), we can characterize invariant sets (and prove
directly that P - and P ∗-invariant sets coincide).
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LEMMA A.2. Let P be the Markov operator defined by the action of a discrete distribution
μ on the group of homeomorphisms of X as in (1), and let ν be an invariant Radon
measure. Then for any measurable set A ⊂ X the following conditions are equivalent:
(1) ν(A� g−1A) = 0 for each g ∈ �;
(2) P ∗1A = 1A in L∞(X, ν);
(3) P 1A = 1A in L∞(X, ν).
In particular, if M is a closed �-invariant set, then M is P -invariant for the Markov
operator P .

Proof. (1)⇒ (2). Suppose (1) holds. Since ν is invariant, for any f ∈ L1(ν) we have∫
X

f (x)P ∗1A(x) dν(x) =
∫

�

∫
X

f (g(x))1A(x) dν(x)dμ(g)

=
∫

�

∫
X

f (g(x))1A(g(x)) dν(x)dμ(g)

=
∫

X

f (x)1A(x) dν(x).

(2)⇒ (1). Let Kn ↗ X be a sequence of increasing compact sets. Let Ac = X \ A and
Bn := Kn ∩ Ac. Then, since 1Bn ∈ L1(ν),

∑
g∈�

μ(g)ν(g−1Bn ∩ A) =
∫

X

∫
�

1Bn(g(x))1A(x) dν(x)dμ(g)

=
∫

X

P 1Bn(x)1A(x) dν(x)

=
∫

X

1Bn(x)P ∗1A(x) dν(x)

=
∫

X

1Bn(x)1A(x) dν(x) = ν(Bn ∩ A) = 0.

Thus ν(g−1Bn ∩ A) = 0 for all g ∈ � and

ν((g−1A)c ∩ A) = ν(g−1(Ac) ∩ A) = lim
n→∞ ν(g−1Bn ∩ A) = 0.

Observe that, since ν is P -invariant, also P ∗1Ac = 1Ac . Similarly, ν(g−1A ∩ Ac) = 0 and
finally we can conclude that

ν(A� g−1A) = ν(g−1A ∩ Ac)+ ν((g−1A)c ∩ A) = 0.

(1)⇔ (3). Observe that P 1A(x) =∑
g∈� μ(g)1g−1A(x). Thus

P 1A = 1A ⇐⇒1g−1A = 1A for all g ∈ �

since μ(g) > 0 for all g ∈ �.
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Let M be a closed �-invariant set. Since M ⊆ g−1M , we then have∑
g∈�

μ(g)ν(g−1M �M) =
∑
g∈�

μ(g)(ν(g−1M)− ν(M)) = 0

by the fact that ν is invariant. Therefore, ν(g−1M �M) = 0 for all g ∈ �.

A.3. Chacon–Ornstein ergodic theorem for L1-contractions. The Chacon–Ornstein
ratio ergodic theorem is an extremely powerful and general theorem to study the asymptotic
behaviour of the partial sums

Snf :=
n∑

k=0

T kf with f ∈ L1(W , ω).

THEOREM A.3. (Chacon–Ornstein ergodic theorem) Let T be a positive contraction of
L1(W , ω). Assume that the operator T is conservative, that is, there exists a strictly
positive function Φ ∈ L1(W , ω) such that limn→∞ SnΦ(w) = +∞ for ω-almost all w ∈
W . Then for any f ∈ L1(ω) the limit

Lf (w) := lim
n→∞

Snf (w)

SnΦ(w)
exists and is finite for ω-a.e. w. (A.1)

Furthermore, the function Lf is invariant (that is, measurable with respect to I, the
σ -algebra of all T -invariant sets) and∫

Lf (x)	(x) dω(x) =
∫

f (x) dω(x). (A.2)

For a complete proof see, for instance, [18, Theorem 2.6.1] (see also [11], where the
proof appeared for the first time). The ratio ergodic theorem enables us to give another
characterization of ergodic measures.

LEMMA A.4. Let F be a dense family in L1(ω). An invariant measure ω is ergodic if and
only if Lf is constant for all f ∈ F.

Proof. If ω is ergodic then the invariant σ -algebra is trivial and thus Lf is constant. In
consequence, by (A.2), it is equal to (ω(f )/ω(Φ)).

Suppose now that Lf = (ω(f )/ω(Φ)) is ω-almost everywhere constant for any f ∈
F. Let A be an invariant set. Since T (1Af ) = 1ATf (see, for instance, [18, Proposition
2.5.6]), it follows that L(1Af ) = 1ALf ω-almost everywhere and

ω(1Af ) = ω(Φ)L(1Af )(x) = ω(Φ)1A(x)Lf (x) = 1A(x)ω(f ).

Since f ∈ F is arbitrary and F is a dense family in L1(ω), the set A must be trivial, and
we are done.

A direct consequence of the previous lemma and of Lemma A.1, in the Markov–Feller
operator case, is the following corollary that summarizes some of the fundamental results
needed in our paper.
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COROLLARY A.5. Let ν be an ergodic invariant Radon measure for the Markov–Feller
operator P . Suppose that the Markov chain is recurrent, that is, there exists a
compact set K such that 1K(xn)+ · · · + 1K(x0)→+∞ Pν-almost everywhere.
Then for any non-negative function φ ∈ L1(X, ν) we have ν(φ) > 0 if and only if
φ(xn)+ · · · + φ(x0)→+∞ Pν-almost everywhere, and in this case for all f ∈
L1(X, ν):,

lim
n→∞

f (xn)+ · · · + f (x0)

φ(xn)+ · · · + φ(x0)
= ν(f )

ν(φ)
Pν-almost everywhere

Proof. Since Pν is τ -ergodic by Lemma A.1, applying Lemma A.4 to f (x) := f (x0) and
	(x) := 	(x0) with 	 > 1K , we obtain

lim
n→∞

f (xn)+ · · · + f (x0)

	(xn)+ · · · +	(x0)
= lim

n→∞
f (τnx)+ · · · + f (x)

	(τnx)+ · · · +	(x)

= Pν(f )

Pν(	)
= ν(f )

ν(Φ)
Pν-almost everywhere

Take a non-negative function φ ∈ L1(X, ν) such that ν(φ) > 0. Then

Snφ(x) ∼ ν(φ)

ν(	)
Sn	(x)→∞.

Conversely, if φ(xn)+ · · · + φ(x0) tends to∞, ν-almost everywhere, then, since the limit
of Sn	/Snφ is finite (see, for instance, [16, Ch. III, Theorem D]) and equal to ν(	)/ν(φ),
by the previous step we obtain that ν(φ) > 0.

A.4. Ergodic decomposition of invariant measure. This part of the paper is devoted
to a complete proof of an ergodic decomposition for Markov–Feller processes on locally
compact metric spaces. From this decomposition formula (2) will follow.

THEOREM A.6. Let (X, B(X), ν, P) be a Markov–Feller process. Assume that there exists
a function Φ ∈ C(X) ∩ L1(ν), Φ > 0, such that

∑∞
n=1 P nΦ(x) = +∞ for all x ∈ X.

Then there exists a measurable set X0 ⊂ X with ν(X \X0) = 0 such that:
(1) for every x ∈ X0 there exists a Radon measure νx such that

νx(f ) = lim
n→∞

Snf (x)

SnΦ(x)
for all f ∈ Cc(X); (A.3)

(2) for every non-negative f ∈ L1(ν),

νx(f ) = lim
n→∞

Snf (x)

SnΦ(x)
for ν-a.e. x ∈ X, (A.4)

thus the function x �→ νx(f ) is measurable and

ν(f ) =
∫

X

νx(f )Φ(x)ν(dx); (A.5)

(3) νx is invariant and ergodic for any x ∈ X0.
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Although the above result has been used by several authors and is part of the folklore of
the field, we are not aware of any explicit reference in the literature. In our understanding,
in the specific case of Radon measures invariant under the action of a countable group, the
ergodic decomposition could be deduced (with some work) from the paper of Greschonig
and Schmidt [21, Theorem 1.4]. However, since their approach does not seem to apply to
more general Markov–Feller processes, we present here an independent proof. This may
be of interest in view of the future development of stochastic dynamical systems induced
by transformations gi that are not invertible or not countably generated.

We would also like to mention that in the ergodic decomposition obtained in the
previous theorem, the set of ergodic measures νx depends on the measure ν. In this sense
our result is weaker than that proved in [21], where the authors obtain the existence of the
set of quasi-invariant ergodic measures that depends only on the group action.

Proof. First observe that since X is a locally compact metric space, there exist a countable
increasing family of compact sets (Ki)i∈N such that Ki ↗ X and a countable family of
continuous functions F ⊂ CC(X) dense in the space Cc(X) (with the supremum norm)
and such that if the support of f is contained in Ki , then for every ε > 0 there exists
h ∈ F such that

‖f − h‖∞ < ε and supp h ⊂ Ki+1. (A.6)

Thus, for every f ∈ Cc(X) and δ > 0, there exists h ∈ F such that

|f (x)− h(x)| < δ 	(x) for all x ∈ X.

Indeed, since Ci+1 = infx∈Ki+1 	(x) > 0, it suffices to take h ∈ F such that (A.6) holds
for ε = δ/Ci+1.

We will split the proof into four steps.

Step I. We define measures νx for ν-almost all x ∈ X and prove (1). Let X1 be the set of
all x ∈ X such that

Lh(x) := lim
n→∞

Snh(x)

SnΦ(x)
exists for all h ∈ F.

Since F ⊂ L1(ν) is countable, by the Chacon–Ornstein theorem, ν(X \X1) = 0.
We shall prove that if x ∈ X1, then the above limit exists for an arbitrary f ∈ Cc(X).

For this purpose we check that the sequence ((Snf (x)/SnΦ(x))n∈N) for f ∈ Cc(X) and
x ∈ X1 satisfies the Cauchy condition. Fix f ∈ Cc(X) and ε > 0. Let h ∈ F be such that
|f − h| < (ε/3)Φ. Then we have∣∣∣∣ Snf (x)

SnΦ(x)
− Smf (x)

SmΦ(x)

∣∣∣∣ ≤ Sn|h− f |(x)

SnΦ(x)
+ Sm|h− f |(x)

SmΦ(x)
+

∣∣∣∣ Snh(x)

SnΦ(x)
− Smh(x)

SmΦ(x)

∣∣∣∣
≤ ε

3
+ ε

3
+ ε

3
= ε,

for all m, n ∈ N sufficiently large. Since ε > 0 was arbitrary, the Cauchy condition is
verified.
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Define now, for any x ∈ X1, the functional on Cc(X) by the formula

f �→ Lf (x) = lim
n→∞

Snf (x)

SnΦ(x)
for f ∈ Cc(X).

Since this is a positive linear functional, it is represented by some regular measure νx ,
that is, Lf (x) = νx(f ) for f ∈ Cc(X), by the Riesz–Markov–Kakutani representation
theorem. Obviously, νx is a Radon measure. This proves (A.3) for all x ∈ X0 ⊆ X1 of
full measure.

Step II. We shall check that for any f ∈ L1(ν) we have

νx(f ) = Lf (x) for ν-almost all x ∈ X (A.7)

and prove (2). By (A.3), we already know that the last equality is true for all f ∈ Cc(X).
We will prove that by a continuity argument it can be extended to all functions f ∈ L1(ν).
However, observe that if the function is not continuous, the set of x where (A.7) holds may
depend on f .

Let gn, n ∈ N, be a non-increasing family of non-negative measurable functions such
that gn ↘ 0 in L1(ν). Then Lgn(x)↘ 0 for ν-a.e x ∈ X. In fact, since the operator L is
positive and Lgn is a non-increasing sequence of measurable functions, the limit g(x) :=
limn→∞ Lgn(x) exists for ν-a.e. x and is non-negative. Furthermore,∫

X

g(x)	(x)ν(dx) =
∫

X

lim
n→∞ Lgn(x)Φ(x)ν(dx)

≤ lim inf
n→∞

∫
X

Lgn(x)Φ(x)ν(dx) by Fatou’s lemma

= lim inf
n→∞

∫
X

gn(x)ν(dx) by the Chacon–Orstein theorem

= 0.

Thus 0 = g(x) := limn→∞ Lgn(x) for ν-a.e x.
Let consider the class of functions

H := {f bounded mesurable function on X : νx(f Φ) = L(f Φ)(x) ν-a.s.}.
Consider the following assertions.
• If fn ∈ H is a family of non-negative and increasing bounded functions converging to

f , then f ∈ H. In fact, since fnΦ ↗ f Φ pointwise and in L1(ν),

νx(f Φ) = lim
n→∞ νx(fnΦ) by the monotone convergence theorem

= lim
n→∞ L(fnΦ)(x) since fn ∈ H

= lim
n→∞[L(f Φ)(x)− L((f − fn)Φ)(x)] by linearity of L

v = L(f Φ)(x)− lim
n→∞ L((f − fn)Φ)(x) = L(f Φ)(x)
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since gn = (f − fn)Φ ↘ 0 pointwise and in L1(ν), by the dominated convergence
theorem.

• If U is an open subset of X, then 1U ∈ H. In fact, there exists a non-decreasing
sequence of non-negative functions fn ∈ Cc(X) such that fn ↗ 1U pointwise. Since
fnΦ ∈ Cc(x), step I yields fn ∈ H, and consequently 1U ∈ H.

• If f , g ∈ H, then f + g and cf are in H for any real number c. This is a direct
consequence of linearity of νx and L.

Applying the monotone class theorem for functions (see, for instance, [15, Theorem
5.2.2]), H contains all measurable bounded functions.

Now take a non-negative f ∈ L1(ν) and an increasing sequence of compact sets Kn ↗
X. Observe that

fn(x) := f (x) ∧ n

Φ(x)
for x ∈ Kn,

and fn(x) = 0 otherwise. It is easy to check that fn are bounded and fnΦ ↗ f , both
pointwise and in L1(ν), thus, following the same reasoning as above, we obtain

νx(f ) = lim
n→∞ νx(fnΦ) by the monotone convergence theorem

= lim
n→∞ L(fnΦ)(x) since fn ∈ H

= lim
n→∞ L(f )(x)− L(f − fnΦ)(x) by linearity of L

= Lf (x),

since gn = f − fnΦ ↘ 0 pointwise and in L1(ν). Invoking (A.2), this completes the proof
of (2).

Step III. We will prove that there exists a set of full measure X2 such that νx is
P -invariant for all x ∈ X2. Let X2 be the set of all x ∈ X1 such that:
(1) νx(f ) = Lf (x) for all f ∈ F;
(2) νx(Pf ) = L(Pf )(x) for all f ∈ F;
(3) νx(Φ) = LΦ(x) and νx(PΦ) = L(PΦ)(x).
Since F is countable and the desired equalities hold ν-almost everywhere, ν(X \X2) = 0.

Observe now that for every f ∈ Cc(X) and x ∈ X2,

Lf (x) = lim
n→∞

SnPf (x)

SnΦ(x)
= lim

n→∞
Snf (x)+ P n+1f (x)− f (x)

SnΦ(x)

= lim
n→∞

Snf (x)

SnΦ(x)
= L(Pf )(x),

since f and Pf are bounded and SnΦ →∞. Thus, if x ∈ X2 and f ∈ F, we have

νx(f ) = Lf (x) = LPf (x) = νx(Pf ).
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Fix f ∈ Cc(X) and ε > 0. Let h ∈ F be such that |f − h| ≤ εΦ. Thus P |f − h| ≤
εPΦ. Then it follows that

|νx(Pf )− νx(f )| ≤ |νx(Pf )− νx(Ph)| + |νx(Ph)− νx(h)| + |νx(f )− νx(h)|
= ενx(PΦ)+ 0+ ενx(Φ)

= ε(L(PΦ)(x)+ LΦ(x))

= 2ε since L(PΦ)(x) = LΦ(x) = 1.

Letting ε→ 0, we obtain that νx(Pf ) = νx(f ) for all f ∈ Cc(X). Thus νx is P -invariant.
Step IV. We will prove that there exists a set of full measure X3 ⊂ X2 such that νx

is ergodic for all x ∈ X3. Take f ∈ Cc(X) and observe that Lf is bounded (since f ≤
C ·Φ for some constant C, thus Lf ≤ CLΦ = C) and, by the Chacon–Ornstein theorem,
invariant. By [18, Proposition 2.5.6], P(gLf ) = (Pg) (Lf ) for any g ∈ L1(ν) and thus
L(gLf ) = (Lg) (Lf ). In particular, for ν-a.e. x,

νx(f Lg)
(A.4)= L(f Lg)(x) = Lf (x)Lg(x)

(A.4)= νx(f )νx(g).

Let X3 ⊆ X2 be the set of all x such the latter equality holds for all f , g ∈ F. Since F is
countable. ν(X \X3) = 0. Take x ∈ X3 and fix g ∈ F. Then

νx(f Lg) = νx(f )νx(g) for all f ∈ F.

Since F is dense in L1(ν), it follows that Lg(y) = νx(g) for νx-almost all y ∈ X. Thus
νx is an invariant measure such that Lg is νx-almost everywhere constant and νx is then
ergodic, by Lemma A.4 applied to ν = νx . The proof is complete.
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