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THE MINIMUM MODULUS OF GAP POWER SERIES

by P. C. FENTON
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1. Introduction

Let

(1.1)

be an entire function, where (An) is a strictly increasing sequence of non-negative
integers. The maximum modulus, M(r), the minimum modulus, m(r), and the maxi-
mum term, fi(r), of / are defined by

M(r) = max \f(z)\, m(r) = min |/(z)|, ti{r) = max \an\r
K.

|z| = r |z| = r n»0

The largest number An for which /i(r) = |an|r
A" is called the central index, N(r), of /.

We recall briefly the notions of logarithmic measure and logarithmic density of
linear sets. Given a set E of non-negative numbers, the logarithmic measure of E is
defined by

log meas E = f $-.
Jfin(i,«.) t

The upper logarithmic density, log dens E, and the lower logarithmic density, log dens
E, of E are defined by

log dens = lim (log r)~l I —. (1.2)
TZS JEnu.o t

Should the two limits of (1.2) prove to be equal we speak simply of the logarithmic
density of E.

In (1), P. Erdos and A. J. Macintyre established conditions under which

l (1.3)r^» M(r) r-

for the entire function (1.1). Their results ((1) Theorems 1 and 4) may be gathered as
follows:

(a)

00 1

(b) '/ 2 1 J~ = o(I°g An) and f is of finite order; or
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n i

(c) // 2 T r- = O(log An) and f is of zero order;

then (1.3)
It is the purpose of this note to prove a sharpened version of this result both by

establishing an estimate of the size of the set on which, as /•-»«,

/*(/•) = (l + o(l))M(r), m(r) = (l + o(l))Af(r) (1.4)

hold together and also by relaxing slightly the conditions (b) and (c).

2. The result

We will prove

(i) / / 2T=o (1/Ai+i — Afc) <: oo, then (1.4) hold together as r tends to infinity outside a
set of finite logarithmic measure.

(ii) / / H m ^ O o g A,,)"' 2£=o (l/At+,-A/t) = 0 and f is of finite order; or
(iii) //limn-^(log An)"'22=o(l/At+1 - At)<oo and f is of zero order; then (1.4) hold

together as r tends to infinity outside a set of zero lower logarithmic density.
Erdos and Macintyre show by counterexamples that if any one of the hypotheses

concerning the indices An in (i), (ii) and (iii) is false then there is an entire function of
the form (1.1) of the appropriate order (that is, of finite order in case (ii) and of zero
order in case (iii)) for which both

In this sense, then, the result is best possible.

3. Preliminaries and a lemma

Let

en = T—j—r-, n = 0 , 1 , 2 , . . . . (3.1)

Given any non-negative integer n, let no= no(n) be such that

A^,«2An<A^+1, (3.2)

and let us define a number 8n by

Sn = max (j - i + 1)~3'2 £ €„. (3.3)

This 8n is a slight variation of an ingenious function introduced in (1), the difference
being that in (1) there is no upper restriction on /. We have, for every non-negative n,

S « t « C ^ ek, (3.4)
i=o t=o

where C is an absolute constant. For, for some ik, jk, with ik « k s£ jk =s Jt0, k =
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0 ,1 ,2 , . . . ,

k=0 v=it

>-=0 *=0

"0

where C = 1 + 2 2"=2 k'm.
With these definitions we have

Lemma. For any positive r let p = p(N(r)) be such that N(r) = Ap. In each of the
cases (i), (ii) and (iii) there is a sequence (cn), with cn -»°° as n -* <», for which

N(re±c"s") = N(r) (3.5)

for r outside a set E, where E has finite logarithmic measure in case (i) and zero lower
logarithmic density in cases (ii) and (iii).

As the proof in all three cases is basically one we will prove only case (iii), which
involves slightly more complications than the others.

Since / is of zero order,

°&JVW () asr-oo. (3.6)
log r

Moreover

HmdogAJ-'JT Sn<oo. (3.7)

For we know that there is a sequence (wn) of positive integers such that

Let qn be the largest positive integer such that A,n-i =£ {\mn. Then, from the definition of
«o given by (3.2), we have (qn - l)0=s mn, and so from (3.4)

I n " 1 ">n
^? j \ <r /~" ^ *£j ®k ^ ^- ^j ^k'
1=0 k=0

Also it follows from the definition of Sk that 0=£ Sk < 1, fc = 0, 1, 2 , . . . , so

https://doi.org/10.1017/S001309150001587X Published online by Cambridge University Press

https://doi.org/10.1017/S001309150001587X


52 P C . FENTON

But A,,, > 2^ma, so from this together with (3.8) we obtain

dog A,,)-1 2 Sk «(log Am, - log 2)"{l + C 2 «*}

= O(l) as n -»oo.

Thus (3.7) holds and there is an increasing sequence (qn) of positive integers and a
constant K such that

fl/t

2 5* =£ K log A,, n = 1,2,3,

Let AMn be the smallest value of the central index such that A,, «s AM/i and let Rn be
such that

N(Rn) = \Ma and N(r)<AM(i forr</?n .

With 17(0 as given by (3.6), we can find a sequence (ck) with 0*-*°° as /c-»°° for
which, at least for a subsequence,

log A,., n = 1,2,3, . . . , (3.9)

and since log A,n =s log AMn = log N(Rn) = rj(i?n) log Rn, we obtain from (3.9)

2 c A « X{7,(l?n)}"2 log /?„. (3.10)

We seek to determine the size of the subset of [1, Rn] at the points of which

") = N(r), (3.11)

where p is such that N(r) = Ap, p = p(N).
Let r, be the first number no less than 1 for which (3.11) is false and let r\ = rxe

Pxt'\
where px = p(N(r,)). Let r2 be the smallest number no less than r\ at which (3.11) is
false and let rj = r2/

P2S"2, where p2
 = p(N(r2)). We continue in this way until reaching

rs where s is such that rs < Rn and rJ+1 > /?„.
We note that N(n) > N(r;_,) > N(n-,), so the sequence (p,-)f=i is strictly increasing.

Also, since rs < /?„, N(rs) < AM, and so, from the definition of Mn, p(N(rs)) = ps < qn.
Thus (3.11) holds in [l,/?n] outside a subset of logarithmic measure at most

2 cpfin « 2 ck8k « /C{7,(i?J}1/2 log Rn. (3.12)
1=1 t=o

In a precisely similar way, but defining the sequences (r,), (/••) to be decreasing from
Rn, we see that

-s')=N(r), (3.13)

where p is such that N(r) = Ap, also holds in [l,/?n] outside a subset of logarithmic
measure at most K{r)(Rn)}

m log Rn. On combining this with (3.11) and (3.12) we see
that (3.11) and (3.13) hold together in [1, /?„] outside a subset of logarithmic measure
at 2K{ri(Rn)}

m log Rn. Since /?„-»<» as /i-»oo and TJ(O~*0 as f-»<», the case (iii) of the
Lemma is proved.
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4. Proof of the result

With p such that N(r) = Ap, let us consider

S(r) = § k|rA" + 2 |an|r\
n=0 n=p+l

It is known (see for example Lemma 2 of (2)) that, for r outside a set F of finite
logarithmic measure and for n0 as given by (3.2),

2 |an|r
A" = o(fi(r)) as

Hence, as r tends to infinity outside F,

5(r) = 5lankA"+ 2 kkA"
n=0 n=p+l

Let r be a number outside FUE, where E is the exceptional set of the Lemma. For
p + 1 « n =s p0, we obtain from one half of the Lemma,

\an\{rec's"Y^\ap\{rec^}^
so that

Also, for p + 1« n « p0 we obtain, with two applications of the arithmetic-geometric
means inequality (following (1)),

V+\ Ay

U(n-p)

Hence, for p + 1 « n « p0,
| a n | rA»«M(r)€^( ' - '""2 .

For 0 «£ n « p - 1 we employ the remaining half of the Lemma to obtain, quite
analogously,

^ ' " 2

Thus, as r tends to infinity outside F UE,

S(r)«2/i(r) 2 e'c'"m

= o(/i(r)).

The result follows.
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