
Bull. Aust. Math. Soc. 97 (2018), 43–46
doi:10.1017/S0004972717000715

THE 3k − 4 THEOREM FOR ORDERED GROUPS

PREM PRAKASH PANDEY

(Received 9 March 2017; accepted 15 June 2017; first published online 28 September 2017)

Abstract

Recently, Freiman et al. [‘Small doubling in ordered groups’, J. Aust. Math. Soc. 96(3) (2014), 316–325]
proved two ‘structure theorems’ for ordered groups. We give elementary proofs of these two theorems.
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1. Introduction
The 3k − 4 theorem is an inverse theorem in ordered groups recently proved by
Freiman et al. in [1]. For any group G (written multiplicatively) and a subset S of
G, we define S 2 := {ab : a, b ∈ S }. The main theorem of [1] is the following result.

Theorem 1.1 [1, Theorem 1.3]. Let G be an ordered group and S a finite subset of G.
If |S 2| ≤ 3|S | − 3, then the subgroup generated by S is an abelian subgroup of G.

As a corollary to Theorem 1.1, Freiman et al. deduced a 3k − 4 theorem for ordered
groups.

Theorem 1.2 [1, Corollary 1.4]. Let G be an ordered group and S a finite subset of G
with |S | = k ≥ 3. If |S 2| ≤ 3|S | − 4, then there exist two commuting elements x, y in G
such that S ⊂ {yxi : 0 ≤ i ≤ N} for N = |S 2| − |S |.

The study of the structure of such sets with small doubling is an important area of
combinatorial group theory and there is a vast literature devoted to this theme (see,
for example, [2–5]). Theorems 1.1 and 1.2 are important results. We give elementary
proofs of Theorems 1.1 and 1.2.

2. Proofs
We shall always assume that G is an ordered group and S is a finite subset of G with

k elements. We shall write S = {x1, . . . , xk} and assume that x1 < · · · < xk. As in the
case of integers, the following inequality holds:

|S 2| ≥ 2|S | − 1. (2.1)
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In equation (2.1), equality holds only if S is a geometric progression, that is, S has
the form {yxi : 0 ≤ i ≤ k − 1} with two commuting elements x, y ∈ G. Analogous to the
case of integers (see [6, Theorem 1.2]), we prove the following lemma.

Lemma 2.1. If S is not a geometric progression, then |S 2| ≥ 2|S |.

Proof. Let S = {x1, . . . , xk} with x1 < · · · < xk. Clearly,

x1x1 < x1x2 < · · · < x1xk < x2xk < · · · < xk xk

are 2|S | − 1 distinct elements in S 2. If |S 2| < 2|S |, then

{x1x1, x1x2, . . . , x1xk, x2xk, . . . , xk xk} = S 2.

Now consider the elements x2x1 < x2x2 < · · · < x2xk. All these elements are in S 2 and
x1x1 < x2x1, . . . , x2xk−1 < x2xk. Thus,

x2x1 = x1x2, x2x2 = x1x3, x2x3 = x1x4, . . . , x2xk−1 = x1xk.

From these relations it follows that x1 and x2 commute and, for each i > 2, xi is
contained in the subgroup generated by x1, . . . , xi−1. Consequently, each xi commutes
with each x j for i, j = 1, . . . , k. Put y = x1 and x = x2x−1

1 . Then x and y commute
and S = {y, xy, x2y, . . . , xk−1y} is a geometric progression. Consequently, if S is not a
geometric progression, we must have |S 2| ≥ 2|S |. �

The proofs of Theorems 1.1 and 1.2 run along the same lines. We begin with the
proof of Theorem 1.2.

Proof of Theorem 1.2. We shall use induction on k. For k = 3, we have |S 2| ≤ 5. We
have five distinct elements x2

1 < x1x2 < x2
2 < x2x3 < x2

3 in S 2. Since x1x3 ∈ S 2, then
x1x3 must equal one of these five elements. By comparing elements in pairs, we find
x1x3 = x2

2. Similarly, x1x2 = x2x1. Let y = x1 and x = x2x−1
1 . Then x and y commute

and S = {y, yx, yx2}.

Now we assume that k ≥ 4 and that the theorem is true for any subset T of G with
3 ≤ |T | ≤ k − 1. Take T = {x1, . . . , xk−1}.

Case 1. |T 2| ≤ 3|T | − 4.
By the induction hypothesis, there are commuting elements x, y in G such that

T ⊂ {yx j : j = 0, . . . ,M} and M = |T 2| − |T |. If xkT ∩ T 2 = ∅, then, taking account
of x2

k , we see that |S 2| ≥ |T 2| + (|T | + 1). Since |T 2| ≥ 2|T | − 1, we immediately obtain
|S 2| ≥ 3|S | − 3, which contradicts the hypothesis. Thus, xkT ∩ T 2 , ∅. Consequently,
there are yxi, yxu, yxv ∈ T such that xkyxi = yxuyxv. This gives xk = yx(u+v−i) and
S ⊂ {yx j : j = 0, . . . ,M′} with M′ = max{M, u + v − i}. The map yx j 7→ j gives a 2-
isomorphism of S with a subset of Z. From Freiman’s 3k − 4 theorem for the integers
(see [6, Theorem 1.16]), it follows that M′ ≤ N and the theorem is proved.
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Case 2. |T 2| ≥ 3|T | − 3 = 3|S | − 6.
Using the order relation of G, we see that the elements x2

k and xk xk−1 of S 2 are
not in T 2. Consider the element xk−1xk of S 2. If xk−1xk , xk xk−1, then |S 2| ≥ |T 2| + 3,
which contradicts the hypothesis. So, we obtain xk−1xk = xk xk−1. Next, we consider
the element xk−2xk of S 2. If xk−2xk , x2

k−1, then again |S 2| ≥ |T 2| + 3, leading to a
contradiction. Thus, xk−2xk = x2

k−1. Similarly, xk xk−2 = x2
k−1 and so

xk−1xk = xk xk−1, xk−2xk = xk xk−2 = x2
k−1.

Put y = xk and x = xk−1x−1
k . Then x and y commute and xk = y, xk−1 = yx, xk−2 = yx2.

Considering the elements xk−3xk, xk−4xk, . . . , x1xk successively, we see that each of the
xi is of the form yxti . Clearly, S is 2-isomorphic to the subset {ti : 1 ≤ i ≤ k} of Z and
again the theorem follows from Freiman’s 3k − 4 theorem for the integers. �

Proof of Theorem 1.1. We shall use induction on k. For k = 2, the theorem holds
trivially. Now let k ≥ 3 and assume that the theorem is true for any set T with
|T | ≤ k − 1. Put T = {x1, . . . , xk−1}.

Case 1. |T 2| ≤ 3|T | − 3.
By the induction hypothesis, T generates a commutative subgroup. If xkT ∩ T 2 , ∅

or T xk ∩ T 2 , ∅, then xk lies in the subgroup generated by T . Consequently, S
generates a commutative subgroup. So, we can assume that xkT ∩ T 2 = ∅ and
T xk ∩ T 2 = ∅.

Using the order relation in G, we see that x2
k < T 2 ∪ xkT and so

|S 2| ≥ |T 2| + |T | + 1. (2.2)

If T is not a geometric progression, then, using Lemma 2.1 and (2.2), we see that
|S 2| ≥ 3|S | − 2, which contradicts the hypothesis. Thus, T must be a geometric
progression.

Next, observe that if xkT , T xk, then we have an element in T xk which is not in
T 2 ∪ xkT ∪ {x2

k}. This leads to

|S 2| ≥ |T 2| + |T | + 1 + 1

and so |S 2| ≥ 3|S | − 2, which contradicts the hypothesis. Therefore, we must have
xkT = T xk. Using the order relation, we see that xk commutes with all the elements of
T and consequently S generates an abelian group.

Case 2. |T 2| > 3|T | − 3.
As in the proof of Theorem 1.2 (following the arguments used in Case 2), we see

that either |S 2| ≥ |T 2| + 3 or S = {yxti : 1 ≤ i ≤ k} with commuting elements x and y.
The first alternative leads to a contradiction. Consequently, S = {yxti : 1 ≤ i ≤ k} with
commuting elements x and y and the theorem is proved. �

Remark 2.2. From the proof of Theorem 1.2, it is clear that the subgroup generated by
S (with |S | > 2) is, in fact, generated by |S | − 1 or fewer elements.
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