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FINITE REGULAR COVERS OF SURFACES 

BY 

LARRY W. CUSICK 

ABSTRACT. Let Tk = TX#...#T\ T] = Sl x Sl, Uk = MP2#... 
# UP2, and G is a finite group. We prove (1) Every free action of G on 
Ut + 1 lifts to a free action of G on the orientable two fold cover 
T*+ ' —> Ue + 2 and (2) The minimum k such that Z*m can act freely on Tk is 
m\{t - 2)/2) + 1 if m = 2 or € is even andm'((€ - l)/2) + 1 otherwise. 

§0 Introduction. In this paper we study finite regular covers of surfaces, i.e. finite 
free group actions on surfaces. We shall restrict our attention to the closed compact 
surfaces Tk = P # .. . # P (k times) where P = S] x S] and Uk = UP2# . . . # UP2 

(k times). The two main results are proposition (2.1) which states that any free action 
of G on Ue + 2 lifts to a free G action on the orientable two-fold cover T€ +1 -^ Ue + 2 and 
proposition (2.5) which gives the minimum k such that an elementary abelian group G 
= Zm[ x . . . x Zm(: acts freely on Tk. Both results are consequences of proposition (1.7) 
that gives a sufficient condition for determining when the kernel of an epimorphism 
d:Tr,£/€ + 2 —> G is isomorphic to 7Tir|G|€+1. We conjecture that this condition is also 
necessary. 

§1 Finite Regular Covers. Suppose G is a finite group, of order n, acting freely on 
Tm + ] with orbit space B. The natural projection map p : Tm + ] —» B is a regular covering 
space with resulting exact sequence 

1 -> T r , r w + 1 - ^ TT,5 -^ G-^ 1 

and G is naturally isomorphic to the group of covering transformations. Furthermore, 
B is a closed compact surface whose Euler characteristic, x(#)> satisfies the formula 
nx(B) = -2m. Consequently B = Tm/n+] or u2{m/n) + 2. 

Conversely, suppose we are given an epimorphism d: iT\B —» G where 5 = Te+1 or 
f/€ + 2 and \G\ = n, then the inclusion ker d —» TTJ/MS induced by a finite regular cover 
p:X^> B, with G isomorphic to the group of covering transformations and so G acts 
freely on X. The Euler characteristic of X is given by 

{-Un ifB = P+l 

X(X) = 
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To go any further we must treat the two cases of B separately. 
If B = Te+l then B is orientable. It follows that X is a closed compact orientable 

surface with Euler characteristic equal to —2(n, and so X = j e n + ] . In this case the 
action of G on T£n+1 preserves the orientation. 

If B = U€ + 2, then the situation is a little more interesting. For n odd we have X = 
jjin + 2 s m c e n o element of G, of odd order, can reverse the orientation of Ttn f '. In the 
case that n is even there are two possibilities for X, namely X = jjen + 2

 o r ^"/ 2 + 1 . it 
is this last case that we shall explore in a little more detail. Specifically we will address 
the following problem: Suppose n is even and d : TTJ Ue + 2 —» G is an epimorphism. How 
might we determine ker d? (It must be ir,t/€#, + 2 or iïJin/2 + '). 

We begin by recalling the fundamental groups of Tk and Uk[\]: 

(1.1) ir,r* = <a,,. . . ,a*, p ! , . . . ,P* 

IT,I/* = (a , , . . . ,ak 

n K, pj -1) 

n «,2 = i). 
7 = 1 

If G = Z2, the cyclic group of order 2 with non-trivial element T, and d : TTI £/*+ 2 —» 
Z2 is an epimorphism, then we may write d(a7) = T^' where each a7 is 0 or 1 and at 
least one #; is 1. 

(1.2) PROPOSITION. In the above example ker d = 7Tir^+ ' /f, and on/v i/ai = . . . = 

«€ + 2 = 1-

PROOF. We suppose ker d = i r ^ where X = 7€ + ' or U2( + 2. The two-fold coverp :X 
-* U€ + 2 is classified by an element G E Hl (Ue + 2; Z2). If we let af, . . . , a* + 2 

represent dual classes to the Hurewicz images of a , , . . . , a€ + 2, in H](Ue + 2; Z2) then 

it is not hard to show that 6 
to this cover ([4] or [3]): 

Sy = ) djQLj. There is a long exact sequence associated 

//*(f/€ + 2; Z 2 ) - -*H*{W + 2\ Z2) 

(1.3) 
H*(X; Z2) 

where tr denotes the transfer map. Due to the naturality of tr with respect to the Steenrod 
squaring operations we obtain a commutative diagram: 

tr 
H\X\ Z2) >Hl(U' + 2; Z2) 

Sq1 Sq1 

H2(X; Z2) > H2(Ue + 2; Z2). 
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Now, it is easy to show that Sq1 is zero if X = Te+ \ whereas Sq1 is non-zero if X = 
U2€ + 2. In fact the product structure of H*{Uk\ Z2) is given by a fa* = 0 when / =£ j 
and (af)2 = . . . = (a*)2 ± 0. 

We proceed to prove the proposition. Suppose some ay = 0. By reindexing we may 
assume ae + 2 = 0. It follows that 

e+ l 

6 = 2 <zy-af and af+ 2-6 = 0. 

Consequently, by exactness of (1.3), af+2 = tr(x) for some x E H\X\ Z2). We 
compute 

trSq!(jc) = Sq'tr(-x) 

= SqW+2) 
± 0. 

SoSqV) * 0andX = U2^1. 
On the otherhand every non-orientable surface admits an orientable two-fold cover 

[1], consequently X = T£+i exactly when ax = . . . = a€ + 2
 = 1. D 

(1.4) COROLLARY. 7%e two-fold cover q:Tt+] —> £/€+1 w unique, up to 
equivalence. • 

Let €:ir,f/€ + 2 -* Z2 be the map e(a;) = T for7 = 1, . . . , € + 2. Note that ker e 
consists of all words in TT{U

e + 2 of even length. 

(1.5) DEFINITION. Suppose d:rnlU
e + 2-^>Gis a finite quotient, we define Nd = d ker e, 

a subgroup of G. 

(1.6) LEMMA. [G:Nd] = 2/[d-l(Nd)±cr e]. 

PROOF. [G:Nd] = \G\/\Nd\ 

= [TtiU'^iktT d]/[d-\NB):ktr d] 

= [irAU€ + 2:kGT e]/[d-\NB)±QT e] 

= 2/[a-,(A^a):kere]. D 

REMARK. There are only two possible values for [G:Nd], namely 1 or 2. 
The next proposition is the main result of this section. 

(1.7) PROPOSITION. If'd:TTiUe + 2 —> G is a finite quotient, \G\ = In and [G:Nd] = 
Ithenkerd = i r , r € + 1 . 

PROOF. Since [G:Nd] = 2 we must have d~](Nd) = ker e = u{T
t+l by the above 

lemma. Now, d~l(Nd) contains ker d as a normal subgroup of finite index. If ker d = 
TTIC/2/,€ + 2 this would imply that u2ne + 2 covers Te+\ an impossibility. The only other 
possibility for ker ^ is TT17""€+ !. • 

(1.8) REMARK. We conjecture that [G:Nd] — 2 is necessary and sufficient for ker d 
= Tï\Tn€ + l. This has been proven for € = 0[2]. 
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§2 Applications. Our first application is to lifting finite free actions on Ue + 2 to the 
orientable two-fold cover Te + ! 

(2.1) PROPOSITION. If G is finite group acting freely onU£ + 2 then there exists a lifting 
to a free action of G on T€+] rendering the natural projection map q:Te+l —» Ue + 2 

G-equivariant. 

PROOF. If \G\ = n, then n divides € and the orbit space U£ + 2/G is homeomorphic 
to ue/n + 2. Consider the pull-back diagram 

where the bottom map is the unique two fold cover. Once we show X is connected we 
will be done. This is because* = {(u, t) G [ / n 2 x Te/n+l:p(u) = q(t)} which inherits 
the free G action from U€ + 2 and q(u, t) = u is clearly equivariant. If X were connected 
it must be homeomorphic to 7€ + x since it covers Te/n +1. 

To show X is connected it is sufficient to show that the composition 

^Tt/n+iJÊ+^U""*2 ^G 

is an epimorphism, where d is the epimorphism associated to the free action of G on 
U€ + 2. 

We compute 

image (d o qn) = d image qjj. 
= d ker 
= Nd. 

But [G:Nd] = 1, else ker d = ir]T
e/2+l by proposition (1.7). We may conclude Nd = 

G and d o q# is an epimorphism. D 

We begin our second application by first recalling a theorem due to R. D. Anderson. 

(2.2) PROPOSITION. [5] Every finite group acts freely on some Tk. • 

The above theorem is the inspiration for the following definition. 

(2.3) DEFINITION. If G is a finite group then genus (G) is the minimum k such that 
G acts freely on Tk. 

There are a few immediate properties. 

(2.4) PROPOSITION. 

(a) If K is a subgroup of G then genus (K) ^ genus (G). 
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(1 mod |G| if\G\ is odd 

1 mod \G\/2 if\G\ is even 

(c) Ifi is the minimum number of generators for G, |G|(€/2 — 1) + 1 ̂  genus (G) 
^ |G|(€ - 1) + 1. 

PROOF. 

(a) Obvious. 
(b) If G acts freely on Tk with orbit space B then 2 - 2k = x(B)-\G\. 
(c) We will first show that G can act freely on r'G'(€~1)+ \ providing the upperbound 

on genus (G). Pick € generators CTJ , . . . , o> of G. Define d: ttxT
€ —» G by 6(ay) = a7, 

a((3;) = 1. Obviously d(II[a7-, p,]) = 1. Thus ker a = ^ r 1 ^ " 1 ^ 1 giving our free 
action. To prove the lower bound assume G acts freely on Th with orbit space B. There 
are two possibilities forB, namely B = T(k~im + l or U2{k~ 1}/IGI + 2. In either case ir,£ 
is generated by 2(k — 1)/|G| + 2 elements. Since d:iïxB —» G is an epimorphism we 
must have € ^ 2(& - 1)/|G| + 2. A little bit of algebra then gives our lower bound 
for genus (G). • 

Let Hm denote the cyclic group of order m. 

(2.5) PROPOSITION. If G — ZOT, x . . . x Zme where € is minimal and m = m\m2.. .m^ 

f m (—-—I + 1 if some mt — 2ori is even. 

Genus (G) = \ 

Vm\ 

2 

I - 1 
1 + 1 otherwise. 

PROOF. Let g = genus (G) and write the generators of G as o - j , . . . , o>. First assume 
i is even. Define d : nx T

€/2 —» G by d(a,-) and cr,- and a(Py) = cr7 + €/2 fory = 1,. . . , i/2. 
This is clearly an epimorphism with ker d = 7Tl7

w(^-2)/2)+1
# xhis proves g ^ 

m({i - 2)/2) + 1. On the other hand proposition (2.4) (c) implies m((€ - 2)/2) + 
1 ^ g. Thus g = m((€ - 2)/2) + 1. 

Now suppose € is odd. In this case we may construct an epimorphism d:TT\Tie+l)/2 

-* G by d(aj) = Vjforj = 1, . . . , (€ + l)/2, a(P,) = a7 + (€+1)/2 forj = 1 , . . . , 
(€ - l)/2, d(0(*+i)/2) = 1. Then ker a = r««<-i>/2>+1 and consequently g ^ 
m((€ - l)/2) + 1. On the other hand we have the usual lower bound m((t — 2)/2 
+ 1 ̂  g. Assume m is odd. Then g = 1 mod m. The only integer g satisfying the above 
congruence and lying in the above range is g = m((€ — l)/2) + 1. Now assume m is 
even. The congruence becomes g = 1 mod m/2. There are two possibilities for g that 
lies in the state range, namely 
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{ m [——) + 1 or 

If G acted freely on T'm ~2)/2) + x then the orbit space B would have Euler characteristic 
X(B) = 2 — €. Since we are assuming € is odd, 2 — € is odd, and therefore B = Ui 

with an epimorphism d : TT, U* —» G. If all m,-^ 2 then this is not possible (because when 
we factor this map through the abelianization of TTI U( we obtain an epimorphism Zl ~] 

x Z 2 - ^ G which is a contradiction, no ra, = 2). We may conclude g = m((€ — l)/2) 
+ 1 if no ra, = 2. 

Now, for mi = 2 we shall produce a free action of G on rm{{'~2)/2+ '. Define an 
epimorphism dw^U* -» G by d(o,) = CT,-, 7 = 1,. . . ,€. We will show ker d = 
^ jm(t-2)i2\ 1 ^ empi0ying proposition (1.7). Nd = d ker e is the subgroup of G 
generated by {cr/o~/}iS:,</^ (recall ker e is the subgroup of ir]U

t consisting of words 
of even length). But for / > 1 we have a/CT,- = (aiCT,)(Œ|Cr/) and thus Nd is generated by 
{cr io^ , -^ . We conclude that [G:Na] = 2 and consequently ker d =* irxT

m{e~2)/2+]. 
This completes the proof of the proposition. • 
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