FINITE REGULAR COVERS OF SURFACES

BY
LARRY W. CUSICK

Abstract

Let $T^{k}=T^{1} \# \ldots \# T^{1}, T^{1}=S^{1} \times S^{1}, U^{k}=\mathbb{R} P^{2} \# \ldots$ $\# \mathbb{R} P^{2}$, and G is a finite group. We prove (1) Every free action of G on $U^{\ell+2}$ lifts to a free action of G on the orientable two fold cover $T^{\ell+1} \rightarrow U^{\ell+2}$ and (2) The minimum k such that Z_{m}^{ℓ} can act freely on T^{k} is $m^{\ell}((\ell-2) / 2)+1$ if $m=2$ or ℓ is even and $m^{\ell}((\ell-1) / 2)+1$ otherwise.

§0 Introduction. In this paper we study finite regular covers of surfaces, i.e. finite free group actions on surfaces. We shall restrict our attention to the closed compact surfaces $T^{k} \cong T^{1} \# \ldots \# T^{1}(k$ times $)$ where $T^{1} \cong S^{1} \times S^{1}$ and $U^{k} \cong \mathbb{R} P^{2} \# \ldots \# \mathbb{R} P^{2}$ (k times). The two main results are proposition (2.1) which states that any free action of G on $U^{\ell+2}$ lifts to a free G action on the orientable two-fold cover $T^{\ell+1} \rightarrow U^{\ell+2}$ and proposition (2.5) which gives the minimum k such that an elementary abelian group G $\cong Z_{m_{1}} \times \ldots \times Z_{m_{\ell}}$ acts freely on T^{k}. Both results are consequences of proposition (1.7) that gives a sufficient condition for determining when the kernel of an epimorphism $\partial: \pi_{1} U^{\ell+2} \rightarrow G$ is isomorphic to $\pi_{1} T^{|G| \ell+1}$. We conjecture that this condition is also necessary.
§1 Finite Regular Covers. Suppose G is a finite group, of order n, acting freely on T^{m+1} with orbit space B. The natural projection map $p: T^{m+1} \rightarrow B$ is a regular covering space with resulting exact sequence

$$
1 \rightarrow \pi_{1} T^{m+1} \xrightarrow{p_{\#}} \pi_{1} B \xrightarrow{\partial} G \rightarrow 1
$$

and G is naturally isomorphic to the group of covering transformations. Furthermore, B is a closed compact surface whose Euler characteristic, $\chi(B)$, satisfies the formula $n \chi(B)=-2 m$. Consequently $B \cong T^{m / n+1}$ or $U^{2(m / n)+2}$.

Conversely, suppose we are given an epimorphism д: $\pi_{1} B \rightarrow G$ where $B \cong T^{\ell+1}$ or $U^{\ell+2}$ and $|G|=n$, then the inclusion ker $\partial \rightarrow \pi_{1} B$ is induced by a finite regular cover $p: X \rightarrow B$, with G isomorphic to the group of covering transformations and so G acts freely on X. The Euler characteristic of X is given by

$$
\chi(X)= \begin{cases}-2 \ell n & \text { if } B \cong T^{\ell+1} \\ -\ell n & \text { if } B \cong U^{\ell+2}\end{cases}
$$

[^0]To go any further we must treat the two cases of B separately.
If $B \cong T^{\ell+1}$ then B is orientable. It follows that X is a closed compact orientable surface with Euler characteristic equal to $-2 \ell n$, and so $X \cong T^{\ell n+1}$. In this case the action of G on $T^{\ell+1}$ preserves the orientation.
If $B \cong U^{\ell+2}$, then the situation is a little more interesting. For n odd we have $X \cong$ $U^{\ell n+2}$ since no element of G, of odd order, can reverse the orientation of $T^{\ell n+1}$. In the case that n is even there are two possibilities for X, namely $X \cong U^{\ell n+2}$ or $T^{\ell n / 2+1}$. It is this last case that we shall explore in a little more detail. Specifically we will address the following problem: Suppose n is even and $\partial: \pi_{1} U^{\ell+2} \rightarrow G$ is an epimorphism. How might we determine ker ∂ ? (It must be $\pi_{1} U^{\ell_{n}+2}$ or $\pi_{1} T^{\ell_{n} / 2+1}$).

We begin by recalling the fundamental groups of T^{k} and $U^{k}[1]$:

$$
\begin{align*}
& \pi_{1} T^{k} \cong\left\langle\alpha_{1}, \ldots, \alpha_{k}, \beta_{1}, \ldots, \beta_{k} \mid \prod_{j=1}^{k}\left[\alpha_{j}, \beta_{j}\right]=1\right\rangle \tag{1.1}\\
& \pi_{1} U^{k} \cong\left\langle\alpha_{1}, \ldots, \alpha_{k} \mid \prod_{j=1}^{k} \alpha_{j}^{2}=1\right\rangle .
\end{align*}
$$

If $G \cong \mathbb{Z}_{2}$, the cyclic group of order 2 with non-trivial element τ, and $\partial: \pi_{1} U^{\ell+2} \rightarrow$ \mathbb{Z}_{2} is an epimorphism, then we may write $\partial\left(\alpha_{j}\right)=\tau^{a_{j}}$ where each a_{j} is 0 or 1 and at least one a_{j} is 1 .
(1.2) Proposition. In the above example $\operatorname{ker} \partial \cong \pi_{1} T^{\ell+1}$ if, and only if $a_{1}=\ldots=$ $a_{\ell+2}=1$.

Proof. We suppose ker $\partial \cong \pi_{1} X$ where $X \cong T^{\ell+1}$ or $U^{2 \ell+2}$. The two-fold cover $p: X$ $\rightarrow U^{\ell+2}$ is classified by an element $\theta \in H^{1}\left(U^{\ell+2} ; \mathbb{Z}_{2}\right)$. If we let $\alpha_{1}^{*}, \ldots, \alpha_{\ell+2}^{*}$ represent dual classes to the Hurewicz images of $\alpha_{1}, \ldots, \alpha_{\ell+2}$, in $H^{1}\left(U^{\ell+2} ; \mathbb{Z}_{2}\right)$ then it is not hard to show that $\theta=\Sigma_{j=1}^{\ell+2} a_{j} \alpha_{j}^{*}$. There is a long exact sequence associated to this cover ([4] or [3]):

where tr denotes the transfer map. Due to the naturality of tr with respect to the Steenrod squaring operations we obtain a commutative diagram:

Now, it is easy to show that Sq^{1} is zero if $X \cong T^{\ell+1}$, whereas Sq^{1} is non-zero if $X \cong$ $U^{2 \ell+2}$. In fact the product structure of $H^{*}\left(U^{k} ; \mathbb{Z}_{2}\right)$ is given by $\alpha_{i}^{*} \alpha_{j}^{*}=0$ when $i \neq j$ and $\left(\alpha_{1}^{*}\right)^{2}=\ldots=\left(\alpha_{k}^{*}\right)^{2} \neq 0$.

We proceed to prove the proposition. Suppose some $a_{j}=0$. By reindexing we may assume $a_{\ell+2}=0$. It follows that

$$
\theta=\sum_{j=1}^{\ell+1} a_{j} \alpha_{j}^{*} \text { and } \alpha_{\ell+2}^{*} \cdot \theta=0
$$

Consequently, by exactness of (1.3), $\alpha_{\ell+2}^{*}=\operatorname{tr}(x)$ for some $x \in H^{1}\left(X ; \mathbb{Z}_{2}\right)$. We compute

$$
\begin{aligned}
\operatorname{trSq}^{1}(x) & =\operatorname{Sq}^{1} \operatorname{tr}(x) \\
& =\operatorname{Sq}^{1}\left(\alpha_{\ell+2}^{*}\right) \\
& \neq 0 .
\end{aligned}
$$

So $\operatorname{Sq}^{1}(x) \neq 0$ and $X \cong U^{2 \ell+2}$.
On the otherhand every non-orientable surface admits an orientable two-fold cover [1], consequently $X \cong T^{\ell+1}$ exactly when $a_{1}=\ldots=a_{\ell+2}=1$.
(1.4) Corollary. The two-fold cover $q: T^{\ell+1} \rightarrow U^{\ell+1}$ is unique, up to equivalence.
Let $\epsilon: \pi_{1} U^{\ell+2} \rightarrow \mathbb{Z}_{2}$ be the map $\epsilon\left(\alpha_{j}\right)=\tau$ for $j=1, \ldots, \ell+2$. Note that $\operatorname{ker} \epsilon$ consists of all words in $\pi_{1} U^{\ell+2}$ of even length.
(1.5) Definition. Suppose $\partial: \pi_{1} U^{\ell+2} \rightarrow G$ is a finite quotient, we define $N_{\partial}=\partial \operatorname{ker} \epsilon$, a subgroup of G.
(1.6) Lemma. $\left[G: N_{\partial}\right]=2 /\left[\partial^{-1}\left(N_{\partial}\right): \operatorname{ker} \epsilon\right]$.

Proof. $\left[G: N_{\partial}\right]=|G| /\left|N_{\partial}\right|$

$$
\begin{aligned}
& =\left[\pi_{1} U^{\ell+2}: \operatorname{ker} \partial\right] /\left[\partial^{-1}\left(N_{\partial}\right): \operatorname{ker} \partial\right] \\
& =\left[\pi_{1} U^{\ell+2}: \operatorname{ker} \epsilon\right] /\left[\partial^{-1}\left(N_{\partial}\right): \operatorname{ker} \epsilon\right] \\
& =2 /\left[\partial^{-1}\left(N_{\partial}\right): \operatorname{ker} \epsilon\right] .
\end{aligned}
$$

Remark. There are only two possible values for [$G: N_{\partial}$], namely 1 or 2 .
The next proposition is the main result of this section.
(1.7) Proposition. If $\partial: \pi_{1} U^{\ell+2} \rightarrow G$ is a finite quotient, $|G|=2 n$ and $\left[G: N_{\dot{\partial}}\right]=$ 2 then $\operatorname{ker} \partial \cong \pi_{1} T^{n \ell+1}$.

Proof. Since $\left[G: N_{\partial}\right]=2$ we must have $\partial^{-1}\left(N_{\partial}\right) \cong \operatorname{ker} \epsilon \cong \pi_{1} T^{\ell+1}$ by the above lemma. Now, $\partial^{-1}\left(N_{\partial}\right)$ contains ker ∂ as a normal subgroup of finite index. If ker $\partial \cong$ $\pi_{1} U^{2 n \ell+2}$ this would imply that $U^{2 n \ell+2}$ covers $T^{\ell+1}$, an impossibility. The only other possibility for ker ∂ is $\pi_{1} T^{n \ell+1}$.
(1.8) Remark. We conjecture that $\left[G: N_{\partial}\right]=2$ is necessary and sufficient for ker ∂ $\cong \pi_{1} T^{n \ell+1}$. This has been proven for $\ell=0$ [2].
§2 Applications. Our first application is to lifting finite free actions on $U^{\ell+2}$ to the orientable two-fold cover $T^{\ell+1}$
(2.1) Proposition. If G is finite group acting freely on $U^{\ell+2}$ then there exists a lifting to a free action of G on $T^{\ell+1}$ rendering the natural projection map $q: T^{\ell+1} \rightarrow U^{\ell+2}$ G-equivariant.

Proof. If $|G|=n$, then n divides ℓ and the orbit space $U^{\ell+2} / G$ is homeomorphic to $U^{\ell / n+2}$. Consider the pull-back diagram

where the bottom map is the unique two fold cover. Once we show X is connected we will be done. This is because $X=\left\{(u, t) \in U^{\ell+2} \times T^{\ell / n+1}: p(u)=q(t)\right\}$ which inherits the free G action from $U^{\ell+2}$ and $\bar{q}(u, t)=u$ is clearly equivariant. If X were connected it must be homeomorphic to $T^{\ell+1}$ since it covers $T^{\ell / n+1}$.

To show X is connected it is sufficient to show that the composition

$$
\pi_{1} T^{\ell / n+1} \xrightarrow{q \#} \pi_{1} U^{\ell / n+2} \xrightarrow{\partial} G
$$

is an epimorphism, where ∂ is the epimorphism associated to the free action of G on $U^{\ell+2}$.

We compute

$$
\text { image } \begin{aligned}
\left(\partial \circ q_{\#}\right) & =\partial \text { image } q_{\#} \\
& =\partial \text { ker } \\
& =N_{\partial} .
\end{aligned}
$$

But $\left[G: N_{\dot{\partial}}\right]=1$, else ker $\partial \cong \pi_{1} T^{\ell / 2+1}$ by proposition (1.7). We may conclude $N_{\partial}=$ G and $\partial \circ q \#$ is an epimorphism.

We begin our second application by first recalling a theorem due to R. D. Anderson.
(2.2) Proposition. [5] Every finite group acts freely on some T^{k}.

The above theorem is the inspiration for the following definition.
(2.3) Definition. If G is a finite group then genus (G) is the minimum k such that G acts freely on T^{k}.

There are a few immediate properties.
(2.4) Proposition.
(a) If K is a subgroup of G then genus $(K) \leqslant$ genus (G).
(b)

$$
\text { genus }(G) \equiv\left\{\begin{array}{l}
1 \bmod |G| \text { if }|G| \text { is odd } \\
1 \bmod |G| / 2 \text { if }|G| \text { is even }
\end{array}\right.
$$

(c) If ℓ is the minimum number of generators for $G,|G|(\ell / 2-1)+1 \leqslant$ genus (G) $\leqslant|G|(\ell-1)+1$.

Proof.
(a) Obvious.
(b) If G acts freely on T^{k} with orbit space B then $2-2 k=\chi(B) \cdot|G|$.
(c) We will first show that G can act freely on $T^{|G|(\ell-1)+1}$, providing the upperbound on genus (G). Pick ℓ generators $\sigma_{1}, \ldots, \sigma_{\ell}$ of G. Define $\partial: \pi_{1} T^{\ell} \rightarrow G$ by $\partial\left(\alpha_{j}\right)=\sigma_{j}$, $\partial\left(\beta_{j}\right)=1$. Obviously $\partial\left(\Pi\left[\alpha_{j}, \beta_{j}\right]\right)=1$. Thus ker $\partial \cong \pi_{1} T^{|G|(\ell-1)+1}$ giving our free action. To prove the lower bound assume G acts freely on T^{k} with orbit space B. There are two possibilities for B, namely $B \cong T^{(k-1) /|G|+1}$ or $U^{2(k-1) /|G|+2}$. In either case $\pi_{1} B$ is generated by $2(k-1) /|G|+2$ elements. Since $\partial: \pi_{1} B \rightarrow G$ is an epimorphism we must have $\ell \leqslant 2(k-1) /|G|+2$. A little bit of algebra then gives our lower bound for genus (G).

Let \mathbb{Z}_{m} denote the cyclic group of order m.
(2.5) Proposition. If $G=\mathbb{Z}_{m_{1}} \times \ldots \times \mathbb{Z}_{m_{\ell}}$ where ℓ is minimal and $m=m_{1} m_{2} \ldots m_{\ell}$ then

$$
\text { Genus }(G)=\left\{\begin{array}{l}
m\left(\frac{\ell-2}{2}\right)+1 \text { if some } m_{i}=2 \text { or } \ell \text { is even. } \\
m\left(\frac{\ell-1}{1}\right)+1 \text { otherwise }
\end{array}\right.
$$

Proof. Let $g=$ genus (G) and write the generators of G as $\sigma_{1}, \ldots, \sigma_{\ell}$. First assume ℓ is even. Define $\partial: \pi_{1} T^{\ell / 2} \rightarrow G$ by $\partial\left(\alpha_{j}\right)$ and σ_{j} and $\partial\left(\beta_{j}\right)=\sigma_{j+\ell / 2}$ for $j=1, \ldots, \ell / 2$. This is clearly an epimorphism with ker $\partial \cong \pi_{1} T^{m(\ell-2) /(2)+1}$. This proves $g \leqslant$ $m((\ell-2) / 2)+1$. On the other hand proposition (2.4) (c) implies $m((\ell-2) / 2)+$ $1 \leqslant g$. Thus $g=m((\ell-2) / 2)+1$.
Now suppose ℓ is odd. In this case we may construct an epimorphism $\partial: \pi_{1} T^{(\ell+1) / 2}$ $\rightarrow G$ by $\partial\left(\alpha_{j}\right)=\sigma_{j}$ for $j=1, \ldots,(\ell+1) / 2, \partial\left(\beta_{j}\right)=\sigma_{j+(\ell+1) / 2}$ for $j=1, \ldots$, $(\ell-1) / 2, \partial\left(\beta_{(\ell+1) / 2}\right)=1$. Then ker $\partial \cong T^{m((\ell-1) / 2)+1}$ and consequently $g \leqslant$ $m((\ell-1) / 2)+1$. On the other hand we have the usual lower bound $m((\ell-2) / 2$ $+1 \leqslant g$. Assume m is odd. Then $g \equiv 1 \bmod m$. The only integer g satisfying the above congruence and lying in the above range is $g=m((\ell-1) / 2)+1$. Now assume m is even. The congruence becomes $g \equiv 1 \bmod m / 2$. There are two possibilities for g that lies in the state range, namely

$$
g=\left\{\begin{array}{l}
m\left(\frac{\ell-2}{2}\right)+1 \text { or } \\
m\left(\frac{\ell-1}{2}\right)+1
\end{array}\right.
$$

If G acted freely on $T^{m((t-2) / 2)+1}$ then the orbit space B would have Euler characteristic $\chi(B)=2-\ell$. Since we are assuming ℓ is odd, $2-\ell$ is odd, and therefore $B \cong U^{\ell}$ with an epimorphism $\partial: \pi_{1} U^{\ell} \rightarrow G$. If all $m_{i} \neq 2$ then this is not possible (because when we factor this map through the abelianization of $\pi_{1} U^{\ell}$ we obtain an epimorphism $\mathbb{Z}^{\ell-1}$ $\times \mathbb{Z}_{2} \rightarrow G$ which is a contradiction, no $\left.m_{i}=2\right)$. We may conclude $g=m((\ell-1) / 2)$ +1 if no $m_{i}=2$.

Now, for $m_{1}=2$ we shall produce a free action of G on $T^{m(\ell-2) / 2+1}$. Define an epimorphism $\partial: \pi_{1} U^{\ell} \rightarrow G$ by $\partial\left(\alpha_{j}\right)=\sigma_{j}, j=1, \ldots, \ell$. We will show ker $\partial \cong$ $\pi_{1} T^{m(\ell-2) / 2+1}$ by employing proposition (1.7). $N_{i j}=\partial \mathrm{ker} \epsilon$ is the subgroup of G generated by $\left\{\sigma_{i} \sigma_{j}\right\}_{1 \leqslant i<j \leqslant t}$ (recall ker ϵ is the subgroup of $\pi_{1} U^{\ell}$ consisting of words of even length). But for $i>1$ we have $\sigma_{i} \sigma_{j}=\left(\sigma_{l} \sigma_{i}\right)\left(\sigma_{l} \sigma_{j}\right)$ and thus $N_{\dot{\partial}}$ is generated by $\left\{\sigma_{1} \sigma_{j}\right\}_{2 \leqslant j \leqslant \ell}$. We conclude that $\left[G: N_{\dot{j}}\right]=2$ and consequently ker $\partial \simeq \pi_{1} T^{m(\ell-2) / 2+1}$. This completes the proof of the proposition.

References

1. W. S. Massey, Algerbraic Topology: An Introduction, (Harcourt, Brace \& World, Inc., 1967).
2. L. W. Cusick and D. McDoniel, Finite Groups that can Act Freely on the Torus and the Klein Bottle, (manuscript).
3. G. Bredon, Introduction to Compact Transformation Groups, (Academic Press, 1972.)
4. L. W. Cusick, A Transfer Spectral Sequence for Fixed point free Involutions with an Application to Stunted Real Projective Spaces, Topology and its Applications, 21 (1985), pp. 9-18.
5. R. D. Anderson, Zero-Dimensional Compact Transformation Groups, Pacific J. Math., 7 (1957), pp. 797-810.

Department of Mathematics
California State University
Fresno CA 93710

[^0]: Received by the editors August 20, 1984, and, in revised form, March 20, 1985.
 AMS Subject Classification (1980): 57S17
 (C) Canadian Mathematical Society 1985.

