ON THE FRAGTIONAL PARTS OF A POLYNOMIAL

R. J. COOK

1. Introduction. Heilbronn [6] proved that for any $\epsilon>0$ there exists $C(\epsilon)$ such that for any real θ and $N \geqq 1$ there is an integer x satisfying

$$
\begin{equation*}
1 \leqq x \leqq N \quad \text { and } \quad\left\|\theta x^{2}\right\|<C(\epsilon) N^{-1 / 2+\epsilon} \tag{1}
\end{equation*}
$$

where $\|\alpha\|$ denotes the difference between α and the nearest integer, taken positively. Danicic [2] obtained an analogous result for the fractional parts of θx^{k} and in 1967 Davenport [4] generalized Heilbronn's result to polynomials of degree k with no constant term. The last condition is essential, for if there is a constant term then no analogous result can hold (see Koksma [7, Kap. 6 Satz 10]).

More recently, Ming-Chit Liu [8] proved that for any real θ and any positive integer N there is an integer x satisfying

$$
\begin{equation*}
1 \leqq x \leqq N \quad \text { and } \quad\left\|\theta x^{2}\right\|<C N^{-1 / 2+\epsilon(N)} \tag{2}
\end{equation*}
$$

where C is an absolute constant and $\epsilon(N)=1 / \log \log N$. The purpose of this note is to prove that the results of Danicic and Davenport may be improved to give results analogous to Liu's.

Theorem 1. Let k be an integer, $k \geqq 2$, and put $K=2^{k-1}$. For every real θ and every positive integer N, there is an integer x satisfying

$$
\begin{equation*}
1 \leqq x \leqq N \quad \text { and } \quad\left\|\theta x^{k}\right\|<C_{1} N^{-1 / K+\epsilon(N)} \tag{3}
\end{equation*}
$$

where $C_{1}=C_{1}(k)$ depends only on k and $\epsilon(N)=1 / \log \log N$.
Theorem 2. Let k be an integer, $k \geqq 2$, and put $R=2^{k}-1$. For every positive integer N and every real polynomial $f(x)$, with no constant term, of degree k, there is an integer x satisfying

$$
\begin{equation*}
1 \leqq x \leqq N \quad \text { and } \quad\|f(x)\|<C_{2} N^{-1 / R+\epsilon(N)} \tag{4}
\end{equation*}
$$

where $C_{2}=C_{2}(k)$ depends only on k and $\epsilon(N)=1 / \log \log N$.
For large values of k these results can be improved by using Vinogradov's estimates for trigonometric sums, in place of Weyl's (see [1]).
2. Notation and preliminary lemmas. By $F \ll G$ we mean that $|F|<C G$ where C depends at most on k. We write $e(z)$ for $\exp (2 \pi i z), K$ for $2^{k-1}, R$ for $2^{k}-1$ and $\epsilon(N)$ for $1 / \log \log N$. We may suppose that $N>N_{0}(k)$.

Received April 9, 1975.

Lemma 1. Let Δ satisfy $0<\Delta<\frac{1}{2}$ and let a be a positive integer. Then there exists a function $\psi(z)$, periodic with period 1 , which satisfies
(5) $\psi(z)=0$ for $\quad\|z\| \geqq \Delta$,
and
(6) $\psi(z)=\sum_{v=-\infty}^{\infty} a_{v} e(v z)$
where the coefficients a_{v} are real numbers, $a_{0}=\Delta, a_{-v}=a_{v}$ and
(7) $\left|a_{v}\right| \ll \min \left(\Delta,\left(\frac{a}{\pi}\right)^{a} \Delta^{-a}|v|^{-a-1}\right)$.

This is a particular case of Lemma 12 of Chapter 1 of Vinogradov [9].
Lemma 2. Let $d(n)$ denote the number of divisors of the positive integer n. For any $\epsilon>0$ we have
(8) $\quad d(n) \leqq 2^{(1+\epsilon) \log n / \log \log n}$
for all $n>n_{0}(\epsilon)$.
This is Theorem 317 of Hardy and Wright [5].
We apply Lemma 2 with ϵ chosen so small that $2^{1+\epsilon}<e^{3 / 4}$. Then for some n_{0} we have
(9) $\quad d(n)<n^{(3 / 4) \epsilon(n)}$
for all $n \geqq n_{0}$.
Lemma 3 (Weyl). Let $f(x)$ be a real polynomial of degree k with leading coefficient θ :

$$
f(x)=\theta x^{k}+\theta_{1} x^{k-1}+\ldots
$$

Let B be a real number and put

$$
S=\sum_{B<x<B+N} e(f(x))
$$

Then
(10) $|S|^{K} \ll N^{K-1}+N^{K-k+(3 / 4)(k-1) \epsilon(N)} \quad \sum_{m=1}^{L} \min \left(N,\|m \theta\|^{-1}\right)$,
where $L=k!N^{k-1}$.
This may be proved in the same way as the corresponding formula on p .13 of Davenport [3] since for $m=1, \ldots, L$ we have

$$
d(m) \ll L^{(3 / 4) \epsilon(L)} \ll N^{(3 / 4)(k-1) \epsilon(N)} .
$$

Lemma 4 (Dirichlet). Let θ be a real number and $Q \geqq 1$. Then there exist integers a, q with
(11) $1 \leqq q \leqq Q,(a, q)=1$ and $|\theta-a / q| \leqq q^{-1} Q^{-1}$.

See, for example, Theorem 185 of Hardy and Wright [5].
3. Preliminaries to Theorems 1 and 2. Let
(12) $f(x)=\theta x^{k}+\theta_{1} x^{k-1}+\ldots+\theta_{k-1} x$,
which contains the possibility that $f(x)=\theta x^{k}$. Suppose that
(13) $\|f(x)\| \geqq M^{-1}$ for $1 \leqq x \leqq N$,
then we may also suppose that
(14) $M \leqq N^{1 / K-\epsilon(N)}$
for otherwise there is nothing to prove. We take $\Delta=M^{-1}$ in Lemma 1 , then

$$
0=\sum_{x=1}^{N} \psi(f(x))=\sum_{x=1}^{N} \sum_{v=-\infty}^{\infty} a_{v} e(v f(x))=\Delta N+\sum_{v \neq 0} a_{v} S(v)
$$

where
(15) $S(v)=\sum_{x=1}^{N} e(v f(x))$.

Then $S(-v)=\overline{S(v)}$ so taking $M_{1}=M N^{\epsilon(N) / 100}$ we have

$$
\Delta N \ll \sum_{0<|v|<M_{1}}\left|a_{v} S(v)\right|+\sum_{|v|>M_{1}}\left|a_{v} S(v)\right| \ll \Delta \sum_{v=1}^{M_{1}}|S(v)|+N \sum_{|v|>M_{1}}\left|a_{v}\right|
$$

and, from Lemma 1,

$$
\sum_{|v|>M_{1}}\left|a_{v}\right| \ll\left(\frac{a}{\pi}\right)^{a} \Delta^{-a} \sum_{|v|>M_{1}} v^{-a-1} \ll a^{a} \Delta^{-a} M_{1}^{-a} .
$$

Therefore

$$
N\left(1-a^{a} \Delta^{-a-1} M_{1}^{-a}\right) \ll \sum_{v=1}^{M_{1}}|S(v)| .
$$

We take $a=[100 / \epsilon(N)]=[100 \log \log N]$, then

$$
\begin{aligned}
a^{a} \Delta^{-a-1} M_{1}^{-a} \ll(100 \log \log N)^{100 \log \log N} M^{a+1} M^{-a} N^{-a \epsilon(N) / 100} & =o(1) \\
& \text { as } N \rightarrow \infty .
\end{aligned}
$$

Therefore $N \ll \sum_{v=1}^{M_{1}}|S(v)|$ so, by Hölder's inequality,

$$
\begin{equation*}
M_{1}{ }^{1-K} N^{K} \ll \sum_{v=1}^{M_{1}}|S(v)|^{K} . \tag{16}
\end{equation*}
$$

Applying Weyl's estimate we have

$$
\begin{aligned}
M_{1}^{1-K} N^{K} & \ll \sum_{v=1}^{M_{1}}\left(N^{K-1}+N^{K-k+(3 / 4)(k-1) \epsilon(N)} \sum_{m=1}^{L} \min \left(N,\|m v \theta\|^{-1}\right)\right) \\
& \ll M_{1} N^{K-1}+N^{K-k+(3 / 4)(k-1) \epsilon(N)} \sum_{v=1}^{M_{1}} \sum_{m=1}^{L} \min \left(N,\|m v \theta\|^{-1}\right) \\
& \ll M_{1} N^{K-1}+N^{K-k+(3 / 2)(k-1) \epsilon(N)+\epsilon(N) / K} \sum_{h=1}^{H} \min \left(N,\|h \theta\|^{-1}\right)
\end{aligned}
$$

where $H=M_{1} L$ and we have put $h=m v$, since the number of representations of h in the form $m v$ is

$$
d(h) \ll H^{(3 / 4) \epsilon(H)} \ll\left(N^{k-1+1 / K}\right)^{(3 / 4) \epsilon(N)} .
$$

From (14) we have $M_{1} N^{K-1}=o\left(M_{1}{ }^{1-K} N^{K}\right)$ so, putting

$$
\eta(N)=(3 / 2)(k-1) \epsilon(N)+\epsilon(N) / K
$$

we have
(17) $\quad M_{1}{ }^{1-K} N^{k-\eta(N)} \ll \sum_{h=1}^{H} \min \left(N,\|h \theta\|^{-1}\right)$.

Let a / q be any rational number, in its lowest terms, for which
(18) $|\theta-a / q| \leqq q^{-2}$.

We divide the sum on the right-hand side of (17) into blocks of q terms and estimate the sum of each block in the usual way (see Lemma 1 of Davenport [3]) to give

$$
\begin{equation*}
M_{1}^{1-K} N^{k-\eta(N)} \ll\left(q^{-1} H+1\right)(N+q \log q) \tag{19}
\end{equation*}
$$

4. Proof of Theorem 1. Now $f(x)=\theta x^{k}$ and we may suppose $k \geqq 3$, since

Liu [8] has proved the result in the case $k=2$. We take

$$
M=N^{1 / K-\epsilon(N)} \text { so that } M_{1}=N^{1 / K-(99 / 100) \epsilon(N)} .
$$

We choose
(20) $q \leqq M_{1}{ }^{1-K} N^{k-\tau(N)}$,
where $\tau(N)=\eta(N)+(1 / K) \epsilon(N)$. Then

$$
\begin{aligned}
q \log q & \ll M_{1}{ }^{1-K} N^{k-\tau(N)} \log N \\
& =o\left(M_{1}{ }^{1-K} N^{k-\eta(N)}\right) \\
N & =o\left(M_{1}{ }^{1-K} N^{k-\eta(N)}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
H \log q & \ll M_{1} N^{k-1} \log N \\
& \ll M_{1}{ }^{1-K} N^{1-K(99 / 100) \epsilon(N)} N^{k-1} \log N \\
& =o\left(M_{1}{ }^{1-K} N^{k-\eta(N)}\right)
\end{aligned}
$$

since
(21) $(99 / 100) K \epsilon(N)>\eta(N)+\epsilon(N) / 4$ for $k \geqq 3$.

It now follows from (19) that

$$
M_{1}{ }^{1-K} N^{k-\eta(N)} \ll q^{-1} H N \ll q^{-1} M_{1} N^{k}
$$

so that

$$
q \ll M_{1}{ }^{K} N^{\eta(N)}=N^{1-(99 / 100) K \epsilon(N)+\eta(N)}=o(N) .
$$

By Lemma 4, there exists a rational number a / q such that

$$
\begin{equation*}
q \leqq M_{1}{ }^{1-K} N^{k-\tau(N)} \tag{23}
\end{equation*}
$$

and
(24) $\quad|\theta-a / q| \leqq q^{-1} M_{1}{ }^{K-1} N^{\tau(N)-k}$.

This q must also satisfy (22) and

$$
\begin{align*}
\left\|\theta q^{k}\right\| & \leqq\left|q^{k} \theta-a q^{k-1}\right| \leqq q^{k-1} M_{1}{ }^{K-1} N^{\tau(N)-k} \tag{25}\\
& \leqq N^{k-1} N^{1-1 / K-(K-1)(99 / 100) \epsilon(N)} N^{\tau(N)-k} \leqq N^{-1 / K+\epsilon(N)+\tau(N)-(99 / 100) K_{\epsilon(N)}} \\
& \leqq N^{-1 / K+\epsilon(N)}
\end{align*}
$$

since for $k \geqq 3$, $(99 / 100) K \epsilon(N) \geqq \tau(N)=\eta(N)+(1 / K) \epsilon(N)$, and this completes the proof of Theorem 1 since $x=q$ satisfies the theorem.
5. Proof of Theorem 2. This is proved by induction on k, we begin with the case $k=2$. Let

$$
\begin{equation*}
f(x)=\theta x^{2}+\theta_{1} x \quad \text { and } \quad M=N^{1 / 3-\epsilon(N)} . \tag{26}
\end{equation*}
$$

We choose an integer q satisfying

$$
\begin{equation*}
1 \leqq q \leqq M_{1}^{-1} N^{2-(5 / 2) \epsilon(N)},\|q \theta\| \leqq M_{1} N^{-2+(5 / 2) \epsilon(N)} . \tag{27}
\end{equation*}
$$

Then the terms $N, q \log q$ and $H \log q$ in (19) are negligible, so that

$$
M_{1}{ }^{-1} N^{2-\eta(N)} \ll q^{-1} H N \ll q^{-1} M_{1} N^{2} .
$$

Hence
(28) $q \ll M_{1}{ }^{2} N^{\eta(N)}=N^{2 / 3+(1 / 50) \epsilon(N)}$.

For any positive integer T we can choose an integer t satisfying
(29) $1 \leqq t \leqq T$ and $\left\|\theta_{1} q t\right\| \leqq T^{-1}$.

Taking $x=q t$ we have

$$
\begin{aligned}
\left\|\theta x^{2}+\theta_{1} x\right\| & =\left\|\theta q^{2} t^{2}+\theta_{1} q t\right\| \leqq q t^{2}\|\theta q\|+\left\|\theta_{1} q t\right\| \\
& \ll T^{2} N^{2 / 3+(1 / 50) \epsilon(N)} M_{1} N^{-2+(5 / 2) \epsilon(N)}+T^{-1} \\
& \ll T^{2} N^{-1+(153 / 100) \epsilon(N)}+T^{-1} .
\end{aligned}
$$

Taking $T=N^{1 / 3-\epsilon(N) / 3}$ we have

$$
\begin{equation*}
\left\|\theta x^{2}+\theta_{1} x\right\| \ll N^{-1 / 3+(259 / 300) \epsilon(N)}+N^{-1 / 3+\epsilon(N) / 3} \ll N^{-1 / 3+\epsilon(N)} \tag{30}
\end{equation*}
$$

and
(31) $1 \leqq x=q t \ll N^{(2 / 3)+\epsilon(N) / 50} N^{1 / 3-\epsilon(N) / 3}=o(N)$,
which completes the proof in the case $k=2$.
For $k>2$ let

$$
\begin{equation*}
f(x)=\theta x^{k}+\theta_{1} x^{k-1}+\ldots+\theta_{k-1} x \quad \text { and } \quad M=N^{1 / R-\epsilon(N)} . \tag{32}
\end{equation*}
$$

We choose an integer q satisfying

$$
\begin{equation*}
1 \leqq q \leqq M_{1}^{1-K} N^{k-\tau(N)},\|q \theta\|<M_{1}^{K-1} N^{\tau(N)-k} \tag{33}
\end{equation*}
$$

where $\tau(N)=\eta(N)+\epsilon(N) / K$. As before, it follows from (19) that

$$
\begin{equation*}
q \ll M_{1}{ }^{K} N^{\eta(N)}=N^{(K / R)-(99 / 100) K \epsilon(N)+\eta(N)}=o\left(N^{K / R}\right) \quad \text { for } k \geqq 3 . \tag{34}
\end{equation*}
$$

By the inductive hypothesis, there exists an integer T satisfying
(35) $1 \leqq t \leqq T$ and $\left\|\theta_{1} q^{k-1} t^{k-1}+\ldots+\theta_{k-1} g t\right\| \ll T^{-1 /(K-1)+\epsilon(T)}$,
since $2^{k-1}-1=K-1$. Taking $x=q t$ we have

$$
\begin{align*}
\|f(x)\| & \ll\left\|\theta q^{k} t^{k}\right\|+\left\|\theta_{1} q^{k-1} t^{k-1}+\ldots+\theta_{k-1} q t\right\| \tag{36}\\
& \ll q^{k-1} t^{k}\|q \theta\|+T^{-1 /(K-1)+\epsilon(T)}
\end{align*}
$$

We take $T=\left[N^{(K-1) / R}\right]$, then $1 \leqq q t \leqq N$, for $N \geqq N_{0}(k)$, and

$$
\begin{align*}
\|f(x)\| & \ll\left\{M_{1}{ }^{K} N^{\eta(N)}\right\}^{k-1} N^{k(K-1) / R} M_{1}{ }^{K-1} N^{\tau(N)-k}+T^{-1 /(K-1)+\epsilon(T)} \tag{37}\\
& \ll M_{1}{ }^{k K} N^{k(K-1) / R-k} M_{1}{ }^{-1} N^{(k-1) \eta(N)+\tau(N)}+N^{-1 / R+(K-1) \epsilon(T) / R} \\
& \ll M_{1}{ }^{-1}+N^{-1 / R+\epsilon(N)} \ll N^{-1 / R+\epsilon(N)},
\end{align*}
$$

which completes the proof of Theorem 2.

References

1. R. J. Cook, On the fractional parts of a set of points, Mathematika 19 (1972), 63-68.
2. I. Danicic, Ph.D. Thesis, University of London, 1957.
3. H. Davenport, Analytic methods for Diophantine equations and Diophantine inequalities (Campus Publishers, Ann Arbor, Michigan, 1962).
4. - On a theorem of Heilbronn, Quart. J. Math. Oxford 18 (1967), 339-344.
5. G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 4th ed. (Oxford, 1965).
6. H. Heilbronn, On the distribution of the sequence $n^{2} \theta(\bmod 1)$, Quart. J. Math. Oxford 19 (1948), 249-256.
7. J. F. Koksma, Diophantische Approximationen (Berlin, 1936).
8. M.-C. Liu, On a theorem of Heilbronn concerning the fractional part of θn^{2}, Can. J. Math. 22 (1970), 784-788.
9. I. M. Vinogradov, The method of trigonometric sums in the theory of numbers (Interscience, New York, 1954).

The University of Sheffield,
Sheffield, England Sheffield, England

