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Maximal Sets of Pairwise Orthogonal
Vectors in Finite Fields

Le Anh Vinh

Abstract. Given a positive integer n, a finite fieldFq of q elements (q odd), and a non-degenerate sym-

metric bilinear form B on Fn
q , we determine the largest possible cardinality of pairwise B-orthogonal

subsets E⊆ Fn
q , that is, for any two vectors x, y ∈ E, one has B(x, y) = 0.

1 Introduction

In this short note, we study the largest possible cardinality of pairwise orthogonal

subsets in vector spaces over finite fields. Let n be a positive integer, and letFq be the

finite field of q elements, where q is an odd prime power. To put the problem in a

more general setting, instead of using the usual dot product, we consider each non-

degenerate symmetric bilinear form B on Fn
q (that is, B(u, v) = B(v, u) for all u, v ∈

Fn
q). Given two n-dimensional vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) ∈ Fn

q ,

if B(x, y) = 0, we say that x and y are B-orthogonal, or orthogonal for short when

B is clear from the context. Any non-degenerate bilinear form on Fn
q (q odd) can be

given by

B(x, y) =

n∑

i=1

aixi yi , ai 6= 0, 1 ≤ i ≤ n, x = (x1, . . . , xn),

y = (y1, . . . , yn) ∈ Fn
q .

(1.1)

Let χ be the quadratic character of Fq. We define χ(B) ∈ {±1} as

χ(B) =
n∏

i=1

χ(ai).

The main result of this short note is the following theorem.

Theorem 1.1 For any non-degenerate symmetric bilinear form B on Fn
q , we define

I(B,Fn
q) as the largest possible cardinality of pairwise B-orthogonal subsets E ⊆ Fn

q .

(i) If n is odd, then I(B,Fn
q) = q(n−1)/2 + (n + 1)/2.

(ii) If n is even and χ(B) = χ(−1)n/2, then I(B,Fn
q) = qn/2 + n/2.

(iii) If n is even and χ(B) = −χ(−1)n/2, then I(B,Fn
q) = qn/2−1 + n/2 + 1.
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Recall that, for a given symmetric bilinear form B, we can define the quadratic

form Q : Fn
q → Fq by Q(v) = B(v, v); and for any given quadratic form Q, we can

pull out a symmetric bilinear form defined by B(u, v) = 1
2
(Q(u + v)−Q(u)−Q(v)).

In particular, if B( · , · ) is given in (1.1), then Q(x) =
∑n

i=1 aix
2
i . Similarly, we define

χ(Q) =

∏n
i=1 χ(ai). Iosevich, Shparlinski, and Xiong ([1]) obtained the following

results using exponential sum estimates.

Theorem 1.2 ([1, Theorem 1.2]) For any non-degenerate quadratic form Q on Fn
q ,

let I0(Q,Fn
q) denote the largest possible cardinality of subsets of E ⊆ Fn

q with pairwise

zero Q-distance; that is, for any two points x, y ∈ E, one has Q(x − y) = 0.

(i) If n is odd, then I0(Q,Fn
q) = q(n−1)/2.

(ii) If n is even and χ(Q) = χ(−1)n/2, then I0(Q,Fn
q) = qn/2.

(iii) If n is even and χ(Q) = −χ(−1)n/2, then I0(Q,Fn
q) = qn/2−1.

We will give another proof of this theorem in this note, which uses only simple

linear algebra.

Note that in the Euclidean space Rn, the maximal sets of pairwise orthogonal

vectors are simply orthogonal bases of Rn, and the maximal sets of pairwise zero-

distance sets are just single-point sets. However, the arithmetic of finite fields allows

a richer orthogonal structure. Another example of this phenomenon is the question,

which was first studied by Iosevich and Senger [2], of whether a sufficiently large

subset of Fn
q contains a k-tuple of mutually orthogonal vectors. This problem does

not have a direct analog in Euclidean or integer geometries because placing the set

strictly inside {x ∈ Rd : xi > 0} immediately guarantees that no orthogonal vectors

are present. On the the other hand, Iosevich and Senger ([2]) showed that if E ⊂ Fn
q

of cardinality

|E| ≥ Cqn k−1
k

+ k−1
2

+ 1
k

with a sufficiently large constant C > 0, then E contains (1 + o(1))|E|kq−(k
2) k-tuples

of k mutually orthogonal vectors in E (see also [6], where the author improved the

bound on the cardinality of E to |E| ≥ Cq
n
2

+k−1 using graph theoretic methods).

2 Maximal Subspaces in Quadratic Hypersurfaces

Since any non-degenerate quadratic form on Fd
q (q odd) can be diagonalized ([5,

Theorem 3.1]), we may assume that Q is given by

Q(x) =

n∑

i=1

aix
2
i , : ai 6= 0, 1 ≤ i ≤ n, x = (x1, . . . , xn) ∈ Fn

q .

We fix a non-square element λ ∈ F∗
q , then it is well known that (see, for example,

[1, 4]) any non-degenerate quadratic form Q on Fn
q can be reduced (by repeated

change of variables) to one of the forms Qn,ε, ε ∈ {1, λ}, depending on the value of

χ(Q), where for x = (x1, . . . , xn) ∈ Fn
q , if n = 2m is even, then

(2.1) Qn,ε(x) = x2
1 − x2

2 + x2
3 − x2

4 + · · · + x2
2m−1 − εx2

2m,
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and if n = 2m + 1 is odd, then

Qn,ε(x) = x2
1 − x2

2 + · · · + x2
2m−1 − x2

2m + εx2
2m+1.

For any non-degenerate quadratic form Q on Fn
q , let SQ denote the quadratic hyper-

surface associated with Q on Fd
q , that is

SQ = {x ∈ Fd
q : Q(x) = 0}.

The following lemma tells us about the maximal dimension of linear subspaces in SQ.

Lemma 2.1 Let W be a linear subspace of maximal dimension in SQ.

(i) If n is odd, then dim(W ) = (n − 1)/2.

(ii) If n is even and χ(Q) = χ(−1)n/2, then dim(W ) = n/2.

(iii) If n is even and χ(Q) = −χ(−1)n/2, then dim(W ) = n/2 − 1.

Proof Let (Fn
q)∗ be the dual space of Fn

q , that is, the space of all linear functionals

on Fn
q . Recall that a symmetric bilinear form B is associated with the corresponding

linear map Q̃ : Fn
q → (Fn

q)∗ given by sending v to the linear form B(v, · ), where

(2.2) B(u, v) = 1
2

(
Q(u + v) − Q(u) − Q(v)

)
.

Let W be a linear subspace in SQ, then Q|W = 0, or equivalently Q̃(W ) ⊂ Ann(W ).

Since Q is non-degenerate, Q̃ is an isomorphism. So we have

dim(W ) ≤ dim(Ann(W )) = dim(Fn
q) − dim(W ),

which implies that

(2.3) dim(W ) ≤ n/2.

For 1 ≤ i ≤ n, denote by ei the vector inFn
q with 1 in the i-th entry and 0 everywhere

else. Suppose that n = 2m + 1. Let W = span{e1 + e2, . . . , e2m−1 + e2m}, then

dim(W ) = (n − 1)/2 and W ⊂ SQ. This proves the first claim of the lemma.

Suppose that n = 2m and χ(Q) = χ(−1)n/2. By the classification of non-

degenerate quadratic forms on Fn
q , we assume that Q = Qn,1 (given in (2.1)). Let

W = span{e1 + e2, . . . , e2m−1 + e2m}, then dim(W ) = n/2 and W ⊂ SQ. This proves

the second claim of the lemma.

Next, we suppose that n = 2m and χ(Q) = −χ(−1)n/2. Let O(Fn
q ,Q) be the

group of all linear transformations on Fn
q that fix Q (which is called the orthogonal

group associated with the quadratic form Q). We will need the following lemma.

Lemma 2.2 Let W and V be any two linear subspaces of dimension k on Fn
q , and let

{w1, . . . ,wk} and {v1, . . . , vk} be orthogonal bases of W and V , respectively. Suppose

that ‖wi‖ = ‖vi‖, 1 ≤ i ≤ k, then there exists an orthogonal transformation O ∈
O(Fn

q ,Q) such that O(W ) = V .
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Proof Let {w1, . . . ,wk} and {v1, . . . , vk} be basis of W and V , respectively. It suf-

fices to show that there exists an orthogonal transformation O ∈ O(Fn
q ,Q) such that

O(wi) = vi , i = 1, . . . , k. The proof of this claim proceeds by induction. The base

case k = 1 follows immediately from the fact that the orthogonal group with respect

to Q acts transitively on SQ. Suppose that the claim holds for k − 1; we show that

it also holds for k. Since ‖w1‖ = ‖v1‖, there exists an orthogonal transformation

Q1 that maps w1 to v1. Let w ′
2, . . . ,w

′
k be images of w2, . . . ,wk under this map. Set

W ′
= span{w ′

2, . . . ,w
′
k} and V ′

= span{v2, . . . , vk}, then W ′ and V ′ are two linear

subspaces of dimension k − 1 on v⊥1
∼
= Fn−1

q . Note that ‖w ′
i ‖ = ‖vi‖ for 2 ≤ i ≤ k.

Hence, it follows from the induction hypothesis that there exists an affine, orthogo-

nal transformation O ′ on v⊥1
∼
= Fn−1

q such that O ′(W ′) = V ′. Let O = O ′ ◦ Q ′.

This concludes the proof of the induction step and the proof of Lemma 2.2.

Continuing the proof of Lemma 2.1, let W = span{e1 + e2, . . . , e2n−3 + e2n−2},

then dim(W ) = n/2 − 1 and W ⊂ SQ. Suppose that SQ contains a linear subspace

of dimension n/2. It follows from Lemma 2.2 that there exists an n/2-dimensional

linear subspace W of SQ such that W ′ ⊆ W . Choose any v = (v1, . . . , vn) ∈ W such

that v ∈ (W ′)⊥. Since v ∈ (e2i−1 + e2i)
⊥ (1 ≤ i ≤ n/2 − 1), we have v2i−1 = −v2i

for i = 1, . . . , n/2 − 1. Note that v ∈ SQ, so v2
2n−1 − λv2

2n = 0. It follows that

v2n−1 = v2n = 0 or v ∈ W ′, which is a contradiction. The third claim of Lemma 2.1

follows.

3 Maximal Pairwise Orthogonal Sets

We are now ready to give a proof of Theorem 1.1. Let W0 be the maximal linear

subspace of SQ given in the proof of Lemma 2.1. Let W1 be an orthogonal basis of

W⊥
0 . It is clear that E = W0 ∪ W1 is a pairwise orthogonal set. This completes the

proof of the lower bounds.

Next, we prove the upper bounds. Let E be a pairwise orthogonal set of maximal

cardinality. Set E0 = E ∩ SQ and E1 = E\E0. Note that if x ∈ E0, then B(x, x) = 0.

Hence, for any x, y ∈ E0, z ∈ E, and λ1, λ2 ∈ Fq, one has

B(λ1x + λ2 y, z) = λ1B(x, z) + λ2B(y, z) = 0.

By the maximality of E, we have λ1x + λ2 y ∈ E0. This implies that E0 is a linear

subspace of SQ. Suppose that x0 =
∑
αixi for some x0, x1, . . . , xk ∈ E1, α1, . . . , αk ∈

Fq. Then

B(x0, x0) =

k∑

i=1

αiB(xi , x0) = 0,

which is a contradiction. Hence, E1 is a linearly independent set. It follows that

(3.1) |E| = |E0| + |E1| ≤ |E0| + (n − dim(E0)).

The upper bounds follow immediately from (3.1) and Lemma 2.1. This completes

the proof of Theorem 1.1.
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4 Maximal Pairwise Zero-Distance Sets

We recall the following lemma, which is due to Iosevich, Shparlinski, and Xiong [1].

Since the proof of this lemma is short and easy, we will reproduce it here for the sake

of completeness.

Lemma 4.1 If E ⊆ Fn
q is a maximal subset with pairwise zero Q-distance and 0 ∈ E,

then E is a linear subspace of SQ.

Proof Suppose that E ⊆ Fn
q is a maximal subset with pairwise zero Q-distance and

0 ∈ E. For any x ∈ E, one has Q(x) = Q(x − 0) = 0. Hence, E ⊂ SQ. For any

x, y ∈ E, one has

B(x, y) = 1
2

(
Q(x − y) − Q(x) − Q(y)

)
= 0.

Therefore, for any x, y, z ∈ E and λ1, λ2 ∈ Fq,

Q(λ1x + λ2 y − z)

= λ2
1Q(x) + λ2

2Q(y) + Q(z) + 2λ1λ2B(x, y) − 2λ1B(x, z) − 2λ2B(y, z)

= 0.

By the maximality of E, we have λ1x + λ2 y ∈ E. This implies that E is a linear

subspace of SQ and concludes the proof of the lemma.

Theorem 1.2 now follows immediately from Lemmas 2.1 and 4.1.

5 Remarks

Note that the upper bound (2.3) in the proof of Lemma 2.1 can also be obtained by

a simple character sum estimate. We will need the following estimate of a character

sum with bilinear forms over finite fields.

Lemma 5.1 Let B( · , · ) be a non-degenerate bilinear form in the n-dimensional

vector space Fn
q , and ψ be a non-trivial additive character on Fq. For any two sets

E,F ⊂ Fn
q with |E| = E, |F| = F, we have

∣∣∣∣
∑

u∈E,v∈F

ψ
(

B(u, v)
) ∣∣∣∣ 6

√
qn|E||F|.

Proof Viewing
∑

u∈E,v∈F
ψ(B(u, v)) as a sum in v, applying the Cauchy-Schwarz

inequality, and dominating the sum over v ∈ F by the sum over v ∈ Fn
q , we see that

∣∣∣∣
∑

u∈E,v∈F

ψ
(

B(u, v)
) ∣∣∣∣

2

6 |F|
∑

v∈Fn
q

∑

u,u ′∈E

ψ
(

B(u − u ′, v)
)

6 |F|
∑

u,u ′∈E

∑

v∈Fn
q

ψ(B(u − u ′, v))

6 qn|E||F|,

since the inner sum over v vanishes unless u = u ′.
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Suppose that W is a linear subspace in SQ. It follows from (2.2) that B(u, v) = 0

for any u, v ∈ W . Hence,

|W |2 =

∣∣∣∣
∑

u,v∈W

ψ
(

B(u, v)
) ∣∣∣∣ 6 qn/2|W |,

or equivalently, dim(W ) ≤ n/2.
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