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Similarity for dissipation-scaled wall turbulence
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In this paper, we put forward a hypothesis for turbulent kinetic energy, Reynolds stresses
and scalar variance in wall-bounded turbulent flows, whereby these quantities, when
normalized with the kinematic viscosity, mean turbulent energy dissipation rate and scalar
dissipation rate, are independent of the Reynolds and Péclet numbers when they are
sufficiently large. In particular, there exist two scaling ranges: (i) an inertial-convective
range at sufficiently large distance from the wall over which a 2/3 power-law scaling
emerges for all quantities mentioned above; (ii) a viscous-convective range between the
viscous-diffusive and inertial-convective ranges at large Prandtl number over which the
normalized scalar variance is constant. The relatively large amount of available wall
turbulence data either provides reasonably good support for this hypothesis or at least
exhibits a trend that is consistent with the predictions of this hypothesis. The relationship
between the proposed scaling and the traditional wall scaling is discussed. Possible
ultimate statistical states of wall turbulence are also proposed.

Key words: turbulence theory

1. Introduction

Wall turbulence is ubiquitous both in nature and in many industrial processes. Not
surprisingly, its scaling has received significant attention in the literature. The classical
view of wall turbulence is that the velocity and passive scalar statistics, such as the
mean velocity and mean scalar, Reynolds stresses and scalar (temperature) variance, are
universal, depending only on distance from the wall when scaled with the wall parameters
uτ , θτ and ν, where uτ = (τw/ρ)1/2 is the friction velocity (with τw the wall shear
stress, and ρ the density of the fluid), ν is the kinematic viscosity, and θτ = Qw/ρcpuτ

is the friction temperature (with Qw the averaged wall heat flux, and cp the specific
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heat at constant pressure). It is widely accepted by the turbulence research community
that the scaling of the mean velocity and mean scalar based on wall parameters near
the wall is tenable (e.g. Townsend 1976; Monty et al. 2009; Marusic et al. 2010; Smits,
McKeon & Marusic 2011b; Vincenti et al. 2013; Lee & Moser 2015; Willert et al. 2017;
Alcántara-Ávila, Hoyas & Pérez-Quiles 2021; Pirozzoli et al. 2021, 2022; Hoyas et al.
2022). However, several decades of research into wall turbulence have shown that the wall
scaling of quantities such as the Reynolds stresses and scalar (temperature) variance is
untenable in the near-wall region, at least at finite Reynolds numbers (e.g. Marusic et al.
2010; Smits et al. 2011b; Vincenti et al. 2013; Lee & Moser 2015; Willert et al. 2017;
Samie et al. 2018; Alcántara-Ávila et al. 2021; Pirozzoli et al. 2021, 2022; Hoyas et al.
2022). In particular, the available evidence shows that the peak values of the streamwise
Reynolds stress u1u1

+ (hereafter u1u1
+
p ) and the scalar variance θθ

+ (hereafter θθ
+
p )

increase systematically with Reτ for the former (see, for example, Marusic, Baars &
Hutchins (2017) and references therein) where the maximum value of Reτ is approximately
20 000, and for the latter (see, for example, figure 11(b) of Pirozzoli et al. 2022) where
the maximum value of Reτ is approximately 6000. The Kármán number Reτ can be
interpreted as the ratio of the outer length scale δ, i.e. the boundary layer thickness,
pipe radius or channel half-width, to the viscous length scale ν/uτ ; the streamwise (x1),
wall-normal (x2) and spanwise (x3) velocity fluctuations are denoted respectively by u1,
u2 and u3; γ is the thermal diffusivity; θ denotes the scalar fluctuation; the overbar
denotes an averaged value at a given x2 location with respect to the homogeneous spatial
directions and time; + denotes normalization by uτ , θτ and ν. More specifically, with
few exceptions (Hultmark et al. 2012; Vallikivi, Hultmark & Smits 2015b) where the data
near x+

2 ≈ 15 may have been affected by insufficient spatial resolution (Marusic et al.
2017), there appears to be strong support for the argument that u1u1

+
p and θθ

+
p grow

logarithmically (e.g. Marusic et al. 2017; Pirozzoli et al. 2022). It is worth mentioning
that the logarithmic growth implies that u1u1

+
p ∼ θθ

+
p → ∞ as Reτ → ∞, suggesting

the failure of wall scaling. In contrast, in a recent paper, Chen & Sreenivasan (2021)
reasoned that the bounded dissipation rate for u1u1

+ at the wall (which has yet to be
observed) leads to a finite u1u1

+
p at infinite Reynolds number, suggesting a recovery of

wall scaling. In particular, they proposed an alternative formula for the dependence of
u1u1

+
p on Reτ , which, like the logarithmic growth, provides a plausible description for the

behaviour of u1u1
+
p in pipe and channel flows, and the boundary layer at finite Reynolds

numbers. Smits et al. (2021) showed that the Reynolds stresses, after normalization by the
variance of the wall shear stress fluctuation (or equivalently, the dissipation rate for u1u1

+
at the wall), collapse reasonably well in the near-wall region. Note also that Antonia &
Kim (1994) had previously observed that a normalization based on Kolmogorov velocity
and length scales, defined at the wall, is more appropriate in the wall region than scaling
on τw and ν. We emphasize that the use of the dissipation rate for u1u1

+ at the wall
for normalization is equivalent to the use of the mean turbulent energy dissipation rate ε̄

(≡ ν (∂ui/∂xk)(∂ui/∂xk)) at the wall when their ratio is independent of the flow type; this
behaviour was observed by Tang & Antonia (2022) in a channel and a boundary layer for
Reτ > 1000. Some interesting issues arise.

(i) Are ε̄, ν and the mean scalar dissipation rate ε̄θ (≡ γ (∂θ/∂xk)(∂θ/∂xk)) (or
equivalently, the Batchelor–Kolmogorov scales θB = (ε̄θ (ν/ε̄)1/2)1/2, uK = (νε̄)1/4

and η = (ν3/ε̄)1/4) the proper scaling parameters for uiuj (and also the turbulent
kinetic energy uiui) and θθ?
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(ii) What is the relationship between the scaling parameters ε̄, ν and ε̄θ , and the
conventional wall parameters (uτ , θτ and ν) in the context of uiuj, uiui and θθ?

(iii) Tang & Antonia (2022) proposed a hypothesis for small-scale wall turbulence
whereby small-scale statistics, when normalized by the Batchelor–Kolmogorov
scales, are independent of the flow type as well as of the Reynolds and and Péclet
numbers. It seems therefore natural to enquire into the relationship between the
scaling of small-scale wall turbulence and that of statistics associated with uiuj, uiui

and θθ . The major objective of this paper is to address these issues.

2. A hypothesis for uiuj, uiui and θθ

The transport equations for the turbulent kinetic energy uiui and the scalar variance θθ in
a channel are given by (e.g. Pope 2000; Abe, Antonia & Kawamura 2009; Alcántara-Ávila
et al. 2021)

−u1u2
∂Ū1

∂x2︸ ︷︷ ︸
PU

− 1
2

∂u2
i u2

∂x2︸ ︷︷ ︸
T

− 1
2

∂u2p
∂x2︸ ︷︷ ︸

P

+ ν

2
∂2uiui

∂x2
2︸ ︷︷ ︸

Dν

− ε̄︸︷︷︸
D

= 0, (2.1)

−θu2
∂Θ

∂x2︸ ︷︷ ︸
PΘ

− 1
2

∂θ2u2

∂x2︸ ︷︷ ︸
Tθ

+ γ

2
∂2θ2

∂x2
2︸ ︷︷ ︸

Dγ

− ε̄θ︸ ︷︷ ︸
Dθ

= 0, (2.2)

where Ū1 is the mean velocity in the streamwise (x1) direction, and Θ is the mean scalar.
In (2.1), the terms PU , T , P, Dν and D are the production, turbulent diffusion, pressure
diffusion, molecular diffusion and dissipation rate, respectively. Similarly, in (2.2), terms
PΘ , Tθ , Dγ and Dθ are the production, turbulent diffusion, molecular diffusion and
dissipation, respectively. Except for the pressure term (P) in (2.1), which is negligible
near the wall and in the outer flow region, the two equations are analogous. This analogy
has been tested extensively (e.g. Fulachier & Dumas 1976; Fulachier & Antonia 1984;
Antonia, Abe & Kawamura 2009) in both wall and free shear flows.

All terms in (2.1) and (2.2), after normalizing by wall parameters, are shown in
figure 1(a,b), respectively. Close to the wall, both ε̄ and ε̄θ are approximately balanced
by the molecular diffusion. In particular, ε̄θ is very nearly equal to (γ /2)(∂2θ2/∂x2

2) in
the region x+

2 � 2 at Reτ = 500–5000 and Pr = ν/γ = 0.71 (figure 1b). However, ε̄ is
approximately equal to (ν/2)(∂2uiui/∂x2

2) only in the region x+
2 � 0.3 at Reτ = 550–104

(figure 1a). The pressure diffusion term (P) slowly increases away from the wall up to a
maximum value near x+

2 ≈ 2, and the magnitude of the ratio of this term to ε̄ is 2.7 % at
x+

2 ≈ 0.3 and Reτ = 104. Therefore, in these near wall regions, (2.1) and (2.2) reduce to

ε̄+ = 1
2

∂2uiui
+

∂x+2
2

, ε̄+
θ = 1

2 Pr
∂2θθ

+

∂x+2
2

, (2.3a,b)

when the conventional scaling is used. It is evident that both sides of these two equations
depend on Reτ . However, after normalizing (2.3a,b) by ε̄, ε̄θ and ν, we obtain

∂2uiui
∗

∂x∗2
2

= 2,
∂2θθ

∗

∂x∗2
2

= 2 Pr, (2.4a,b)
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Figure 1. Distributions of terms in (a) (2.1) and (b) (2.2), normalized by wall parameters, in a channel at
Pr = 0.71. Data of Lee & Moser (2015, 2019), Alcántara-Ávila et al. (2021) and Hoyas et al. (2022).

independently of Reτ . Equations (2.3a,b) and (2.4a,b) indicate that the scaling based on
ε̄, ε̄θ and ν is superior to that based on wall parameters. A similar analysis, based on the
transport equations for uiui in the range 40 ≤ x+

2 ≤ 200, leads to the same conclusion;
see Appendix B. Note that ε̄+ and ε̄+

θ do not collapse and their magnitudes are large near
the wall (figure 1); they arise because of the presence of the wall and, concomitantly,
the presence of the mean shear. Therefore, it seems natural to use the local ε̄ and ε̄θ ,
instead of uτ and θτ , to describe the wall turbulence statistics; whilst uτ and θτ are local
(wall) quantities, they also balance the momentum flux and heat flux, respectively, across
the flow. On the other hand, ε̄ and ε̄θ are quantities that are important in describing
the dynamics at every location in the flow via (2.1) and (2.2). For example, ε̄ and
ε̄θ are approximately balanced by the molecular diffusion as x+

2 → 0, while they are
approximately balanced by the production and turbulent diffusion at x+

2 = 5 (figure 1).
The relationship between the present scaling and the wall scaling will be discussed in
some detail in § 4.

Equations (2.4a,b) further indicate that the possible scaling parameters for uiui and θθ

are ε̄, ε̄θ and ν; since γ at any equation can be written as γ ≡ ν/Pr (see, for example,
(2.4a,b)), for simplicity, we consider only ε̄, ε̄θ and ν as the scaling parameters. In this
situation, the distance from the wall should be normalized as

x∗
2 = x2

η
= x2uK

ν
, (2.5)

where x∗
2 is a local Reynolds number so that its magnitude can be expected to determine

the relative importance of viscous effects. A more general definition of the local turbulent
Reynolds number is

Reλ = uiui
1/2

31/2
λ

ν
=

√
5
3

uiui
∗, (2.6)
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where λ is given by

λ = (5ν)1/2 uiui
1/2

ε̄1/2 . (2.7)

The Taylor microscale Reynolds number Reλ is defined via (2.6), and the Taylor microscale
λ is defined via (2.7). Similarly, a more general definition of the local turbulent Péclet
number is

Peλθ = uiui
1/2λθ

γ
= (3 Pr uiui

∗ θθ
∗
)1/2, (2.8)

where

λθ = (3γ )1/2 θθ
1/2

ε̄
1/2
θ

(2.9)

is the Corrsin microscale. (Fulachier & Antonia (1983) suggested that the use of ui,
instead of u1, yields a more meaningful comparison between turbulent Reynolds and Péclet
numbers.) After integrating (2.4a,b) twice with respect to x∗

2, we obtain

uiui
∗ = x∗2

2 , θθ
∗ = Pr x∗2

2 . (2.10a,b)

Equations (2.10a,b) are tenable as x∗
2 → 0 in a channel flow and a boundary layer (figure 14

of Tang & Antonia 2022).
Substituting (2.10a,b) into (2.6) and (2.8), we obtain

Reλ =
√

5
3

x∗2
2 , Peλθ =

√
3 Pr x∗2

2 . (2.11a,b)

Equations (2.11a,b) indicate that both Reλ and Peλθ should be independent of Reτ as
x∗

2 → 0 (at a given Pr). On the other hand, in the region sufficiently far away from the
wall where the effect of the wall on the flow is negligible (e.g. the central region of the
channel or pipe), both Reλ and Peλθ should go to infinity when Reτ and Pr Reτ go to
infinity; hereafter, this region will be described as x∗

2 → δ∗. It is expected that both Reλ
and Peλθ cannot increase to infinity abruptly at small and moderate x∗

2. Consequently, there
should be a near-wall region over which uiui and θθ , after normalization by ε̄, ε̄θ and ν,
increase with x∗

2 at sufficiently high Reτ and Pr Reτ ; this increase should not depend on
Reτ at a given Pr. Further, at a sufficiently, though not infinitely, large distance from the
wall (0 
 x∗

2 
 δ∗) where the effect of ν is negligible, uiui and θθ should be determined
by ε̄ and ε̄θ . Dimensional analysis leads to uiui

∗ = Cqx∗2/3
2 and θθ

∗ = Cθx∗2/3
2 , over

which an inertial-convective range is established; the details can be found in Appendix A.
Here, Cq and Cθ are constants. Finally, at large Pr, there should be a range between
the inertial-convective range (at moderate x∗

2) and the viscous-diffusive range (at small
x∗

2) over which the effect of viscosity, instead of diffusivity, is important. The previous
arguments are best summarized by the following hypothesis.

In wall turbulence at sufficiently high Reynolds and Péclet numbers, velocity and
passive scalar fluctuation statistics, such as uiui, uiuj and θθ , do not depend on the
Reynolds and Péclet numbers when the normalization uses ε̄, ε̄θ and ν. Consequently, they
are independent of the Reynolds and Péclet numbers. In other words, they depend only on
the distance from the wall. Further, at a sufficiently large distance from the wall where
the effect of ν is negligible, uiui, uiuj and θθ are determined by ε̄ and ε̄θ . Finally, there
is a viscous-convective range for θθ between the viscous-diffusion and inertial-convective
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ranges over which the effect of ν, instead of γ , is important when the Prandtl number is
sufficiently large. The larger the Reynolds and Péclet numbers, the larger the distance from
the wall over which the above hypothesis applies.

Whilst it is tempting to hypothesize that in the wall region, uiui
∗, uiuj

∗ and θθ
∗ should

not depend significantly on the flow type (especially when the outer boundary conditions
are similar, such as for the pipe and the channel), we refrain from doing so at this stage.
We will, however, test the above hypothesis in all three canonical flows, i.e. the channel,
boundary layer and pipe.

Mathematically, the hypothesis predicts that in wall turbulence, the behaviour of uiuj,
uiui and θθ can be expressed as

uiuj
∗ = fij(x∗

2), uiui
∗ = fq(x∗

2), θθ
∗ = fθ (x∗

2), (2.12a–c)

where the asterisk denotes normalization by ε̄, ε̄θ and ν (or equivalently, θB, uK and η),
and the functions fij, fq and fθ are independent of the Reynolds and Péclet numbers once
appropriate values of the Reynolds and Péclet numbers are reached. A conceptual sketch
of the predictions for |uiuj

∗|, uiui
∗ and θθ

∗ at Pr ≈ 1 is shown in figure 2 using log–log
scales. Also shown in this figure is a sketch for θθ

∗ at large Pr. At small x∗
2, there should

be a viscous-diffusive dominated range for uiuj
∗, uiui

∗ and θθ
∗. In the inertial-convective

range 0 
 x∗
2 
 δ∗,

uiuj
∗ = Cijx

∗2/3
2 , uiui

∗ = Cqx∗2/3
2 , θθ

∗ = Cθx∗2/3
2 , (2.13a–c)

where Cij is constant; the detailed derivations in the context of uiui
∗ and θθ

∗ can be found
in Appendix A. Finally, at large Pr, there exists a viscous-convective range for θθ between
the inertial-convective range and the viscous-diffusive range. We assume that θθ/ε̄θ scales
with the Kolmogorov time scale (ν/ε̄)1/2, which leads to

θθ
∗ = const. (2.14)

We will test (2.12a–c)–(2.14) in § 3.

3. Test of the hypothesis

Figure 3 shows the Kolmogorov-normalized turbulent kinetic energies uiui
∗ in the

channel, boundary layer and pipe for Reτ = 445–104. They are plotted using the
wall-parameter-normalized uiui

+ in these three flows (Simens et al. 2009; Jiménez et al.
2010; Borrell, Sillero & Jiménez 2013; Sillero, Jiménez & Moser 2013; Lee & Moser
2015, 2019; Pirozzoli et al. 2021; Hoyas et al. 2022). Specifically, the horizontal axis
x∗

2 is obtained via x∗
2 = x+

2 /η+ = x+
2 ε̄+1/4, and the vertical axis uiui

∗ is obtained via
uiui

∗ = uiui
+/u+2

K = uiui
+/ε̄+1/2. For clarity, we show in a separate figure (figure 4)

the distributions of Kaneda & Yamamoto (2021) in the channel flow over a relatively
large range of Reτ (= 500–8000); the distribution at Reτ = 2000 for the channel flow
in figure 3 is added in figure 4 for reference. It can be seen from figures 3 and 4 that
uiui

∗ collapses nearly perfectly for x∗
2 � 1 in all wall flows over a wide range of Reτ

(= 445–104). The larger the Reynolds number, the wider the x∗
2 range over which uiui

∗
is approximately independent of the type of flow as well as of Reτ ; this can be seen more
clearly in the linear–log scales (see figures 3(b) and 4(b)). In particular, the collapse of the
uiui

∗ distribution at Reτ = 5200 with the distribution at Reτ = 104 can extend to x∗
2 ≈ 4.

This collapse can also be seen from figure 5, which shows the variation of uiui
∗ at two
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Inertial-convective

 range

Inertial-

convective

range

Viscous-

diffusive

range

Viscous-

convective

range

Viscous-diffusive

 range

x2
∗

Figure 2. Predictions for |uiuj
∗|, uiui

∗ and θθ
∗ at Pr ≈ 1 on log–log scales (red curve). Also shown, based

on the present hypothesis, is the prediction for θθ
∗ at large Pr (black curve).

typical locations: x∗
2 = 4 and 9, on Reτ in all wall flows. There is a clear Reτ dependence

of uiui
∗ at x∗

2 = 9 when Reτ is small to moderate (<5200); this dependence becomes very
small, if not negligible, when Reτ > 5200. In contrast, uiui

∗ at x∗
2 = 4 increases slightly

as Reτ increases, eventually becoming constant for Reτ � 2000. This confirms that the
approximate independence of uiui

∗ on the flow and Reτ in figures 3 and 4 extends to x∗
2 ≈ 4

when Reτ � 2000. It is worth mentioning that the variation of x∗
2 with x+

2 in a channel for
Reτ = 550–104 has been presented and discussed by Tang & Antonia (2022) (see their
figure 2). At Reτ = 104, x∗

2 = 4 and 9 correspond to x+
2 = 6.3 and 14.8, respectively. For

reference, the corresponding x+
2 values, with an increment of 0.5 decade, at Reτ = 104 are

added onto the upper abscissa of figure 3.
Figure 6 shows the local slope of uiui

∗, i.e. LSk(x∗
2) = d log uiui

∗(x∗
2)/d log x∗

2 in the
channel flow. For clarity, only the channel data in figure 3 are shown in this figure. The
collapse of LSk(x∗

2) at small x∗
2 is not surprising because of the collapse of uiui

∗ at small
x∗

2. In particular, LSk(x∗
2) → 2 as x∗

2 → 0; see figure 6 or (2.10a,b). At the moderate
x∗

2, say x∗
2 ∼ 30, although uiui

∗ does not collapse (figures 3 and 4), its slope increases
with Reτ , gradually approaching the 2/3 power-law scaling. We can see this behaviour
more clearly in figure 6, where the local slope LSk(x∗

2) increases systematically with
Reτ , and the 2/3 power-law scaling is approached by the distribution at Reτ = 104 over
the range 30 � x∗

2 � 70. In this x∗
2 range at Reτ = 104, uiui

∗ ≈ Cqx∗2/3
2 = 5.807x∗2/3

2 ,
although it is not clear whether the prefactor (Cq) has become Reτ -independent;
higher Reτ data are needed. In contrast, the variation of the wall-parameter-normalized
uiui

+ with Reτ is systematic at all x+
2 in the channel, boundary layer and pipe

(figure 7).
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Figure 3. (a) Kolmogorov-normalized turbulent kinetic energies uiui
∗ in a channel (Lee & Moser 2015, 2019;

Hoyas et al. 2022), boundary layer (Simens et al. 2009; Jiménez et al. 2010; Borrell et al. 2013; Sillero et al.
2013) and pipe (Pirozzoli et al. 2021). They are plotted using wall-parameter normalization in those three
flows, using the relations x∗

2 = x+
2 /η+ = x+

2 ε̄+1/4 and uiui
∗ = uiui

+/u+2
K = uiui

+/ε̄+1/2. The green dotted
line indicates ∼ x∗2/3

2 . Note that the data close to and beyond the edge of the boundary layer (x2/δ >0.8) are
not shown since they are affected by the intermittency associated with the turbulent/potential flow interface.
(b) Corresponding distributions on linear–log scales. For reference, the corresponding x+

2 values, with
increment 0.5 decade, at Reτ = 104 are added on the upper abscissa. Note that the variation of x+

2 with x∗
2

is nonlinear; see figure 2 of Tang & Antonia (2022).

10–1 100 101 102 103
10–2

10–1

100

101

102

103(a) (b)

50

100

150

200

250

10–1 100 101 102 103

u iu
i∗

Reτ = 500
Reτ = 1000
Reτ = 2000
Reτ = 4000
Reτ = 8000

x2
∗ x2

∗

Figure 4. (a) Kolmogorov-normalized uiui
∗ in a channel. They are plotted using the

wall-parameter-normalized uiui
+ of Kaneda & Yamamoto (2021). For reference, also shown in

this figure (cyan curve) is the distribution of Lee & Moser (2015, 2019) at Reτ = 2000 in figure 3.
(b) Corresponding distributions on linear–log scales.

We next focus on the behaviour of the Reynolds stresses uiuj
∗. Note that in the region

x2 → 0 (e.g. Pope 2000),

ε̄ij = ν
∂2uiuj

∂x2
2

, (3.1)
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Similarity for dissipation-scaled wall turbulence

2000 4000 6000 8000 10 000
10

15

20

25

30

35

x2
∗ = 4

x2
∗ = 9

Reτ

Figure 5. Dependence of uiui
∗ on Reτ at x∗

2 = 9 and 4, corresponding to the data in figures 3 and 4. Pipe:
�, green (Pirozzoli et al. 2021). Channel: ◦, blue (Lee & Moser 2015, 2019; Hoyas et al. 2022); �, magenta
(Kaneda & Yamamoto 2021). Boundary layer: ◦, red (Simens et al. 2009; Jiménez et al. 2010; Borrell et al.
2013; Sillero et al. 2013).

10–1 100 101 102 103
–2

–1

LS
k(

x 2∗ )

0

1

2

3

Reτ = 550

Reτ = 1000

Reτ = 2000

Reτ = 5200

Reτ = 104

x2
∗

Figure 6. Local slope of uiui
∗, i.e. LSk(x∗

2) = d log uiui
∗(x∗

2)/d log x∗
2, corresponding to the channel data in

figure 3. The green dotted line corresponds to the value 2/3.

where ε̄ij is the dissipation rate tensor, which is given by

ε̄ij = 2ν

(
∂ui

∂xk

∂uj

∂xk

)
. (3.2)

After normalizing by the Kolmogorov scales, (3.1) can be rewritten as

ε̄∗
ij = ∂2uiuj

∗

∂x∗2
2

. (3.3)

Since u2 ∼ x2
2 as x2 → 0 (e.g. Pope 2000), ε̄∗

22 and ε̄∗
12, and the corresponding quantities

on the right-hand side of (3.3), should be zero as x2 → 0. On the other hand, Tang &
Antonia (2022) showed that ε̄∗

11 and ε̄∗
33 become Reτ -independent when Reτ > 1000 in
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x2
+

102 103 104

10–2

10–1

100

101

1 2 3 4
0.2

1.0

u iu
i+

Figure 7. Wall-parameter-normalized uiui
+ in a channel, boundary layer and pipe for the same data as in

figure 3. The inset zooms in on the range x+
2 = 1–4.

the channel and boundary layer. One thus expects that, based on (3.3), uiuj
∗ should be

Reτ -independent as x∗
2 → 0, at least for i = j = 1 and i = j = 3. Since Reτ > 1000 is

required for ε̄∗
11 and ε̄∗

33 to become Reτ -independent in the channel and boundary layer
(Tang & Antonia 2022), we show in figure 8 the Kolmogorov-normalized distributions
u1u1

∗, u2u2
∗, u3u3

∗ and u1u2
∗ in these two flows for only Reτ > 1000 for the data of

Simens et al. (2009), Jiménez et al. (2010), Borrell et al. (2013), Sillero et al. (2013), Lee
& Moser (2015, 2019) and Hoyas et al. (2022). For clarity, we show in a separate figure
(figure 9) the channel data of Kaneda & Yamamoto (2021) at Reτ = 2000, 4000 and 8000;
the distribution for the same flow at Reτ = 2000 in figure 8 has been added to figure 9 for
reference. Although the distributions for ε̄∗

11 and ε̄∗
33 in the pipe for Reτ � 2000 are not

available, we show in figure 9 the distributions of uiuj
∗ in the pipe for a similar Reynolds

number range as in the channel, namely Reτ � 2000. There is a nearly perfect collapse
for all distributions in figure 8 at small x∗

2. Specifically, the collapse of u1u1
∗, u2u2

∗,
u3u3

∗ and u1u2
∗ extends to x∗

2 ≈ 4, 40, 4 and 40, respectively. The same observations
can also be made from figure 9 for the channel and pipe. Namely, the x∗

2 range over which
uiuj

∗ distributions collapse is approximately one order of magnitude larger for u2u2
∗ and

u1u2
∗ than for u1u1

∗ and u3u3
∗. This can also be observed in figure 10, which shows

the magnitudes of u1u1
∗ and u3u3

∗ at x∗
2 = 4 and 9 versus Reτ , and those of u2u2

∗ and
u1u2

∗ at x∗
2 = 40 and 90 versus Reτ in the three wall flows. Evidently, there is a clear Reτ

dependence for u1u1
∗ and u3u3

∗ at x∗
2 = 9, and for u2u2

∗ and u1u2
∗ at x∗

2 = 90, when Reτ

is small to moderate (<5200); this dependence becomes very small when Reτ > 5200.
However, the distributions at x∗

2 = 4 for u1u1
∗ and u3u3

∗, and those at x∗
2 = 40 for u2u2

∗
and u1u2

∗, are approximately constant for Reτ � 2000. The above observations indicate
that the x∗

2 range over which uiuj
∗ collapses depends on the specific quantity. It is worth

mentioning that a close look at the distributions of u2u2
∗ and u1u2

∗ in figure 9 shows that
there is a very small difference between the channel and the pipe in the range x∗

2 � 5.
Note that the magnitudes of u2u2

∗ and u1u2
∗ are approximately 1–2 orders of magnitude

smaller than those of u1u1
∗ and u3u3

∗. This small difference is likely due to the different
resolutions of the simulations between these two flows.
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Reτ = 5200

Reτ = 1307
Reτ = 1988

Reτ = 104 u1u1
∗
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∗u3u3
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∗

u3u3
∗

–u1u2
∗

–u1u2
∗

x2
∗ x2

∗

Figure 8. (a) Kolmogorov-normalized u1u1
∗, u2u2

∗, u3u3
∗ and u1u2

∗ in the channel and boundary layer for
Reτ > 1000. They are plotted using the wall-parameter-normalized uiuj

+ in these two flows (Simens et al.
2009; Jiménez et al. 2010; Borrell et al. 2013; Sillero et al. 2013; Lee & Moser 2015, 2019; Hoyas et al. 2022).
(b) Corresponding distributions on linear–log scales.

Channel:

0
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60

80

100

120

Pipe:

10–2

10–1

100

101

102

103(a) (b)

10–1 100 101 102 103 10–1 100 101 102 103

Reτ = 2000
Reτ = 4000

Reτ = 8000

Reτ = 1976
Reτ = 3028

Reτ = 6019

u1u1
∗

u1u1
∗

–u1u2
∗

–u1u2
∗u2u2

∗u3u3
∗

u2u2
∗

u3u3
∗

x2
∗ x2

∗

Figure 9. (a) Kolmogorov-normalized u1u1
∗, u2u2

∗, u3u3
∗ and u1u2

∗ in the channel and pipe for Reτ � 2000.
They are plotted using the wall-parameter-normalized uiuj

+ in these two flows (Kaneda & Yamamoto 2021;
Pirozzoli et al. 2021). For reference, also shown (cyan curves) are the distributions of Lee & Moser (2015, 2019)
at Reτ = 2000 in figure 8. (b) Corresponding distributions on linear–log scales.

Another important feature of the distributions in figures 8–10 is the increased extent of
the collapse with increasing Reτ . This can also be observed in figure 11, which shows
the corresponding local slope of uiuj

∗, i.e. LSuiuj(x
∗
2) = d log uiuj

∗(x∗
2)/d log x∗

2 in the
channel flow at Reτ =5200 and 104, respectively. The local slope for u1u1

∗ at Reτ = 104

approaches 2/3 over the range 35 � x∗
2 � 70. This behaviour is similar to that for uiui

∗
(see figure 6) since u1u1

∗ is the largest contribution to uiui
∗ (figure 8). In contrast, u2u2

∗
and u3u3

∗ make relatively small contributions to uiui
∗ at small to moderate x∗

2, thus their
behaviours are unlikely to affect uiui

∗ significantly. Accordingly, the distributions of LSu3u3
do not approach 2/3, while those of LSu2u2 do not deviate significantly from 2/3 over
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x2
∗ = 9

x2
∗ = 4

x2
∗ = 90

x2
∗ = 90

x2
∗ = 40 x2

∗ = 40

x2
∗ = 9

x2
∗ = 4

–u
1
u 2∗

u 1
u 1∗

u 3
u 3∗

u 2
u 2∗

Reτ Reτ

Figure 10. (a,b) Dependence of u1u1
∗ and u3u3

∗ on Reτ at x∗
2 = 9 and 4. (c,d) Dependence of u2u2

∗ and
−u1u2

∗ on Reτ at x∗
2 = 90 and 40. Pipe: �, green (Pirozzoli et al. 2021). Channel: ◦, blue (Lee & Moser

2015, 2019; Hoyas et al. 2022); �, magenta (Kaneda & Yamamoto 2021). Boundary layer: ◦, red (Simens et al.
2009; Jiménez et al. 2010; Borrell et al. 2013; Sillero et al. 2013).

the range 70 � x∗
2 � 170 at Reτ = 104. Note that the local slopes of u1u1

∗, u2u2
∗, u3u3

∗
and u1u2

∗ approach 2, 4, 2 and 3, respectively, as x∗
2 → 0. This is not surprising since

u1 ∼ u3 ∼ x2 and u2 ∼ x2
2 as x2 → 0 (e.g. Pope 2000). Overall, figures 3–11 provide good

support for the present hypothesis in the context of the Reynolds stresses and the turbulent
kinetic energy. Evidently, it would be desirable to investigate further the finite Reynolds
number effect on uiui

∗ and uiuj
∗ at moderate x∗

2 by further increasing Reτ .
We conclude this section by examining the dependence on Reτ and Pr of θθ

∗. Figure 12
shows the distributions of θθ

∗
/Pr in the channel at Reτ = 500, 1000, 2000 and 5000, and

Pr = 0.01, 0.1, 0.71, 2 and 7, respectively. For clarity, the corresponding local slopes of
θθ

∗, i.e. LSθ (x∗
2) = d log θθ

∗
(x∗

2)/d log x∗
2, for only Pr = 0.71 and 7, and for Reτ ≥ 1000,

are shown in figure 13. We can observe from figure 12 that the relation θθ
∗
/Pr = x∗2

2
(see (2.10b)) is satisfied adequately at all Reτ and Pr (note that the Péclet number is
equal to Reτ Pr) over a significant range of x∗

2. An overall feature of this figure is that
at a given Pr, the collapse extends to increasingly larger values of x∗

2 as Reτ increases. In
particular, at Pr = 7, the collapse appears to extend to x∗

2 ≈ 10. More importantly, there is
an approximate plateau, of value approximately 37.5, over the range 3 � x∗

2 � 9, indicating
an emergence of a viscous-convective range, which is weakly affected by γ . This can also
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Figure 11. Local slope of uiuj
∗, i.e. LSuiuj (x

∗
2) = d log uiuj

∗(x∗
2)/d log x∗

2; for clarity, only the channel data at
Reτ = 5200 (dashed curves) and 104 (solid curves) are shown. The green dotted line corresponds to the value
2/3.

10–2

100

102

Pr = 0.71

Pr = 0.01

Pr = 0.1

Pr = 2

Pr = 7

10–1 100

x2
∗2

101 102 103

θθ
 

/P
r

∗

Reτ = 500

Reτ = 1000

Reτ = 2000

Reτ = 5000

x2
∗

Figure 12. Batchelor–Kolmogorov normalized θθ
∗
/Pr in a channel. They are plotted using the

wall-parameter-normalized θθ
+ (Alcántara-Ávila et al. 2018, 2021; Lluesma-Rodríguez et al. 2018;

Alcántara-Ávila & Hoyas 2021). Cyan curve shows x∗2
2 . The green dashed line corresponds to the value 37.5.

Note that the ε̄+ distributions of Lee & Moser (2015, 2019) at nearly the same Reτ (550, 1000, 2000 and 5200)
are used for normalization since the values of ε̄+ for Alcántara-Ávila et al. (2018, 2021), Lluesma-Rodríguez
et al. (2018) and Alcántara-Ávila & Hoyas (2021) are not available.

be seen in figure 13, which shows that the corresponding local slope of θθ
∗ is close to 0

in the same x∗
2 range at Pr = 7 and Reτ ≥ 1000. Over the range 30 � x∗

2 � 100, there is
a clear Reτ dependence for almost all distributions of θθ

∗
/Pr at any Pr (see figure 12).

The magnitude of LSθ at Pr = 0.71 also increases systematically with Reτ in this range
(figure 13). Even at the highest Reτ (=5000), the 2/3 power-law scaling predicted by
the present hypothesis is not approached. Similarly, at a larger Pr (=7) but a smaller
Reτ (=2000), the distribution of LSθ does not yet exhibit a plateau corresponding to
2/3. Evidently, larger values of Reτ and Pr are required to establish the 2/3 power-law
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Figure 13. Local slope of θθ
∗, i.e. LSθ (x∗

2) = d log θθ
∗
(x∗

2)/d log x∗
2, corresponding to the data in figure 12;

for clarity, only the data at Pr = 0.71, 7 and for Reτ ≥ 1000 are shown. The green dotted lines correspond to
the values 2/3 and 0.

scaling for θθ
∗ unequivocally. It is worth mentioning that in figure 12, we have used

the ε̄+ distributions of Lee & Moser (2015, 2019) at nearly the same Reτ (550, 1000,
2000 and 5200) for normalization since the values of ε̄+ for Alcántara-Ávila, Hoyas &
Pérez-Quiles (2018), Lluesma-Rodríguez, Hoyas & Perez-Quiles (2018), Alcántara-Ávila
et al. (2021) and Alcántara-Ávila & Hoyas (2021) are not available. We should stress that
the use of a different ε̄+ distribution will not affect the results in figure 12; this has been
discussed previously (Tang & Antonia (2022), see their appendix A) in the context of the
transport equation for ε̄θ . Following Tang & Antonia (2022), when we normalize the data
in figure 12 by using the ε̄+ data of Bernardini, Pirozzoli & Orlandi (2014) at Reτ = 550,
1000 and 2000, the resulting distributions (not shown here) cannot be distinguished from
those in figure 12.

4. Relationship to the wall scaling

We recall that the scaling of the mean velocity and mean scalar based on wall parameters
near the wall has received strong support in the literature. This is, however, not the case
for uiuj

+, uiui
+ and θθ

+, at least at finite Reλ. The evidence presented above indicates
that near the wall, the scaling of uiuj, uiui and θθ based on ε̄, ε̄θ and ν is superior to that
based on wall parameters. The relationship between the wall parameters and ε̄, ε̄θ and ν

can be quantified by the wall-parameter-normalized ε̄ and ε̄θ , i.e. ε̄+ and ε̄+
θ . Figure 14(a)

shows the distributions of ε̄+ and x+
2 ε̄+ in a pipe for Reτ = 495–6019; the latter allows

the collapse of ε̄+ distributions (if it exists) at large x+
2 to be examined more closely.

An overall feature of figure 14(a) is that the magnitudes of ε̄+ and x+
2 ε̄+ become

increasingly close to each other over a large range of x+
2 with increasing Reτ . The same

feature can also be observed in the channel for Reτ = 550–104 (see figure 1 of Tang
& Antonia 2022). In contrast, there is a nearly perfect collapse for the distributions of
ε̄+ and x+

2 ε̄+ over the range 10 � x+
2 � 30 for Reτ = 445–1988 in the boundary layer

(figure 14b). We report in figure 15 the distributions of ε̄+
θ and x+

2 ε̄+
θ in the channel for

Reτ = 500–5000. We can observe that the ε̄+
θ and x+

2 ε̄+
θ distributions collapse over the
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Figure 14. Distributions of ε̄+ and x+
2 ε̄+ in (a) the pipe, and (b) the boundary layer. They are plotted using

the data of Simens et al. (2009), Jiménez et al. (2010), Borrell et al. (2013), Sillero et al. (2013) and Pirozzoli
et al. (2021).
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Figure 15. Distributions of ε̄+
θ and x+

2 ε̄+
θ in a channel. They are plotted using the data of Alcántara-Ávila

et al. (2021).

range 20 � x+
2 � 60 for Reτ ≥ 500. The collapse appears to extend to larger and smaller

values of x+
2 at higher Reτ . It is expected that the collapse of ε̄+ and x+

2 ε̄+ in the boundary
layer should also extend to larger and smaller values of x+

2 as Reτ continues to increase
(figure 14b). On the other hand, the Reτ independence of uiui

∗, u1u1
∗, u2u2

∗, u3u3
∗, u1u2

∗

and θθ
∗ first emerges at the smallest x∗

2 and subsequently at increasingly larger x∗
2 as Reτ

increases. Consequently, as Reτ continues to increase, there should be an x2 range over
which uiuj

∗ and θθ
∗ versus x∗

2, and x+
2 ε̄+ and x+

2 ε̄+
θ versus x+

2 , collapse. Over this range
and irrespective of the flow, one should then be able to use the two types of normalization
interchangeably.
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Figure 16. Distributions of ε̄+ and x+
2 ε̄+ in a channel (Reτ = 104; Hoyas et al. 2022), pipe (Reτ = 6019;

Pirozzoli et al. 2021) and boundary layer (Reτ = 1988; Sillero et al. 2013).

Further, although the distributions of x+
2 ε̄+ in the boundary layer have become

Reτ -independent in the range 10 � x+
2 � 30 for Reτ � 445 (figure 14b), it is unclear if

those of x+
2 ε̄+ in the pipe flow at Reτ = 6019 and in the channel flow at Reτ = 104 have

become Reτ -independent in the same x+
2 range. Nonetheless, it is of interest to compare the

ε̄+ and x+
2 ε̄+ distributions at the highest Reτ in the three flows (figure 16). It is remarkable

that there is an approximate collapse in the range 12 � x+
2 � 40. In particular, if the

collapse of ε̄+ and ε̄+
θ can extend to the wall, i.e. at all locations in the range x2 � x2α ,

at least in a given wall flow, then ε̄+ and ε̄+
θ may become bounded at the wall (when

Reτ → ∞); here, x2α is the upper limit of the range for which there is collapse with respect
to ε̄+ and ε̄+

θ . In this situation, the Batchelor–Kolmogorov normalized mean velocity and
mean scalar should be Reτ -independent in the x2 range x2 < min(x2α, x2α1); here, x2α1 is
the upper limit of the range in which the wall-parameter-normalized mean velocity and
mean scalar collapse. Also, uiui

+ and θθ
+ versus x+

2 should be Reτ -independent in the
x2 range x2 < min(x2α, x2α2); here, x2α2 is the upper limit of the range for which uiui

∗

and θθ
∗ versus x∗

2 are Reτ -independent. This is fully consistent with Chen & Sreenivasan
(2021), who suggest that the peak value of u1u1

+ approaches a finite limit as the Reynolds
number becomes infinitely large because the dissipation rate at the wall is expected to be
bounded.

Since ε̄+ in a channel, boundary layer and pipe (figures 14 and 1 of Tang & Antonia
2022) and ε̄+

θ in a channel (figure 15) do not collapse as x+
2 → 0 in the present Reτ

range (≤104), it is expected that the Batchelor–Kolmogorov normalized mean velocity
(Ū∗

1) and mean scalar (Θ∗) should depend on Reτ as x+
2 → 0. As an example, we show

in figures 17(a,b) the distributions of Ū+
1 and Θ+ in a channel at Pr = 0.71. It is not

surprising that the x+
2 range over which both Ū+

1 and Θ+ collapse extends to increasingly
larger values of x+

2 as Reτ increases. On the other hand, the distributions of θ+
B collapse

at all Reτ over the range 20 � x+
2 � 60, while the u+

K distributions appear to collapse
approximately at larger Reτ (�5200) over the range 20 � x+

2 � 200. More importantly,
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Figure 17. (a,b) Distributions of Ū+
1 and Θ+ in a channel at Pr = 0.71. Also shown are the corresponding

distributions of u+
K and θ+

B . (c,d) Distributions of Ū∗
1 = Ū+

1 /u+
K , Ū∗

1/x∗
2, Θ∗ = Θ+/θ+

B and Θ∗/x∗
2. Data of

Lee & Moser (2015, 2019), Alcántara-Ávila et al. (2021) and Hoyas et al. (2022).

the distributions in figure 17(a,b) implies that there should be an x+
2 (�20, or equivalently,

x∗
2 � 11) range over which Ū∗

1 and Θ∗ distributions should be Reτ -independent. In
order to confirm this, we report in figures 17(c,d) the distributions of Ū∗

1 = Ū+
1 /u+

K
and Θ∗ = Θ+/θ+

B , respectively. Also shown are the same distributions premultiplied
by x∗

2, i.e. Ū∗
1/x∗

2 and Θ∗/x∗
2, which allow the collapse of Ū∗

1 and Θ∗ at large x∗
2 to be

examined more closely. As expected, Ū∗
1 for Reτ � 5200, and Θ∗ at all Reτ appears to

collapse for x∗
2 � 11; the larger Reτ is, the wider is the x∗

2 range over which Ū∗
1 and

Θ∗ are Reτ -independent. Only when ε̄+ and ε̄+
θ (or equivalently, u+

K and θ+
B ) become

Reτ -independent at the wall (when Reτ → ∞) can one expect Ū∗
1 and Θ∗ to collapse at

the wall. It is worth mentioning that if u+
K and θ+

B become Reτ -independent over an x+
2

range, then uiuj
∗ and θθ

∗ should be proportional to uiuj
+ and θθ

+ at a given x+
2 .

It is well-known that as Reτ → ∞, there should be an x+
2 range (far away from the wall)

over which −u1u2
+ = 1, which should be located in the log-law region. If ε̄+ collapses

in the same x+
2 range and there is an overlap region over which both −u1u2

+ = 1 and
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u1u2
∗ = C12x∗2/3

2 (inertial-convective range) are established unequivocally (again, this
may require Reτ → ∞), then we can write

u1u2
∗ = C12 x∗2/3

2 = u1u2
+

u+2
K

= C12(x+
2 u+

K )2/3 ⇒ u+
K = −1

C3/8
12 x+1/4

2

. (4.1)

Note that the relation ε̄+ = u+4
K = 1/η+4 has been used to derive (4.1), which is

consistent with the relation u+
K = (κx+

2 )−1/4 of Perry, Henbest & Chong (1986) obtained
from balancing production and turbulent energy dissipation in the log-law region. It is
worth mentioning that one can obtain ε̄+

θ ∼ 1/x+
2 by assuming that the production and

dissipation rate of the scalar variance are in balance in the log-law region. If in the overlap
region mentioned above (which should be a subrange of both the log-law region and the
inertial-convective range) there is 2/3 power-law scaling for u1u1

∗, u2u2
∗, u3u3

∗ and θθ
∗,

then it is not difficult to conclude that u1u1
+, u2u2

+, u3u3
+, uiui

+ and θθ
+ should be

constant. As examples, uiui
+ and θθ

+, after normalizing the first equations in (A5) and
(A6), can be written as

uiui
+ = Cq ε̄+2/3 x+2/3

2 , θθ
+ = Cθ ε̄+−1/3 ε̄+

θ x+2/3
2 . (4.2a,b)

Since ε̄+ ∼ ε̄+
θ ∼ 1/x+

2 in the overlap region, we can obtain

uiui
+ ∼ θθ

+ ∼ const. (4.3)

Finally, in the viscous-convective range at large Pr, if both ε̄+ and ε̄+
θ collapse in the same

x+
2 range, then θθ

∗ = const implies that θθ
+ = const θ+2

B .
All of the analysis above is based on the direct numerical simulations (DNS) data.

As pointed out by Smits (2022), over the last two decades or so, there have been major
advances in instrumentation, such as the nanoscale thermal anemometry probes developed
at Princeton (Kunkel, Arnold & Smits 2006; Bailey et al. 2010; Vallikivi et al. 2011;
Vallikivi & Smits 2014). This has allowed higher Reynolds number experimental data
to be obtained, up to Reτ ∼ 105, and thus has greatly advanced our understanding of the
scaling and structure of wall turbulence. It is hence desirable to examine experimental
data in wall flows at higher Reynolds numbers. Figures 18(a,b) show the distributions
of u1u1

+ in a pipe and a boundary layer (Vallikivi et al. 2011, 2015b; Hultmark et al.
2012, 2013; Rosenberg et al. 2013; Vallikivi, Ganapathisubramani & Smits 2015a) –
downloaded from https://smits.princeton.edu/data-sets. The corresponding values of the
viscous-scaled sensor length l+ = luτ /ν, where l is the sensor length, are shown in table 1.
We can observe that the maximum l+ is 45.5 in the pipe, and 75 in the boundary layer;
u1u1

+ will therefore be underestimated in the near-wall region (Smits et al. 2011a). For
this reason, a spatial filtering correction, proposed by Smits et al. (2011a), has been applied
to those data. For reference, we add in figures 18(a,b) the data of Samie et al. (2018) in
the boundary layer at Reτ = 6000–20 000 with l+ = 2.4–3.5, which allows all turbulence
scales, including the smallest scales, to be resolved.

The following comments can be made with regard to figure 18.
(i) Smits (2022) concluded that an outer peak in u1u1

+ emerges at high Reτ in the pipe
and boundary layer, and the inner peak increases with Reτ , up to Reτ = 20 000. Those
features are indeed observed in figures 18(a,b).

(ii) Based on the analysis in the context of (4.1)–(4.3), there should be an x+
2

range u1u1
+ ∼ const, which can indeed be observed by some of the distributions in
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Figure 18. (a,b) Distributions of u1u1
+ in a pipe and a boundary layer. Data of Vallikivi et al. (2011, 2015a,b),

Hultmark et al. (2012, 2013) and Rosenberg et al. (2013). Note that the values of the viscous-scaled sensor
length l+ = luτ /ν at each Reτ are shown in table 1. For reference, also shown are the data of Samie et al.
(2018) in a boundary layer at Reτ = 6000–20 000 with l+ = 2.4–3.5 (thick dashed curves). (c,d) Distributions
of u1u1

+ corresponding to (a,b) for only Reτ � 20 000. The solid line in (c) is u1u1
+ = 1.95 − 1.26 log(x2/δ).

The horizontal dotted lines in (c) indicate the values 6.66 and 6.95 respectively. The horizontal dotted lines in
(d) indicate the values 6.66, 6.93 and 7.35.

Pipe Reτ 3334 5412 10 481 20 250 37 690 68 371 98 190
l+ 3.1 5.0 9.7 18.8 35.0 31.7 45.5

Boundary layer Reτ 2622 4635 8261 14 717 25 062 40 053 72 526
l+ 5.8 10 17 33 29 47 75

Table 1. Values of the viscous-scaled sensor length l+ corresponding to the data in figures 18(a,b).

figures 18(a,b) for Reτ � 20 000. In order to examine this feature more closely, we
report in figures 18(c,d) the u1u1

+ distributions corresponding to figures 18(a,b) for only
Reτ � 20 000. In the boundary layer, there is an approximate plateau at all Reτ , with
values of approximately 6.66, 6.93 and 7.35, over the range 80 � x+

2 � 300 (except for
Reτ = 40 053 which has a slightly narrower plateau over the range 100 � x+

2 � 300),
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indicating an emergence of u1u1
+ ∼ const (figure 18d). An approximate plateau, with

a value of approximately 6.95, can also be observed in the pipe at Reτ = 37 690 over the
range 100 � x+

2 � 300 (figure 18c).
(iii) The boundary layer data of Samie et al. (2018) show that u1u1

+ increases
systematically with Reτ for Reτ = 6000–20 000 at any given x+

2 (figures 18a,b). However,
the magnitude of u1u1

+ at Reτ = 20 250 in the pipe is smaller than that in the boundary
layer at comparable Reτ (=20 000) for x+

2 � 100 (figure 18c). Also, the magnitudes of
u1u1

+ at Reτ = 68 371–98 190 in the pipe are smaller than or close to that in the boundary
layer at Reτ = 20 000 for x+

2 � 70. This may be due to the correction scheme of Smits
et al. (2011a). Indeed, Samie et al. (2018) compared the corrected u1u1

+ distributions
(l+ = 20–29), using the scheme proposed by Smits et al. (2011a), with the fully resolved
u1u1

+ distributions, measured by a nanoscale thermal anemometry probe (NSTAP), for
Reτ = 6000–20 000 (see their figure 9). Their results show that the correction scheme of
Smits et al. (2011a) performs adequately up to Reτ = 14 500; however, at Reτ = 20 000
(l+ = 29), the magnitudes of the corrected u1u1

+ distributions slightly underestimated
the fully resolved u1u1

+ measured by the NSTAP. It is expected that at given x+
2 in the

near-wall region, this underestimation may increase as Reτ and l+ increase.
(iv) As discussed above, figure 18 shows that u1u1

+ ∼ const can be observed for the
boundary layer data of Samie et al. (2018) over the range 80 � x+

2 � 300 at Reτ = 20 000.
If ε̄ ∼ x−1

2 (or equivalently, u+
K ∼ x−1/4

2 ) can be observed in the same x+
2 range, then

this would lead to u1u1
∗ ∼ x∗2/3

2 , the prediction of the present hypothesis. Although
figure 17 of Samie et al. (2018) shows that u+

K and η+ exhibit reasonable collapse in
the range 10 � x+

2 � 500 for Reτ = 6000–20 000, there is no discernible range of x+
2

over which we can observe u+
K ∼ x−1/4

2 or η+ ∼ x1/4
2 . One possible reason is that they

assumed local isotropy to estimate the mean turbulent kinetic energy dissipation rate,
i.e. ε̄iso = 15ν

∫ ∞
0 k2

x φu1(kx) dkx, which would result in ε̄ being underestimated. As an
example, we show in figure 19(a) the ε̄iso/ε̄ distribution in a channel at comparable Reτ

(=5200–8000). The magnitude of ε̄iso/ε̄ increases from 0 to 1 when x+
2 increases from the

wall to the region close to the centreline. Interestingly, ε̄iso/ε̄ appears to be independent of
Reτ at given x+

2 when x+
2 � 30. In order to obtain a more accurate estimation of ε̄ for the

data of Samie et al. (2018) at Reτ = 20 000, we assume that the ratio ε̄iso/ε̄ for x+
2 � 30

in the channel at Reτ = 8000 also applies to that in a boundary layer at large Reτ . The
u+

K distribution, based on the ‘new’ estimates of ε̄, is shown figure 19(a) (pink curve).
Also shown in figure 19(a) is the u+

K distribution, based on ε̄iso of Samie et al. (2018)
(black curve). It can be observed that the magnitude of u+

K , based on ε̄, is systematically
larger than that based on ε̄iso when x+

2 � 400. More importantly, u+
K ∼ x−1/4

2 is satisfied
adequately in the range x+

2 � 700, which will result in u1u1
∗ ∼ x∗2/3

2 in the overlap
region between u+

K ∼ x−1/4
2 and u1u1

+ = const; this is supported by the distribution in
figure 19(b), where we can observe that u1u1

∗ ∼ x∗2/3
2 is indeed satisfied approximately

over the range 32 � x∗
2 � 90. Note that at Reτ = 20 000, x∗

2 = 32 and 90 correspond to
x+

2 = 79 and 312, respectively. For reference, also shown in figure 19(b) is the u1u1
∗

distribution of Hoyas et al. (2022) in a channel at Reτ = 104. It is worth mentioning that
u1u1

∗ ∼ x∗2/3
2 in the range 35 � x∗

2 � 70 for the channel data. This is consistent with the
local slope shown in figure 11.
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Figure 19. (a) On the left, distributions of ε̄iso/ε̄ in a channel at Reτ = 5200 (red curve) and Reτ = 8000
(blue curve); data of Lee & Moser (2015, 2019) and Kaneda & Yamamoto (2021). On the right, distributions
of u+

K based on ε̄iso (black curve, which is reproduced from figure 17(b) of Samie et al. 2018) and ε̄ (pink
curve) in a boundary layer at Reτ = 20 000 (see text). Dotted curve is 0.46x+−1/4

2 . (b) Distributions of u1u1
∗

(= u1u1
+/u+2

K ) in a boundary layer at Reτ = 20 000 (see text). For reference, also shown as a cyan curve is the
u1u1

∗ distribution of Hoyas et al. (2022) in a channel at Reτ = 104. Dotted curve is ∼x∗2/3
2 .

(v) We recall that the attached eddy hypothesis proposed by Townsend (1976) predicts

u1u1
+ = B1 − A1 log(x2/δ), (4.4)

where B1 and A1 are constants. Equation (4.4) has been supported strongly by both the
experimental and numerical data at high Reτ (see the review of Marusic & Monty 2019).
We add the distribution of (4.4) in figure 18(c) with B1 = 1.95 and A1 = 1.26 (Samie et al.
2018). It is interesting that (4.4) predicted by the attached eddy hypothesis, and the present
prediction u1u1

+ ∼ const, are located in different x+
2 ranges at Reτ = 20 000. Namely,

(4.4) and u1u1
+ ∼ const can co-exist.

5. Relationship to the scaling of small-scale wall turbulence

We recall that Tang & Antonia (2022) have shown that an overall feature of the
Kolmogorov-normalized energy spectra φu1(k

∗
x3

), φu2(k
∗
x3

) and φu3(k
∗
x3

) is that their
collapse extends to increasingly smaller wavenumbers (larger scales) with increasing Reτ .
Rather than discussing the behaviour of φu1(k

∗
x3

), φu2(k
∗
x3

) and φu3(k
∗
x3

), we focus here on

the second-order velocity structure function (δui)
2(r∗

z ), which is closely related to φu1(k
∗
x3

),
φu2(k

∗
x3

) and φu3(k
∗
x3

) since (e.g. Dickey & Mellor 1979; Monin & Yaglom 2007)

(δui)
2(r∗

z ) = 2
∫ ∞

0
φui(k

∗
z ) (1 − cos(k∗

z r∗
z )) dk∗

z , (5.1)

where rz is the separation between two points in the x3 direction; note that the repeated
index i does not indicate summation in (5.1a,b) since we are interested in the behaviour
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Figure 20. Kolmogorov-normalized second-order structure function (δui)
2(r∗

z ) at x∗
2 = 5, 16, 50 and 150.

Dotted and solid/dotted curves correspond to the boundary layer data at Reτ = 1307 and 1988, respectively.
Dash-dotted, dashed and solid curves correspond to the channel data at Reτ = 1000, 2000 and 5200,
respectively. Note that as in figure 8, only the data for Reτ ≥ 1000 are shown.

of different components. Equation (5.1a,b) is obtained based on the relation (δui)
2(rz) =

2(u2
i − uiu′

i) = 2[
∫ ∞

0 φui(kz) dkz − ∫ ∞
0 φui(kz) cos(kzrz) dkz] (e.g. Dickey & Mellor 1979).

The advantage of (δui)
2(r∗

z ) is that it leads to 2u∗2
1 , 2u∗2

2 and 2u∗2
3 as r∗

z → L∗ (where L
is the integral scale). We select four typical locations, i.e. x∗

2 = 5, 16, 50 and 150. The
minimum r∗

z at different locations is calculated based on the Kolmogorov-normalized
resolution of the mesh in the x3 direction. Note that when data were not obtained at
exactly x∗

2 = 5, 16, 50 and 150, interpolation was used, based on available spectra closest

to these locations. Then (δui)
2(r∗

z ) is calculated based on (5.1a,b). Figures 20(a–d) show

the distributions of (δui)
2(r∗

z ) at x∗
2 = 150, 50, 16 and 5, respectively.

The following comments can be made with regard to figure 20.
(i) Local isotropy requires (δu1)

2(r∗
z ) = (δu2)

2(r∗
z ). There is a strong departure from

local isotropy at x∗
2 = 5 and 16 in the scale range r∗

z � 10. The departure gradually
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x2
∗

rz
∗ 

/ L∗ rz
∗ 

/ L∗ 
= 1

Figure 21. Sketch of ui∗2 versus x∗
2 (red curve) and (δui)

2(r∗
z )/2 versus r∗

z /L∗ (blue curves) on log–log scales.

The red arrow corresponds to the location r∗
z /L∗ = 1. Note that (δui)

2(r∗
z )/2 reaches u∗2

i as r∗
z /L∗ approaches 1.

decreases as x∗
2 increases, and appears to be negligible at x∗

2 = 150, suggesting an approach

towards local isotropy in the context of (δu1)
2(r∗

z ) = (δu2)
2(r∗

z ).

(ii) At x∗
2 = 5, (δu1)

2(r∗
z ) and (δu2)

2(r∗
z ) collapse at all r∗

z , whereas (δu3)
2(r∗

z ) appears

to collapse only for r∗
z � 30. Consequently, the degree of collapse is better for u∗2

1 and u∗2
2

than for u∗2
3 .

(iii) At x∗
2 = 16, only (δu2)

2(r∗
z ) collapses at all r∗

z . An important feature of the other
distributions is that at a given x∗

2, the collapse extends to increasingly larger scales with
increasing Reτ . One thus expects that as Reτ is increased to a sufficiently large value,
the collapse would extend to all r∗

z . In this situation, the sketch of the predictions for

u∗2
i shown in figure 2 can be further extended to the r∗

z direction, which is shown in
figure 21. Note that r∗

z has been divided by a Kolmogorov-normalized integral scale L∗

so that (δui)
2(r∗

z )/2 leads to u∗2
i as r∗

z /L∗ → 1 (or equivalently, rz/L → 1). For clarity,

distributions of (δui)
2(r∗

z )/2 for only three values of x∗
2 are shown. We emphasize that as

r∗
z /L∗ → 1 and x∗

2 → δ∗ (sufficiently far away from the wall), (δui)
2(r∗

z )/2 should go to

∞ as Reτ → ∞. However, (δui)
2(r∗

z )/2 should be independent of the Reynolds number
both in the region x∗

2 
 δ∗ (including all scales) and in the scale range r∗
z /L∗ 
 1 as

x∗
2 → δ∗, as Reτ → ∞; the latter corresponds to the prediction of the classical hypotheses

of Kolmogorov (1941). Although not discussed here, the same remark can be made with
regard to (δui)

2(r∗
x )/2 and the scalar structure function (δθ)2/2 in both the r∗

x and r∗
z

directions.
Further, the collapse of x+

2 ε̄+ distributions in the boundary layer (figure 14b) in the range
10 � x+

2 � 30 implies that the wall parameters and the Kolmogorov scales can be used
interchangeably for quantities such as the energy spectra and the second-order velocity
structure function in the same x+

2 range. Indeed, Samie et al. (2018) have shown that the
wall-parameter-normalized premultiplied energy spectra at x+

2 = 15 and 24, 92, 178 and
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277 collapse reasonably well for the small wavelength ranges in the boundary layer at
Reτ = 6000, 10 000, 14 500 and 20 000, respectively; the collapse of the premultiplied
energy spectra extends to larger x+

2 , up to 277, suggesting that the ε̄+ distributions for
Reτ � 6000 in the boundary layer have extended to at least x+

2 ≈ 277. This can be inferred
from figure 17 of Samie et al. (2018), which shows that the wall-parameter-normalized
Kolmogorov length and velocity scales (the energy dissipation rate was estimated by
integrating the one-dimensional streamwise dissipation spectrum) exhibit reasonable
collapse in the range 10 � x+

2 � 500.

6. Exploratory predictions for high-order moments at all scales

The predictions of the present hypothesis can be extended to high-order moments. For
simplicity, we consider only the velocity and passive scalar statistics un

i
∗

and θn∗ for n ≥ 3,
which can be expressed as

un
i
∗ = fn(x∗

2), θn∗ = fθn(x∗
2), (6.1a,b)

where the functions fn and fθn are independent of the Reynolds and Péclet numbers
once appropriate values of the Reynolds and Péclet numbers are reached. In the
inertial-convective range 0 
 x∗

2 
 δ∗,

un
i
∗ = Cnx∗n/3

2 , θn∗ = Cθnx∗n/3
2 . (6.2a,b)

Finally, at large Pr, there exists a viscous-convective range for θn∗ between the
inertial-convective and the viscous-diffusion ranges over which

θn∗ = const. (6.3)

Combining all predictions of the present hypothesis with those of the small-scale wall
turbulence hypothesis proposed by Tang & Antonia (2022), we can formulate a more
complete hypothesis for turbulent statistics in wall turbulence, as follows.

In wall turbulence at sufficiently high Reynolds and Péclet numbers, except for the
large-scale quantities in the region far away from the wall, all turbulent statistics are
independent of the Reynolds and Péclet numbers when the normalization uses ε̄, ε̄θ and
ν. They depend only on the turbulent scale (or wavenumber) and the distance from the
wall. The larger the Reynolds and Péclet numbers, the larger the distance from the wall
and the range of turbulent scales over which this hypothesis applies. In particular, there
exist two inertial-convective ranges over which the scaling parameters are ε̄ and ε̄θ , and
two viscous-convective ranges (at large Pr) over which the effect of ν is important. For
large-scale quantities such as un

i
∗

and θn∗, the inertial-convective range is located in the
region 0 
 x∗

2 
 δ∗. The other pertains to the small-scale quantities and is located in the
region 0 
 r∗ 
 L∗ as x∗

2 → δ∗. Also, there are two viscous-convective ranges for the
scalar variance and the scalar structure function, located between the viscous-diffusive
and inertial-convective ranges.

The predictions of the above complete hypothesis are sketched in figure 22, which shows
the approximate locations and scale ranges over which the scaling based on ε̄, ε̄θ and
ν is tenable. We recall that figure 21 is for the second-order velocity structure function
(δui)

2(r∗
z ), whereas figure 22 is for any quantity (which can be a function of the turbulent

scale r∗ and x∗
2). If we focus on the quantity (δui)

2(r∗
z ), then figure 22 can be considered,

at least approximately, as the projection of the three-dimensional plot of figure 21 onto the
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x2
∗ → δ

∗
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Figure 22. Summary of predictions, based on the present hypothesis, for turbulent statistics in wall turbulence
when the normalization uses ε̄, ε̄θ and ν at sufficiently high Reynolds number. The red line is the upper limit
for x∗

2 and r∗ over which the scaling based on ε̄, ε̄θ and ν holds. Note that the two viscous-convective ranges
apply only to the passive scalar at large Pr. Note also that the present scaling does not apply in the region
x∗

2 → δ∗ and r∗ → L∗. The dashed curve is the upper limit of the viscous-dominated range. Here, r can be
either rx or rz.

r∗
z –x∗

2 plane, after r∗
z /L∗ in figure 21 is multiplied by L∗. We believe that the predictions

in figure 22 could be one possible ultimate statistical state of wall turbulence. It is evident
that this complete hypothesis for wall turbulence needs to be tested against data, especially
for moments of order higher than 2, in future investigations.

Finally, we stress that as Reτ → ∞, if both ε̄+ and ε̄+
θ collapse onto unique curves at

all locations in the range x+
2 � x+

2α in all wall flows, then the wall parameters and the
scaling parameters ε̄, ε̄θ and ν can be used interchangeably in the same x+

2 range. In this
case, the scaling of wall turbulence based on wall parameters should also be tenable in
the range x+

2 � x+
2α (figure 23), which shows the approximate locations over which the

scaling based on wall parameters is tenable. This is consistent with the perspective of Chen
& Sreenivasan (2022) whereby wall-parameter-normalized statistics displaying non-zero
wall values or near-wall peaks may become bounded at infinitely large Reynolds numbers.
In particular, in the overlap region between ε̄ ∼ ε̄θ ∼ x−1

2 and the inertial-convective
range for large-scale quantities such as un

i
∗

and θn∗, wall-parameter-normalized large-scale
quantities should approach constant values, as indicated in figure 23. We can demonstrate
this by using un

i
∗

as an example, i.e.

un
i
∗ = Cnx∗n/3

2 = un
i
+

u+n
K

= Cn(x+
2 u+

K )n/3

⇒ un
i
+ = Cnx+n/3

2 u+4n/3
K = Cnx+n/3

2 ε̄+n/3 ∼ Cn. (6.4)
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x2
+

r+

x2
+ = x2

+
α x2

+ → δ+0

Viscous-dominated range

Overlap region: turbulent

statistics at large scales are

constant

Scaling of wall turbulence

based on wall parameters

0 � x2
+ � δ+

Figure 23. Summary of predictions for turbulent statistics in wall turbulence in the range x+
2 � x+

2α when the
normalization uses wall parameters at sufficiently high Reynolds number. The red line is the upper limit for x+

2
and r+ over which the scaling based on wall parameters holds. Note that this scaling requires both ε̄+ and ε̄+

θ to
collapse onto unique curves at all locations in the range x+

2 � x+
2α , and does not apply in the region x+

2 > x+
2α .

The dashed curve is the upper limit of the viscous-dominated range. Here, r can be either rx or rz.

We expect that a wall-parameter-based scaling could be another possible ultimate
statistical state of wall turbulence. Again, this needs to be tested in the
future.

We recall that a region where u1u1
+ ∼ const can be observed in some of the

distributions in figures 18(c,d) for Reτ � 20 000. However, the magnitude of the constant
continues to depend on Reτ . This implies that a value of Reτ , even when equal to 72 526
(in figure 18d), may not be ‘sufficiently high’ for uiui

+ = const (independently of Reτ ) to
be established unequivocally. In order to demonstrate this further, we now focus on the
behaviour of −u1u2

+ at large Reτ . A well-known relation for the total shear stress in the
channel is

τw

(
1 − x2

δ

)
= ρν

dŪ1

dx2
− ρ u1u2, (6.5)

which, after trivial manipulations, can be rewritten as

− u1u2
+ = 1 − x+

2
Reτ

− dŪ+
1

dx+
2

. (6.6)

If we focus on the region away from the wall and channel centreline, then dŪ+
1 /dx+

2 may
be replaced with the log-law region, i.e.

− u1u2
+ = 1 − x+

2
Reτ

− 1
κx+

2
. (6.7)

Smits (2022) concluded that κ = 0.40 ± 0.02 based on a large amount of data measured
in the Princeton SuperPipe using both Pitot tubes and hot wires. Figure 24(a) shows the
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+
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–
u 1
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+
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Figure 24. (a) Distributions of −u1u2
+ (curves) based on (6.6) at Reτ = 104, 25 062, 40 053 and 72 526.

Note that the calculation of (6.6) is based on the DNS data of dŪ+
1 /dx+

2 in a channel at Reτ = 104 (Hoyas
et al. 2022) and the experimental data at Reτ = 25 062–72 526 (Vallikivi et al. 2011, 2015a,b; Hultmark et al.
2012, 2013; Rosenberg et al. 2013), respectively (see the inset). (b) Distributions of −u1u2

+ (curves) based on
(6.7) with κ = 0.42 (Smits 2022) at Reτ = 104, 25 062, 40 053 and 72 526. Also shown are the calculations
based on (6.6) at Reτ = 25 062 (◦, blue), 40 053 (◦) and 72 526 (◦, green), after replacing dŪ+

1 /dx+
2 in the

range x+
2 < 150 with the DNS data of Hoyas et al. (2022) (see text). For comparison, also shown in (a,b) is the

−u1u2
+ distribution (◦, red) of Hoyas et al. (2022) at Reτ = 104.

distributions of −u1u2
+ based on (6.6) at Reτ = 104, 25 062, 40 053 and 72 526. To plot

(6.6), we used the DNS data of dŪ+
1 /dx+

2 at Reτ = 104 in a channel (Hoyas et al. 2022)
and the experimental data at Reτ = 25 062–72 526 in a boundary layer (Vallikivi et al.
2011, 2015a,b; Hultmark et al. 2012, 2013; Rosenberg et al. 2013), respectively; they are
shown in the inset. The use of dŪ+

1 /dx+
2 in a boundary layer should be reasonable since it

is well-accepted that Ū+
1 is universal in the inner layer of wall flows. Values Reτ = 25 062,

40 053 and 72 526 correspond to the three largest values of Reτ in figures 18(b,d). We can
observe that the variation of −u1u2

+ with Reτ is systematic in the region x+
2 � 150. In

the range x+
2 < 150, the distributions at Reτ = 25 062–72 526 exhibit some scatter. This

reflects the scatter of dŪ+
1 /dx+

2 in the same x+
2 range (see the inset). Figure 24(b) shows

the distributions of −u1u2
+ based on (6.7) with κ = 0.42 (Smits 2022) at the same Reτ as

in figure 24(a). Also shown are the distributions based on (6.6) at Reτ = 25 062–72 526,
after replacing dŪ+

1 /dx+
2 in the range x+

2 < 150 with the DNS data of Hoyas et al. (2022)
at Reτ = 104. There is adequate agreement between (6.6) and (6.7). Finally, the −u1u2

+
distribution of Hoyas et al. (2022) at Reτ = 104 is shown in figures 24(a,b). It agrees
reasonably well with (6.6) and (6.7). It is evident that even at Reτ = 72 526, −u1u2

+ = 1
is not established (figure 24). We next quantify, albeit approximately, the values of Reτ

required for −u1u2
+ = 1 to be established. Figure 25 shows the distributions of −u1u2

+,
based on (6.7) with κ = 0.42 (Smits 2022), at Reτ = 104, 105 and 106. It appears that
Reτ ∼ 106 is needed for −u1u2

+ ≈ 1 to be established in an x+
2 range of approximately

two decades (2 × 102 � x+
2 � 104).
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Figure 25. Distributions of −u1u2
+ based on (6.7) with κ = 0.42 (Smits 2022) at Reτ = 104, 105 and 106.

7. Concluding remarks

In summary, a hypothesis has been proposed to describe the behaviour of the Reynolds
stresses, turbulent kinetic energy and scalar variance in wall turbulence. The major
conclusions can be summarized as follows.

(i) When the normalization is based on ε̄, ε̄θ and ν, the independence on the Reynolds
and Péclet numbers predicted by the present hypothesis is first satisfied at very small x∗

2
before gradually extending to larger x∗

2 as Reτ increases.
(ii) At large but not infinitely large x∗

2, the magnitudes of the Kolmogorov-normalized
Reynolds stresses and turbulent kinetic energy depend on Reτ . Further, the scalar variance,
when normalized by ε̄, ε̄θ and ν, depends not only on Reτ at a given Pr, but also on
the Péclet number Reτ Pr at a given Reτ . The normalized quantities vary with Reτ and
Reτ Pr systematically, suggesting the importance of the finite Reτ and Reτ Pr effects in
the context of establishing the inertial-convective range, i.e. the emergence of the 2/3
power-law scaling. Although independence from the Reynolds and Péclet numbers of those
quantities has not yet been observed in the present Reτ (≤104) and Pr (≤7) ranges at
moderate x∗

2, a trend towards a 2/3 power-law scaling is discernible for some quantities,
such as the turbulent kinetic energy, and the streamwise and wall-normal components of
the Reynolds stresses.

(iii) At the highest Pr (= 7), there is a trend towards a plateau for the scalar variance
when normalized with ε̄, ε̄θ and ν. The plateau falls between the inertial-convective
and viscous-diffusive ranges for Reτ = 500–2000, suggesting an emergence of a
viscous-convective range.

The relationship between the wall-parameter normalization and the normalization based
on ε̄, ε̄θ and ν has been discussed in the context of ε̄+ and ε̄+

θ . At finite Reλ and Pr Reλ,
the scaling based on ε̄, ε̄θ and ν is superior to that based on wall parameters in the context
of uiuj, uiui and θθ . We should stress that if the collapse of the distributions of ε̄+ and ε̄+

θ

in wall flows extends to the wall, then both the wall parameters and scaling parameters ε̄,
ε̄θ and ν can be used interchangeably in the near-wall region in the context of the Reynolds
stresses, turbulent kinetic energy, scalar variance, mean velocity and mean scalar; this may
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require Reλ → ∞. In particular, as Reλ → ∞, there should be an overlap range (far away
from the wall) over which both −u1u2

+ = 1 and u1u2
∗ = C12x∗2/3

2 (inertial-convective
range) are established unequivocally, and ε̄+ collapses perfectly. Further, in this overlap
range, u1u1

+, u2u2
+, u3u3

+, uiui
+ and θθ

+ should be constant. In the viscous-convective
range at large Pr, it is expected that θθ

+ = const θ+2
B , when both ε̄+ and ε̄+

θ collapse in
the same x+

2 range.
Finally, the main message of figure 20 is that in the wall region, the Reτ independence

of (δui)
2(r∗

z ) is first established at all locations for small scales, and extends to increasingly
larger scales with increasing Reτ . In the region very near the wall, this Reτ independence
can extend to all scales and to increasingly larger values of x∗

2 with increasing Reτ ;

in the Reτ range for the currently available data, the x∗
2 range over which (δui)

2(r∗
z )

collapses depends on the specific quantity investigated. As Reτ → ∞, (δui)
2(r∗

z ) should be
Reτ -independent both in the near-wall region x∗

2 
 δ∗ (at all scales) and in the small-scale
range r∗

z /L∗ 
 1 as x∗
2 → δ∗. This picture leads to one possible ultimate statistical state of

wall turbulence in the context of the second-order velocity structure function (figure 21).
Conceptual summary sketches of the predictions of the present hypothesis, combined
with those of the small-scale wall turbulence hypothesis (Tang & Antonia 2022), are
given in figure 22 when the normalization is based on ε̄, ε̄θ and ν, and in figure 23
when the normalization uses wall parameters. The latter is consistent with the restoration
of wall scaling at asymptotically high Reτ (Chen & Sreenivasan 2021, 2022). Finally,
we should stress that large-scale turbulent statistics, normalized by wall parameters,
are approximately constant over the range 0 
 x+

2 
 δ+ (figure 23). This requires
ε̄ ∼ ε̄θ ∼ x−1

2 .

Acknowledgements. S.L.T. thanks Professor Pirozzoli for the pipe data. We are grateful to all the authors
cited in the figures for sharing their data.

Funding. S.L.T. wishes to acknowledge support given to him from NSFC through grant 91952109,
from Guangdong Basic and Applied Basic Research Foundation through grant 2023B1515020069, and
from the Research Grants Council of Shenzhen Government through grants RCYX20210706092046085 and
GXWD20220817171516009.

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
S.L. Tang https://orcid.org/0000-0001-6379-8505.

Appendix A. Dimensional analysis for uiui and θθ in the range 0 � x∗
2 � δ∗

According to the present hypothesis, at a sufficiently, though not infinitely, large distance
from the wall (0 
 x∗

2 
 δ∗), uiui and θθ should depend only on ε̄ and ε̄θ , i.e.

uiui = f (ε̄, x2), θθ = g(ε̄θ , x2). (A1a,b)

Application of the Π theorem leads to

uiui = Cqε̄
α1xα2

2 , θθ = Cθ ε̄
α3 ε̄

α4
θ xα5

2 , (A2a,b)

where Cq and Cθ are constants. Therefore, we obtain

L2T−2 ∼ Lα2L2α1T−3α1, Q2 ∼ Q2α4Lα5L2α3T−3α3T−α4, (A3a,b)

therefore α1 = α2 = 2/3 and α3 = −1/3, α4 = 1, α5 = 2/3. (A4a,b)
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The two equations in (A2a,b) can finally be written as

uiui = Cq(ε̄x2)
2/3, or uiui

∗ = Cqx∗2/3
2 , (A5)

θθ = Cθ ε̄
−1/3ε̄θx2/3

2 , or θθ
∗ = Cθx∗2/3

2 . (A6)

Appendix B. Transport equations for uiui in the range 40 ≤ x+
2 ≤ 200

We have explained why the scaling based on ε̄, ε̄θ and ν is superior to that based on
wall parameters in the near-wall region; see the discussion in the context of (2.3a,b) and
(2.4a,b), which are the transport equations for the turbulent kinetic energy uiui and the
scalar variance θθ , respectively, in the near-wall region. We now discuss why the present
scaling is superior to the wall scaling further away from the wall. For convenience, the
discussion here is in the context of the transport equations for uiui. Figure 26(a) shows all
terms in (2.1), i.e. the transport equations for uiui, after normalizing by wall parameters, in
the region 40 ≤ x+

2 ≤ 200. We can observe that (2.1) can be approximately simplified to

− u1u2
+ ∂Ū+

1

∂x+
2

≈ ε̄+. (B1)

Although not shown here, the ratio −u1u2
+(∂Ū+

1 /∂x+
2 )/ε̄ is in the range 0.91–1.11 for

40 ≤ x+
2 ≤ 200 at Reτ = 104. Namely, (B1) is satisfied within approximately 10 %. We

can observe from figure 26(a) that the variation of the wall-parameter-normalized PU and
D terms with Reτ is systematic at all x+

2 , except for the D term when Reτ ≥ 5200. However,
after normalizing (B1) by ε̄ and ν, we obtain

− u1u2
∗ ∂Ū∗

1
∂x∗

2
≈ ε̄∗ = 1. (B2)

The behaviour of Ū∗
1 has been discussed in the context of figure 17. Briefly, Ū∗

1 for Reτ �
2000 appears to collapse for x∗

2 � 11, and the larger Reτ , the wider the x∗
2 range over which

Ū∗
1 is Reτ -independent (see the discussion of figure 17c). Therefore, (B2) implies that

−u1u2
∗ should collapse at large Reτ and large x∗

2. This is fully consistent with the collapse
of −u1u2

∗ in three wall flows when Reτ > 1000, up to x∗
2 = 40 (see figure 10d). Note that

x∗
2 = 40 corresponds to x+

2 = 103 at Reτ = 104. In contrast, the variation in the channel of
−u1u2

+ for Reτ > 1000 and x+
2 � 103 is systematic (see figure 26b). The present scaling

is superior to that based on wall parameters in the context of (B1) and (B2) over the present
Reτ range. It is worth mentioning that (2.1) can be generalized to the scale-by-scale energy
equation, or equivalently the transport equation for the second-order velocity structure
function (see, for example, (2.23) of Danaila et al. (2001), or (3.4) of Marati, Casciola &
Piva 2004). Applying the limit at scale → ∞ to the scale-by-scale energy equation yields
the transport equation for uiui, i.e. (2.1). The scale-by-scale energy equation describes the
relative importance of the energy production, energy transfer and dissipation in different
regions of the flow and for different ranges of scales; it also highlights the importance
of the local value of ε̄ in the context of the present scaling. Based on our analysis in the
context of (2.1), it can be expected that as Reτ → ∞, all the terms in the scale-by-scale
energy equation, after normalizing by ε̄ and ν, in the range x∗

2 
 δ∗ at all scales, should
be independent of Reτ , which leads to the Reτ independence of processes involved in the
energy production, energy transfer and energy dissipation in wall flows. This expectation
is consistent with our prediction summarized in figure 22, and merits further investigation.
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Figure 26. (a) Distributions of terms in (2.1), normalized by wall parameters, in a channel. (b) Distributions
of −u1u2

+ in a channel. Data of Lee & Moser (2015, 2019), Alcántara-Ávila et al. (2021) and Hoyas et al.
(2022).
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