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Abstract. A natural geometrical representation of the geodesic flow on a surface M
of constant negative curvature is given in which the base transformation is the shift
on a (finite type) space of shortest words relative to a fixed generating set for TTI(M)

and the height function is the hyperbolic distance across a fundamental region for
TT,(M). This representation is obtained by comparing cutting sequences on M with
generalised continued fraction expansions of endpoints on U.

1. Introduction
The results in this paper arise from attempts over several years to understand the
precise relation between various different approaches to coding geodesies on a
surface M of constant negative curvature, possibly with boundary or punctures.
Some of the ideas involved have already been discussed in [15], [16], [18]. It is of
course well known by the general methods of the theory of Anosov maps that the
geodesic flow on such surfaces (at least in the compact case) may be represented
by a flow over a subshift of finite type [4]. However, work of Morse [10], [12],
Artin [2] and Hedlund [6], [7] in the early part of this century indicates that in
special cases there are other rather natural methods to obtain codings on an alphabet
whose symbols are a generating set for TT^M), which have a very appealing relation
to the underlying geometry of the surface. It is these ideas to which we return here.

There are two essentially different methods involved which we called in [16] the
Morse and Artin methods respectively. In fact, as pointed out by Hedlund (private
correspondence) what we called the Morse method in [16] is more properly attributed
to Koebe (cf. [8] and our remarks below). In this paper we shall therefore refer to
it as the Koebe-Morse method. The Artin method has the advantage of representing
geodesies by sequences in a subshift of finite type, while the Koebe-Morse method
has a more obvious relation to the dynamics of the geodesic flow. Briefly, the two
methods are as follows. The Koebe-Morse method is to code a geodesic by the
sequence in which it cuts a fixed set of curves on M. These fixed curves are chosen
to be projections of the sides of some fundamental region for F = 7r,(M) acting in
the universal cover [ JcDofM, where D is the hyperbolic disc. Since the sides of
a fundamental region for F are naturally associated to generators of F, one obtains,
for each geodesic y, a doubly infinite sequence of generators called the cutting
sequence of y.
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The Artin method consists of lifting a geodesic on M to U and coding the
endpoints of some suitable lift at infinity. Points at infinity can be represented as
semi-infinite sequences of generators of F using the boundary expansions of [5].
Thus a pair of endpoints determines a doubly infinite sequence of generators. In
the special case of the modular surface H/SL(2, Z), these boundary expansions
reduce to the continued fraction expansions of points on U u {oo}. For a closed
surface they may be taken to be Nielsen boundary expansions [14].

Our main results (theorems I and II, § 6) are that there is for quite general groups
TTX(M) a very precise relation between the Koebe-Morse and Artin codings. We
consider two sets of geodesies in D: the set 9? of geodesies which intersect some
fixed fundamental region R, and the set sd of geodesies whose doubly infinite
boundary expansions satisfy a certain set of admissibility rules. There are naturally
defined maps on the two sets; on Sk the first return map x which takes a geodesic
y to the equivalent geodesic r(y) which enters R at a point equivalent to the point
where y leaves R, and on si the shift map <r. If we let e(y) be the label of the side
where y enters R, then the sequence . . . e(y), e(ry), e(r2y), . . . is exactly the cutting
sequence of y.

In the simplest cases where R has no vertices in D the sets Sft and sd coincide.
This situation is studied in detail in § 2. More generally, 91 and si differ whenever
7r,(M) is not free. The discrepancy is closely related to the possible different ways
of representing elements in rr^M) as shortest words in a given set of generators.
The content of theorem I is that there is a bijection T between 52 and si, and in
theorem II we show that T conjugates the maps T, a. The map T is the identity on
the large intersection of 0t with si. It is moreover piecewise equal to fixed elements
of TTX(M), and the region on which T equals a fixed element has piecewise smooth
and geometrically defined boundaries.

The map T may be viewed as a natural conjugacy between a cross-section of the
geodesic flow and a subshift of finite type. The alphabet for this subshift consists
of a set of generators of ir^M) and the admissible sequences are such that the finite
blocks which appear run through a shortest representative for each element in ir,(M)
exactly once (theorem 4.2). From T one obtains a representation of the flow as a
special flow over this subshift, where the height function is simply the hyperbolic
length of the intersection of a geodesic in 9t with R.

Historically the two methods of coding seem to have arisen more or less indepen-
dently. Morse in [10], [11] used a method related to the cutting sequence method
(involving describing curves on M as unions of certain given geodesic segments)
to study geodesies on any open surface of variable negative curvature. Contrary to
the suggestion of Bott in the introduction to [13], Morse did not introduce cutting
sequences as such until his 1938 notes [12]. The cutting sequence method seems to
have been first exploited by Koebe [8]t who used exactly our cutting sequences for
open surfaces (of which a special case is described in our § 2). For closed surfaces

t Added in proof: c.f. also the reference in [8] to the use of the same ideas in an early manuscript version
(1917) of Koebe's Preisschrift {Ada Math. 50 (1927). We have, to date, been unable to trace this
manuscript, which was deposited in the Mittag-Leffler Institute.
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Koebe used what is now called a 'pants decomposition' of the surface and combined
cutting sequences in the constituent pants with 'twist parameters' around their
boundaries to obtain a one-one correspondence between geodesies (open or closed)
and a certain class of symbols. In addition, Koebe dealt quite generally with both
orientable and non-orientable surfaces, and allowed the possibility of both parabolic
cusps and infinite connectivity.

The 1938 notes of Morse [12] use cutting sequences for open surfaces and the
more or less equivalent idea of polygonal chains for closed surfaces. A detailed
study of these chains appears in [12, Part II] for the symmetrical surface of genus
g with the standard (a, b) generators. This analysis is closely related to the work
we do to get from theorem II0 to theorem II. The essential point was to show that
polygonal chains corresponding to geodesies on a closed surface could be modified
systematically to sequences in a certain subshift specified by a finite collection of
rules (in modern terminology, a sofic system) so that every admissible sequence
corresponded to a geodesic. Thus the existence of geodesies with certain dynamical
properties could be established, as in the earlier work of Artin, Nielsen and Koebe,
simply by producing admissible sequences of the required kind. The process of
modification is done geometrically by replacing chains of adjacent copies of R by
slightly larger geodesically convex regions. Cutting sequences are then replaced by
sequences which systematically keep to one side of the enlarged region, and these
sequences are shown to form a s lie system. The rules derived for this system are
exactly the rules (originally found quite independently) for the boundary expansions
of [5].

Artin in [2] used the continued fraction expansions of the endpoints of special
lifts of geodesies to prove the existence of a geodesic dense on the modular surface.
A similar method appears in Nielsen [14] for the symmetrical surface of genus g.
In [6], Hedlund used Artin's ideas to prove ergodicity of the geodesic flow on this
surface and later used Nielsen boundary expansions to obtain the same result on
closed surfaces [7].

In the special case of SL (2, Z) and continued fractions, the idea of a connection
between cutting sequences and boundary expansions arose in connection with
number theory and goes back at least to H. J. Smith [19] who gave applications to
the theory of reducing quadratic forms. Much more recently Adler and Flatto [1]
have described a coding for a cross-section map of the geodesic flow on H/SL (2, Z)
in terms of the continued fraction transformation which is much in the spirit of our
work. Related ideas appear in [9], and we have treated this case in detail in [18].

In this paper we consider all finitely generated groups T generated by the side
pairings of fundamental regions R with even corners, i.e. such that T(dR) is a union
of complete geodesies in H. This condition appears in [8] and was used in [5] to
define boundary expansions geometrically. We here make heavy use of the result
in [3] that, under this assumption, cutting sequences are shortest paths in the word
metric of T. We also assume that R is not triangular (thus excluding the case of
SL (2, Z) with the usual fundamental region). This last restriction is probably only
technical (cf. remark 3.3) but the necessary geometry is somewhat different and we
have not worked out the special arguments needed to treat it.
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Because of the complications of the general case we begin in § 2 by describing
the special case of a three-holed sphere (pair of pants). In this case the sets 01 and
si and the maps <r, T coincide (theorems Io, II0). This simple relation between cutting
sequences and boundary expansions occurs because TTI(M) is a free group and the
group graph is a tree. Boundary expansions are obtained by considering points in
the limit set of F as ends of this tree. Hedlund (private correspondence) has
independently given a similar description of this example.

In § 3 we review briefly the necessary facts and results from [3] about geodesic
cutting sequences and in § 4 collect results from [5] on boundary expansions. In
§ 5 we prove technical results which are needed for the main theorems I and II
which appear in § 6.

The author would like to record her thanks to G. Hedlund for a number of
enlightening comments on the history of the subject and particularly for bringing
her attention to [8].

Since doing this work, the author has learnt that Adler and Flatto have also made
use of the condition of even corners to give simple conjugacies between cross-sections
of the geodesic flow and maps on the unit interval, in the same spirit as in [1].

Notation. Throughout this paper we use x to denote x"l.

2. The three-holed sphere
We shall illustrate our programme by taking up the example of the three-holed
sphere. This is a special case of the discussions of Morse [10], [11], [12] and Koebe
[8]. We shall describe the cutting sequences and then develop a corresponding
Artin-type coding by introducing suitable boundary expansions and to see that in
this special case the Koebe-Morse and Artin codings coincide. As an application
we show how to represent the geodesic flow on TjM by a special flow over a shift
constructed from Artin sequences.

FIGURE l(a)

Take Mx to be a complete hyperbolic surface with three infinite funnels, and let
M be the compact part of Mx bounded by the unique closed geodesies which cut
off the funnels. Any geodesic which cuts one of these lines goes to infinity in the
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funnel and hence never returns to the bounded region M. Cut M along the common
perpendiculars P7, P2 joining one of these boundary curves to the other two and
lift to D to obtain figure l(a). Let TT denote the natural projection O-> Mx.

FIGURE l(b)

The (closed) region in figure l(b), which is a lift of M, extends to the infinite
region Rx which projects to Mx. Without loss of generality we may assume that
0 e R. The lines P* lift to curves P, which form the sides of R^, and which are
identified by isometrics a, b of D as shown. Then (a, b\ ) is a presentation of
T=T7,(M). The copies of R adjacent to R along sides of R are of the form
eR, e e FR = {a, a, b, b}. Label the side s common to R and eR on the side of eR,
by e, and on the other side by e. (Equivalently, the side of s interior to R is labelled
by the isometry which pairs it to some other side of R.) This labelling extends by
translation under F to the tesselation of D by the images of Rx,, and induces a
labelling on the oriented lines P,, P2 on M.

The Koebe-Morse coding. Any oriented geodesic y on M repeatedly cuts the lines
P,. We associate to y the sequence . . . e0e,e2..., e, e FR, of labels on the far side
of P, in the order in which they occur, so that e0 is the exterior label of the side of
R across which y crosses from R to e0R, and e, is the exterior label of the side of
e0... et^xR across which y crosses from e0... et-xR to e0... etR. Call this the cutting
sequence of y. Lifting to the universal cover [ JcD we can also define cutting
sequences for geodesies in D. Notice that if an arc a runs between copies /?, and
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R2 of R with cutting sequence e , . . . en, then R2=ex... enRx. The cutting sequence
of y is infinite if and only if y is complete on M, that is, if y never meets <9M.
Notice also that in a cutting sequence e e TR is never immediately followed by e,
for this would mean that y cut Pt twice in succession coming from opposite directions,
which is impossible. Sequences with the property that e is never followed by e are
called reduced.

Boundary Expansions. In order to discuss the Artin coding we must define the
boundary expansions on dO associated to F. This is done for the case of the punctured
torus in the example in the introduction to [17]. Let us adapt this description to
the thrice punctured sphere. For e€TR let C(e) be the side of Rx whose exterior
label is e, and let A{e) be the arc cut off on 3D by C(e). (Notice that our convention
on labelling circles differs from that used in [17].) Let A = \^J{A(e): eeTR} and
define / : A->9D,f\AM(x) = ex. Any point £ e A has a finite or infinite expansion
e0e1e2..., e, e F R , defined byf"(ij)eA(en), n >0 , where the sequence terminates at
en if and only if /"(£) e A but / n + 1 (£) £ A.

Notice that f(A(e))nA(e) = 0 for eeFR so that a boundary expansion is
necessarily reduced. Conversely any reduced sequence e o e , . . . occurs as the orbit
of a point in {~^\™=of~"(A{en)), the intersection being non-empty since f{A{e))^>
A(e') whenever e '# e. One can show (cf. e.g. [17]) t h a t / N is expanding for some
N e N, hence boundary expansions specify unique points in A.

LEMMA 2.1. Let [} be any geodesic arc joining PeR to f e A Then the boundary
expansion of ^ is the cutting sequence of p.

Proof. Let the cutting sequence of /3 be eoe1... and let the boundary expansion of
$ be fo£i Clearly /? leaves R across C(f0) s o t n a t £o= eo- Suppose inductively
that £ = e,, i < n. The (n + 2)th region traversed by /3 is e0... enR. Let g = e0... en

and apply g. Then g/3 n R ^ 0 , and the cutting sequence of g(3 from the point where
it leaves R is en+1en+2.... By definition/'f e A(et), i"< n, so that g£=/"+ 1(£) , and
/" + 1 ( f ) has expansion £n+i£n+2 • • • • Applying the original argument to the pair g/3, g£
gives en+I = £n+1 as required. (Notice that both sequences may terminate together,
in the case when g/3 leaves R across a lift of dM so that g/3 £ A)

LEMMA 2.2. The set of points with infinite boundary expansions, f^C=of~"A, is equal
to the limit set A of T.

Proof Suppose that £ e A. Since A c / 1 , and since A is T-invariant, we have/"£ £ TA =

A c A for all n. Thus £ e P C = o . T n A

Conversely, suppose that ^ f l L / " " ^ Then £ has an infinite boundary
expansion, so by lemma 2.1 the cutting sequence of the geodesic /? joining 0 to f
is also infinite. Thus TT(/3) lies entirely within the compact part M of M& so that
/3 is within bounded distance of the orbit TO of 0. Thus /? converges to a point in A.

COROLLARY 2.3. There is a bijection p + : £ + - » A , where 1+ is the space of infinite
reduced sequences in YR.
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Proof. The map p+ simply associates to eoex... e l + the point
PC=i (eo ' ' " en)~

lA(en+1). From the lemma it follows that p+ maps onto A.

Remark 2.4. (i) Notice that 2 + is a subshift of finite type; that is, there is a matrix
M = (mef), e , / e F R , mefe{0,1}, so that (e,)f=06S+ «> me.e,.+1 = 1 for i = 0 , 1 , 2 , . . . .

(ii) Since F is free, shortest words in the word metric of F correspond exactly to
reduced sequences, so that: (ei)f=oe'S.+ <=> ek... e, is a shortest word in F for each
0</c</ .

Representation of geodesies. For £ 17 e 3D, £ 5* 17, let 7 = 7(^,17) be the oriented
geodesic joining £ to r\. We first describe those geodesies whose endpoints lie in A.

LEMMA 2.5. A geodesic y(£ 77) has endpoints £ 17 e A if and only if ycTR. The
non-wandering set for the geodesic flow on the unit tangent bundle of M corresponds
exactly to unit tangent vectors directed along these geodesies.

Proof. If y <= TR, then points on y remain within a bounded distance of F0 so that
£ T] e A.

For the converse, note that since y = U g £ r (T n £^°e), a n d since A is F-invariant,
it is enough to show that y n ^ c y n i i . Now the arc on 3D cut off by a lift of a
boundary component of M lies entirely outside A. Thus if both endpoints of y lie
in A, we must have y n Rx <= y n i?.

A unit tangent vector M is in the non-wandering set of the geodesic flow <f>, if and
only if 4>,(u) returns infinitely often within bounded distance of a fixed unit tangent
vector based at TT(0). This is the case if and only if the geodesic y in the direction
of u returns infinitely often within bounded distance of F0, or equivalently, if y has
both endpoints in A.

Now let X be the set of doubly infinite reduced sequences in FR. For convenience
we shall label such sequences .. .f\foeoex..., e,,/J e FR, and regard e0 as the zero
coordinate. If f, 17 e A have boundary expansions £ = £of 1 • • •, V = ^o^i • • •, we write

•& = {y = y(ij, y): £ 17 e A and | * 17

® = {y = y(£ TJ): £ T, e A and y n i? * 0 } .

There is a bijection p:1^-s# which associates to . . . / i / o e o e , . . .the geodesic y =
y{p+{JJ,...),p+{eoex...)).

The left shift o-:2-*2 induces a natural map, also denoted a, on si. We have
also a map T: £% -» 9?, given by x('y) = eoy, where e0 is the first term of the cutting
sequence of y beginning where y leaves R. (As will be seen in the next section, T
is the first return map for the cross-section of the geodesic flow given by unit tangent
vectors along geodesies where they first enter R.)

The following are the two results which we shall generalise in § 6. They can be
viewed as giving the precise correspondence between the Koebe-Morse and Artin
codings.

THEOREM IO. si = 01.
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THEOREM IIO. cr = T.

Proof of theorem Io. Pick f, 77 e A, £ # 7?. Notice that y (£ 17) G ^ if and only if £0 # r)0.
If £0 = Vo then y(f, 77) lies in the half plane bounded by C(£o) on the side away
from R, so that 7 i. &t. If £0 ̂  170 then 7 n # » ^ 0 , so that by lemma 2.5, 7 n R ^ 0
and 7 e 9?.

Proof 0/ theorem II0. Let f' * 17' = ^ ( ^ * T?)- Then v'= V1V2 • • • and £' =
7?0f0£i Since f(v) = Vo(v) has expansion 77,772 . . . and since / (£ ' ) = W f ) has
expansion £ofi- • •, we have 77'= 770(77) and T/0(^') = £ Thus <r(£ * 77) corresponds
to the geodesic 770(7).

By lemma 2.1, eo= i]0, and so r(y) = eoy = cr(y).

Application: The geodesic flow. Recall that the geodesic flow 4>, is a flow on TtM,
the unit tangent bundle to M. The non-wandering set V c T,JW is an invariant set
and contains all the interesting dynamics. Using theorems I0 , I I 0 above, one can
easily derive a representation of i/>, = <t>,\ v as a flow built over the shift (£, a). In
fact, 2 may be identified as a cross-section to the flow.

Let W be the set of unit tangent vectors in V with base points on the lines P,.
Since vectors in the direction of P, are not in V, the section W is transversal to the
flow. There is a natural way to identify 3t and W, namely 7 e 91 corresponds to the
projection on M of the unit tangent vector u(y) to 7 at the point where 7 first
enters R. Since we have shown that §1 = si and that there is a bijection of si with
X, we have an identification of W with S. It is easy to see that this map is a
homeomorphism.

This identification respects the dynamics of the situation. The first return map
.A A

P : W-» W lifts to a map P on T,D, and we see that P ( M ( 7 ) ) = v(y) where 1̂ (7) is
the point where 7 e 01 leaves R. The time taken to return to W is exactly h(y), the
hyperbolic length of 7 n /?.

We have already defined T :<%-»£% by r(7) = g7, whenever 7 leaves R across
C(g). Now the unit tangent vectorto gy at the point of entry to R is gv{y). Projecting
to W and identifying Wand 9? we see that P{y) = r(y). Since by theorem II0, r = a,
we see that the system (W, P) is conjugate to the system (£, a).

It is now easy to see that the flow built on {1, cr) under the height function h is
conjugate to the geodesic flow (V, i/>,).

This gives a very simple representation of the geodesic flow. This application will
carry over without change to a much more general situation, after we have proved
theorems I and II.

3. Geodesic cutting sequences
We shall give here a brief summary of the definitions and results we need from [3],
referring the reader there for further details. Most of the definitions are also to be
found in [5].

We take T to be a finitely generated Fuchsian group acting in the unit disc D by
isometrics of the hyperbolic metric ds = 2\dz\/(l-\z\2). Let R be a finite sided
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geodesic polygon which is a fundamental region for the action of F in O. The sides
of R are identified in pairs by elements of T; the set of these elements is a symmetric
set of generators FR for F. Label each oriented side of R by the corresponding
generator on the interior side of R. Let JV be the net of images of dR under F. Each
oriented side of N is labelled by the same generator as the corresponding side of
R. With this convention, if gR, hR are adjacent along side s, then the side of s
interior to hR is labelled gh.

Throughout we assume that R has even corners, in other words, that JV is a union
of complete geodesies in D. This condition is not as restrictive as it appears; in fact,
every surface has fundamental regions with this property [8], [3]. The curves to cut
along are illustrated in figure 2. We may also assume without loss of generality that
OeR.

FIGURE 2

Any oriented arc y in D cuts a sequence of sides ... sts2... sk. ..of N and is thus
associated to the corresponding sequence of labels ... e1e2. •. ek... e F R , where we
take the label on the far side of each s,. (If y passes through a vertex of TV or
coincides with a side of JV, one modifies y slightly to obtain an appropriate sequence
as described in [3] (see also figure 5).) The sequence ex... ek is called the cutting
sequence of y.

Conversely, to any word w = ex... ek, e, e F R , and initial region gR, g e F, we may
associate an edge path in D. This consists of the geodesic segments joining
gO, e,gO,. . . , ex... e^gO. Sometimes we replace this by the polygonal path consisting
of the (adjacent) regions gR, exgR,..., e , . . . e^R. The cutting sequence of this path
is exactly e , . . . ek.

If v is any vertex of TV, a small circle around N has cutting sequence e , . . . e2n(v)

where e , . . . e2n(V) = 1 is one of the defining relations of F. (Note that the relator has
even length since R has even corners.) Any sequence of generators which appears
in the order in which they occur in one of these relations we call a cycle; a sequence
ex... en(l)) we call a half-cycle and any cycle of greater length a long cycle. A cycle
is clockwise or anti-clockwise depending on the sense of the corresponding edge path.

Now suppose that Vi,... ,v, are successive vertices of N lying along some geodesic
/ c N. Let a be a curve running close to and roughly parallel to / on one side
possibly cutting / before vt and after v,. The cutting sequence of a consists of cycles
at D ] , . . . , v, and the cycle at each intermediary vertex t>,, l<i< t, is of length
n(Vj) — 1. We call such cycles consecutive, and the sequence of consecutive cycles
we call a chain. (This definition differs slightly from that in [3], in which we allowed
the cycles in a chain to have arbitrary length, but the difference is immaterial to the
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statement of results.) We also allow infinite chains, corresponding to the case where
a, I have the same endpoint at infinity. A chain is long if it consists of cycles of
lengths n(vi),n(v2) — l...,n(vk-i) — l,n(vk). The cutting sequence of a curve a'

joining the initial and final points of a but running along the other side of / is
obviously also a chain, which we call complementary to the chain defined by a.

We measure the length of edge paths or words in F in the word metric defined
by F, TR. A word is reduced if it does not contain successive letters x, x, x e TR. An
edge path is shortest if the corresponding word is a shortest possible representation
of the element in F defined by the word.

The following is the main result (theorem 2.8) of [3].

THEOREM 3.1. Let R be a fundamental region for a group T, and suppose that R is
not a triangle (cf. remark 3.3 below) and that R has even corners. Further, suppose
that ifR has four sides and if all vertices ofR lie in Int D, then at least three geodesies
in N cross at each vertex of R. Then:

(i) An edge path is shortest if and only if it is reduced and contains no long cycles
or long chains.

(ii) The cutting sequences of geodesic arcs are shortest.

We shall also need a slight generalisation of proposition 2.7 of [3].

PROPOSITION 3.2. Suppose that R is as in theorem 3.1, and let £ , , E2 be edge paths
containing no long chains with coincident initial and final points, where these endpoints
may be the limits of Ex, E2 at infinity. Then there are no copies of gR of R lying
between the polygonal paths P(Ei), P(E2) defined by Et and E2.

Proof. The proof goes almost exactly as in [3]. We showed there that if R is a region
lying between P{Ex), P(E2) then R has an extended side which cuts one of £ , or
E2 twice at points in Int D. The additional ingredient here is that if R has a cusp
at infinity then an extended side of R may have one or both endpoints coincident
with the endpoint(s) of Et at infinity, so that one cannot choose a segment cut off
on £, of minimal length. We shall show that in fact one extended side of R does
cut one of Ex, E2 twice in Int D, and the remainder of the proof will follow as before.

Suppose that this is not the case, so that each extended side of R either cuts each
Et at most once, or meets £, once or twice at infinity.

Clearly R can have at most two vertices at infinity. Pick a vertex v e Int D. The
extensions of the sides slt s2 of R through v each meet both £j and E2, possibly
at infinity. Thus a subpath of E2, say, together with s,, s2, bound a region containing
R. Now the extension of any side of R which intersects neither st nor s2 would, by
[3, lemma 2.3], cut off a finite subpath on E2, which we are assuming not to be the
case. Thus we may reduce to the case where R has only four sides.

Let v' be the vertex of R lying on neither s1 nor x2. There is by assumption a
side of N through v' intersecting neither s, nor s2, and which therefore cuts off a
finite arc on E2, contrary to assumption.

Remark 3.3. As shown in [3], the restrictions on R in theorem 3.1 apply whenever
F contains no elliptic elements. We have placed slightly stronger restrictions than
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in [3] to ensure the validity of 3.2, which is in general false for triangular R. This
is illustrated in figure 3, which refers to the group F = SL (2, Z).

FIGURE 3

By the above proposition, whenever P, P' are shortest polygonal paths with the
same endpoints, possibly at infinity, the regions forming the two paths either coincide
or are adjacent. The paths differ only by forming complementary cycles round
vertices v of their common boundary. These vertices we call common vertices, and
we call such paths adjacent. We say that the angle on P at a common vertex v is
flat, tr+, or n~ according as the number of regions in P meeting at v is n(v), n(v) +1
or n(v) — 1. Notice that since the maximum length of a cycle in a shortest chain is
n(v), and since the angles on P, P' at v together fill out the whole cycle at v, the
angle on both chains at a common vertex is always one of these three types.

Now whenever the paths P, P' have common initial and final regions the two
paths have equal length. Thus regions in the two paths are matched in a natural
way. We want to extend this matching to paths which may meet only at infinity.
For this purpose it is very important to consider only oriented paths. The terms
'first', 'last' below refer to order relative to this orientation.
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Let P = (Rj)T=-<x> and P' = (R'i)T=-<x, be shortest oriented polygonal paths with the
same endpoints at infinity. We match regions in P and P' according to the following
rules:

(i) If a region 5 is common to both paths, S = R,•, = R'j, then /?, is matched to R'j.
(ii) Suppose Rt, Ri+U ..., Rp and R), R'j+U ..., R'q are sequences of regions in

P and P' which have no regions in common but which share common vertices
u_ k , . . . , v0,..., v,, such the angle at vt is TT for i # 0, and so that the angle on P at
v0 is v+. Suppose also that Rs, R', are the last regions in P, P' with vo& Rs and
voeR',. Then R',+r is matched to Rs+r+i for max(i-s-l,j-t)<: r-s
min (q-t, p — s — 1).
Likewise, if the angle on P a t rois vr^then R'l+r+l is matched to Pvs+rformax ( 1 - 5 , 7 -
/ - 1 ) < r < min (p - s, q - t - 1). Matches of this kind will be said to be relative to
the vertex v0.

(iii) Suppose P and P' have no common regions and the angle is flat at all
common vertices. Let /? , - , . . . , Ri+P and R'j,..., R'j+P be sequences of regions in P
and P' which share common vertices vx,..., vk. Suppose also that Rj and R'j have
a common side. Then Ri+r is matched to Rj+r for 0 < r < p .

It is clear that the matching procedure is F-equivariant. The following proposition
shows that it is consistent.

PROPOSITION 3.4. If P and P' are adjacent polygonal chains, then each region in P is
matched to a unique region in P', and vice versa. Further, if R{ matches R) and Rp

matches R'q then p — i = q —j.

Proof. It is clear that the rules above match each region to at least one region in
the other chain. Thus it is enough to show that if Rt and Rj and Rp and R'q are
matched regions with p > i and q >j, then p — i = q —j.

The result is clear in case (iii). For then P and P ' are the opposite sides of a
chain, separated by a side C of TV. Since P and P ' pass through the same number
of regions at each common vertex, the regions match in a consistent way.

If a string of regions R{,... ,RP and R'j,..., R'q are all matched by rule (i), so
that Rt = R'j,..., Rp = R'q, then obviously p-i = q-j. Thus we may assume that
R'r^ Rs for i<r<p and j<s<q and that P and P' are separated by a sequence
of sides of TV which join vertices v0,..., vN at which the angle on both paths is
77, TT+ or 7T~, and so that z;0£ /?,-, voe Rj and vN e Rp, vN e R'q.

If /?, and R'j are matched by rule (i), then the angle on P at i>0 is not flat. Suppose
they are matched by rule (ii) relative to a vertex v, so that the angle at v is not flat.
Between v and v0 the paths P, P' are adjacent along a sequence of sides and vertices
at which the common angles are flat. Rename the vertices in order along P as
vv0 = v, W j , . . . . Thus either v0,... ,vN occurs as some block wr,..., wr+N or w0 =
vr, w, = vr+i,..., wN_r = vN for some r e { 0 , . . . , TV}. If we rename vertices in case
(i) by vr = wr, r = 0 , . . . , TV, then in both cases the angle at w0 is not flat.

Let the regions of P, P' which have a common side joining vertices wt, w1+1 be
Ri+n. and R'j+mj. Suppose inductively that m, = M, + 1 or n, — 1 respectively according
as the angle on P at the last non-flat vertex w, preceeding w, (i.e. with j < j), is TT
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or TT+. Since by assumption the angle at vv0 is not flat, the hypothesis makes sense,
and clearly holds for i" = 0. Suppose it holds for i<n<N. If the angle at vn on P
is flat, then, since the number of regions in P and P' at vn is equal, it holds also
for i = n +1.

Suppose the angle at vn on P is n+. Then the angle on the previous non-flat
vertex v} must have been ir~, for otherwise P would contain a long chain
([3, lemma 2.6]). Thus by hypothesis mn = nn +1. Continuing round vn we see that
mn+1 = rnn + n(vn)-\ and «„+, = nn + n(vn)+ 1, so that

mn+] - nn+l = mn~nn-2 = -\

as required. A similar argument works if the angle is rr~.
This argument shows that the matching of R'p and Rq, whether by rule (i) or (ii)

at the vertex vN, is consistent with the matching relative to tv0; in other words,

4. Boundary expansions
In this section we establish the results we need about boundary expansions to
generalise the Artin-type coding described in § 2. We begin by recalling the definition
of these expansions from [5]. As usual, we assume R is a non-triangular fundamental
region for F with even corners.

Let the oriented sides of R be labelled by the generators FR as in § 3, so that the
labels on the exterior of the sides are gi,..., gk in anticlockwise order round R.
As in § 2, let C(gt) be the complete geodesic in N extending the side labelled gt,
and let At(g) = [Ph QJ be the arc cut off by C(g,) on 3D, where P, comes before
Qt in anticlockwise order. Depending on whether F is of the first or second kind,
UgerR A(g) will or will not cover 3D. For simplicity of exposition we shall always
assume that the former is the case, so that the limit set A of F is 3D. The modifications
needed for groups of the second kind may easily be seen by studying the example
in § 2. Although the discussion in [5] related to groups of the first kind, this hypothesis
was unnecessarily restrictive.

Define /:dD->dD,/|[P(-P|+l)(f ) = &(£). The f-expansion of £e3D is the sequence
f/ = gfcfc1---,&Jerll, where /"(f)e[P,,, P,n+1), neN. Let 2+ = {£: £

LEMMA 4.1 ([5, lemma 2.3]). The subshift 2 + is a sofic system. More precisely, there
is an alphabet B, and a finite-to-one map fi:B-*rR, and a subshift of finite type
SB <= FJ°1, B, so that the induced map /?: XB -»S+ is surjective and injective except at
a countable set of points where it is two-to-one, (see the remarks following the proof
of 4.2).

Proof. Partition 3D into intervals whose endpoints are the set of points W where
some complete geodesic in JV through a vertex of R meets 3D. The elements of B
are exactly those intervals which are bounded by adjacent points of W. Since
[Piy Pi+i) is a union of intervals in B, there is a natural map fi:B->rR which
associates to an interval JeB the generator g, for which 7 c [pit Pi+l). An easy
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argument as in [5] shows that f(W)<^W and hence that B is a Markov partition
for /

By standard methods as in § 2 we obtain a bijection S+ -» 3D. As indicated in § 2,
the assumption made in [5] that C(gt) is the isometric circle of gt is unnecessary;
all we need is that / " expands for large n.

It turns out that the finite sequences F(2+) which occur in 1+ run through shortest
representatives of all elements in T, each element occurring exactly once. We use
the fact that every element has a unique expression as a shortest word containing
no anticlockwise half-cycles ([3, Theorem 2.8]).

THEOREM 4.2. A word w occurs in F(1.+) if and only if it is shortest and contains no
anticlockwise half-cycles.

Proof. Let R' be any image gR of R. Let Ce(R') be the extended side of R' whose
exterior label is e, and let Ae{R') be the closed arc on dD cut off by the hyperbolic
half plane He(R') bounded by Ce(R') and not containing R'. Let A*(R') =
Ae(R') - Af(R'), where / is the exterior label of the side of R' next in anticlockwise
order to e. Thus in particular Ag.(R) = [Pi, <?,-] and A%(R) = [P,,Pi+i), so that
£e A*.(R) if and only if t-f begins with g,-.

More generally, let w = e1... ek be a word in F and let Z(w) =
{£ e <9D | gf = e , . . . ek...}. We claim that

(4.2.1) Z(w) =

Suppose inductively that this is true for words of length n. Let w = e , . . . en+l. Then

, A*(ex... «,_,*) and (« , . . . e j - ' f e A*+1

O f e f X , A*{ex... e^R) and f 6 A*+1(e,.. . ej?).

This proves (4.2.1).
Notice that we F(2+) if and only if Z(w) is a non-empty interval on 3D.
The equality (4.2.1) immediately establishes that w is reduced. For if e,e,+1 are

consecutive in w and ei+i = e, then Hc.(e,... e,-,/?) and H^.(e,... etR) are the half
planes bounded by Ce.{el... e,_ii?), and hence Z(w) contains at most two points.

Now suppose that w contains a cycle ex... ei+r. The half planes
Hei(«i... cf_,/?), He,+1(e,... etR),..., HCi+r(e,... ei+r^R) are bounded by sides of
N through a vertex of the side s of e , . . . e^iR with exterior label e,. If the cycle
is clockwise the half planes appear in clockwise order round the initial point of s (s
is oriented to point anticlockwise round ex... e,_,R), and if it is anticlockwise it is
in anticlockwise order round the final point of s.

One sees (figure 4, for the anticlockwise case) that if either e,... ei+r is an
anticlockwise half-cycle or a long clockwise chain, then fXj=0 A*+j(c,-... e^^R)
consists of at most one point so that wi.
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• e,+rR)

FIGURE 4

One sees also that if e , . . . ei+r+x is a clockwise half-cycle followed by the first
term in the consecutive cycle, then

Pi A* (e,... ei+j.xR) = Me,+p+1(e,-... el+rR),

where *Ae(R') = A*(R1)- Ag(R'), where g is the next side of R' to e in clockwise
order round R'. Hence, by the same arguments as above, Z(w) is a point whenever
w contains a long clockwise chain.

By theorem 3.1, w is shortest if and only if it is reduced and contains no long
cycles or chains. Thus it only remains to show that Z{w) contains an interval for
all such w containing no anticlockwise cycles.

Now if e,e,_, are not successive terms in a cycle, then He.{ei... e^R) =>
He.+i(ex... etR). Hence one sees inductively that

h A*(e,... ej^R) = A%(ex... e,_xR)

unless ex... e< terminates in a cycle or a chain. Combining this with the above
observations about cycles and chains proves the result.

Theorem 4.2 gives a complete characterisation of the words occurring in F(2 + ) .
If we wish to characterise infinite words in J.+ there is one further constraint:

(4.3) No sequence in S + terminates in an infinite chain of anticlockwise cycles.

For if such a point existed, its image under a suitable power of / would be one of
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the points Pi+U expanded as if it belonged to the interval Ag.(R). But we have
chosen to expand such points beginning with g,+1, that is, as an infinite chain of
clockwise cycles.

The points at which 0: XB -> dD is two-to-one are exactly those whose expansions
end in an infinite chain. Using lemma 4.1, we see that (4.3) together with theorem
4.2 gives a complete characterisation of the sequences in 2+.

Representation of geodesies and f-expansions. In order to represent geodesies using
the boundary expansions of their endpoints as in § 2, we need to ensure that such
expansions lie in the natural extension 2 of 2+. For this to be possible we need to
reverse the asymmetry in the definition of/ when expanding the negative endpoint
of the geodesic. Thus we introduce /-expansions £/ by defining

Clearly / enjoys all the properties of/ except that we interchange 'anticlockwise'
and 'clockwise' throughout. In particular, et... ei+re F(2+) if and only if ei+r... e, e
F(l+), where 2 + = {£/: £

ye®

FIGURE 5

https://doi.org/10.1017/S0143385700003722 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700003722


Geometric Markov coding 617

5. The sets si and &
In this section we establish some preliminary results about the sets si and 9? described
in the introduction. First, we establish some notation.

If y is an oriented geodesic which passes through a vertex v of N then we make
the convention that y is replaced by a curve deformed to the right around v (see
figure 5). This corresponds to our choice of right-handed boundary expansions.
From now on, we shall take as understood that all geodesic curves have been deformed,
where necessary, in this way.

Let £ i) e 3D, £ * rj, and suppose £/ = fo£-i • • •, Vf = VoV\ As in § 2, write
| * 17 = • • • i-iioVoli • • •, and let y(£ 17) be the oriented geodesic from £ to rj. We
say £ * 7) is shortest if every finite block in £ * 17 is a shortest word. We write £ (£ * 77)
for the edge path jo in ing. . . , £ofi0, &0, 0, T?O0, T^T^O, . . . , and £(77), £ ( f ) for the
edge paths 0, T/00, 7IOT7,0, . . . and . . . £0£i0, £00> 0. The edge path of y is denoted E(y).

We shall say that a sequence ( e ; ) " !^ , e, e F R , beginning or ending in an infinite
chain of cycles (of lengths n(vi)-l, n(v2)-l,... at vertices t>,, v2,...), contains a
pseudo half cycle. For many purposes, pseudo half cycles behave in the same way
as half cycles. Notice that sequences ending in pseudo half cycles are exactly those
whose endpoints lie in the set \J°Z=of~nW, where IV is as in lemma 4.1.

We say the geodesic y(£, 17) passes near a vertex ve N if ^, 77 lie in opposite
sectors defined by the net edges N(v) through v, where we take the sectors to be
the closed sets defined by the corresponding sides of v. If y passes close to a vertex
v of R and ynRai0, then we say y cuts off v on R if neither endpoint of y lies
in the sector at N(v) containing R. Suppose $, 77 are such that £OT]O is part of a
cycle or chain. Then the sides C(£o), C(TJ0) of R either meet in a vertex of R which
we denote u( | , 77) or are separated by one side s(g, TJ). Note that if in this situation
y passes near u(£ TJ) and if y n i ? # 0 , then y cuts off v on R. Conversely, if y
cuts off v on R then |oi7o lies in a cycle or chain and v = u(£ 77) or v is a vertex of
*(£ V)-

Definition of the sets si, m. Let 2 = {(«,-)"-co|e,-... ei+ke F (2 + ) , all i<k, and (e.)
does not begin or end with an infinite chain of anticlockwise cycles}. Let

and

For curves y which have been deformed because they pass through vertices of R,
we have the situation illustrated in figure 5.

In contrast to the situation in § 2, it is no longer true that si = 01. However, with a
minor exception (lemma 5.1 below) if y e 3? then £ * 17 is shortest. The discrepancy
between sd and 3? arises from geodesies which pass close to vertices of R (lemma
5.3). These can be of four types, depending on the direction of the geodesic and
the relative position of R. The possibilities are illustrated in figure 6. The cases are
distinguished by the main result of this section, proposition 5.4.
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V
/

FIGURE 6

We first dispose of the exceptional case mentioned above.

LEMMA 5.1. If ye 01 and £ * 77 is not shortest, then y is a side of N.

Proof. The sequence £ * 77 is not shortest because either:
(i) it reduces and £0

 = 170; or
(ii) it contains a long cycle or chain which includes fo*7o-

Case (i). Suppose £,= 170 = eterR. Then ^ [ P , , Pi+1) and ££((?,_,,<?,]. In par-
ticular, y lies in the half plane He.(R) (notation as in §4). Since ye0t,y must
coincide with C(e,).

Case (ii). Suppose £ * 77 contains a long chain. This consists of a chain of regions
to one side of a side C <= N, which contains the vertex «(£ 77) (or, where appropriate,
s(£ 77)). Since the chain is long, it cuts C at two points, one on each side of v
(respectively s). Since E(g) and £(77) are shortest, neither of these paths can recross
C. Thus y lies in the half plane bounded by C and not containing R. Since ye 91,
again, y must be coincident with C.

In particular, the geodesies in 5.1 pass near a vertex (in fact two vertices) of R.
Clearly, such geodesies lie in 01-si. We now show that any other geodesic in

1 — 91 also passes near a vertex of R.
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LEMMA 5.2. Suppose that ye 0t A sd and that ij* r) is shortest. Then iorio lies in a
cycle or a chain and y passes near v = v(g, 17).

Proof, (i) Suppose y e 0t - si. By theorem 4.2, if f * 17 is shortest and f * 77 & si, then
£•17 contains an anticlockwise half cycle containing fo^o, so that the sides
C(io), C(vo) of R meet at v((j, 77). The path £ ( £ * TJ) cuts all sides of N(v) once
since it contains a half cycle, and no more than once since it is shortest. Hence,
f, 17 are in opposite sectors at v and we are done.

(ii) Now suppose ye si -01. Then $ * -q is shortest. By proposition 3.2, E(£ * 17)
and E(y) are adjacent paths. Now 0 e £ ( £ * 17) while 0£E(y) since 7£01. Thus
IOTJQ lies in a cycle or chain and u(£ 17) is a common vertex of the two paths.
Moreover E(y) must cut all the sides of N(v) once (possibly at infinity), otherwise
E(g * 17) would cut some side twice, which is impossible. Thus y has ends in opposite
sectors at v.

Edge paths of geodesies passing near a vertex v always contain half cycles. More
precisely:

LEMMA 5.3. Suppose y passes near v. Then:
(i) if ye 01 and y cuts off v on R, then E(y) contains a chain beginning or ending

in a half cycle or pseudo half cycle and including the cycle at v.
(ii) if£ * 17 is shortest and v = v{£, 17), then E(g * 17) has the same property as in (i).

Proof. We shall prove only (i), case (ii) being similar. Let the sectors at v containing
£, 17 be bounded by the lines I, me N(v). Let y cut /, m at points P, Q where possibly
P or Q is on dO. By theorem 3.1, E(y) is the edge path consisting of regions running
alongside Pv, vQ on the same side as y. If either P, QedD then £ is a chain beginning
or ending in a pseudo half cycle, and we are done.

Otherwise, let x, y be the vertices of N along Pv, vQ closest to P, Q respectively.
If x = y = v then E contains a half cycle at v. Otherwise, say x # v. Then E contains
a half cycle at x, which begins the chain in E which includes the cycle at v.

PROPOSITION 5.4. (see figure 6). Suppose that £or]o lies in a cycle or chain and that
y passes near v(g, -q). Then

£ * -qesi => (y goes clockwise around v O ye 01)

£* r)£s4 =>(y goes anticlockwise around v <=> ye 01).

Proof, (i) Suppose that £ * 17 is shortest. By 5.3, £ * 17 contains a half cycle or pseudo
half cycle, with the same sense as the cycle in iovo- Now £ * 77 e si if and only if
this cycle is clockwise. Also y e 01 if and only if E{$ * T?) and E(y) agree at v, and
hence have the same sense in the cycle at v. The result follows.

(ii) If £ * 7] is not shortest then certainly g * -q s£ si and £ * 17 contains a long
cycle or chain. By lemma 5.1, if y e 0t then y is a side of N and by definition goes
around v anticlockwise.

If y £ 01, then just as in the proof of 5.1, y lies in a half plane bounded by a side
C of N through v, on the side away from R. Since y passes near v, at least one
end of y must coincide with an end a of C. Also OeE = £(£, 77) lies on the opposite

https://doi.org/10.1017/S0143385700003722 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700003722


620 C. Series

side of C from y and so, since | * rj contains a long cycle or chain, E cuts C twice
in IntD. If y coincides with C then the conclusion holds by definition of 01.
Otherwise, let P be the point where E crosses C nearest to a and let w be the next
vertex along C from P towards a. Then £ contains a half cycle around w, oriented
in the same direction as the cycle in y at v. This cycle is moreover not the cycle at
v, since E and y have opposite senses at vQ. Thus the cycle at w is completely
contained in E(rj) or £(£) , and therefore must be clockwise. Hence, y is oriented
clockwise around v.

To define the conjugating map 5? -» s& in § 6 we need to define precisely the notion
of complementary path.

Definition 5.5. Suppose we are in the situation of (5.3). Suppose that at P, the path
E crosses from a region Ro into Rt and at Q it crosses from i?n_! into Rn. Let E*
be the path obtained from E by replacing / ? , , . . . , 7?n_, by the regions touching the
lines Pv, vQ between Ro and Rn and on the opposite side to E. Notice that this new
path has the same length as E, for if x, y ^ v the number of regions it traverses at
x and y is one less than the number traversed by E while the number traversed at
v is two greater. One argues similarly if x or y coincides with v. We call E* the
complementary path to E around v. If either P or Q lie in 30 we replace E by the
infinite path running along the other side of Pv or vQ.

We conclude with one further result we shall need in § 6.

LEMMA 5.6. Let E, F be two shortest paths with the same endpoints on 3D, and
suppose that neither E nor F contains any anticlockwise half cycles or pseudo half
cycles. Then E and F coincide.

Proof. First of all it is clear that E and F are not the chains along opposite sides of
some C <=• N, for then one or other path would contain an anticlockwise pseudo
half cycle.

Thus if E and F do not coincide, there is some common vertex v at which the
angle on E, say, is TT+. Thus there is a half cycle or pseudo half cycle on E, which
must be clockwise. Let me N(v) be the side of N through v first cut by E, and let
a be the endpoint at infinity such that v lies between a and the intersection with
E. Since E does not cut m again, F either cuts m at some point P between v and
a or the end of F coincides with a. This second case is impossible, for then F
contains an anticlockwise pseudo half cycle.

In the first case let w be the last vertex of N along m between v and P. Then F
contains an anticlockwise half cycle at w, which is also impossible.

6. The conjugacy theorems
In this section, we prove our main results, theorems I and II. As explained in § 2,
these theorems allow representation of the geodesic flow as a special flow over the
shift on 1. Since the idea is essentially the same as in § 2, we shall not repeat the
details here.

We begin by defining the conjugating maps T:9i^ si and S:si^9i. We keep
the notation of § 5. The basic idea is that there is a symmetry between the four
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situations illustrated in figure 6. Set:

T(y) = S(y) = y, ifye&nsi.

(6.1) Definition of S on si-91. Suppose y = y(£ rj)e si-91. The edge paths
E(€ * i?), £(?) meet on 3D and are both shortest, so we may apply proposition 3.5
to match the paths. We have Oe £(f * 17) but 0£ £(y) since y i. 91. Let hR be the
region matched with R and set 5(y) = hy.

(6.2) Definition of T on 01 - si. Let y = y(£ 17) e 3? - .stf. Suppose first that | * 77 is
not shortest. By lemma 5.1, y is a side of N, and Oe £(y) because ye 91. Let g/?
be the region matched to R on the opposite side of y, and set T(y) = gy.

Now suppose I * 77 is shortest. By lemma 5.2, y passes near v(g, 17) and the paths
E(y),E(ij*i)) both intersect /?. Let £*(£ * 17) be the complementary path to
£(£* 77) at v(g, 17) as in definition 5.5.

Apply proposition 3.5 to the paths £(y), £*(£* T7) and let g/? be the region
matched to R. Set T(y) = gy.

Notice that with these definitions S, T are piecewise equal to elements of F;
moreover it is clear from figure 6 that the regions on which S and T are equal to
a fixed g e T have boundaries which could easily be described geometrically.

LEMMA 6.3. With the above definitions,

S(si-9i)^9l-s4 and T(9l~ sd)<^ si-9i.

Proof. By lemmas 5.1 and 5.2, y always passes near a vertex of R.
(i) Suppose yesi-9i. With the notation of (6.1), let hR be matched to R. We

have yn In t (M?)#0 since hReE(y).
By proposition 5.4, y goes anticlockwise around v = v(£, 77), and y cuts off u on

hR. Hence /Fy n Int/? ;* 0 and hy passes near hv($, 77) cutting off hv on /? and
going anticlockwise. Thus by (5.4), hy e 91 — sd.

(ii) Suppose y e 01 -si. With the notation of (6.2), let gR be matched to R. By
(5.4), y goes anticlockwise round u(f, 77) and so gy passes near gv going anticlock-
wise. Also y n Int gR = 0 so g7 n Int J? = 0 , hence gy £ 3?. By (5.4), gyesi-01.

THEOREM I. The map T is a bijection Sft-> si. In fact T and S are mutually inverse.

Proof. We have only to consider the case y e 0t A si. As in lemma 6.3, y passes near
a vertex v of R.

We shall consider only the case ye si-91; the other argument is similar. Suppose
that gOe£(y) where gR is the region matched to R e £ ( ^ * 77). Then S(y) = gye
9t-si.

Say £(gf * grj) is not shortest. By lemma 5.1, gy and hence y is a side of N.
Clearly, gR is the region on the opposite side of y to R matched by the rule (3.3(iii)).
Thus R and gR are matched regions on opposite sides of the net side gy. Hence

Now say £(g£ * grj) is shortest. Since gy£ si, there is an anticlockwise half cycle
or pseudo half cycle in gf * gT7 which is replaced by the corresponding clockwise
cycle in E*(gg * grj). Thus all half cycles and pseudo half cycles in £*(gf * g-q)
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are clockwise. The same is true of gE(g * 17) since $ * 77 e si. These two paths have
the same endpoints on dD and so by lemma 5.6 they coincide.

Now the regions gR, R are matched in E(y), E(g * 77) and hence R, gR are
matched in gE(y) = E{gy) and g£(£ * 17) = E*(gg * £17). Thus T(gy) = g{gy) = y.

The dynamical situation is exactly as in § 2. Namely, we have the shift map cr and
the first return map T defined on si, 01 respectively.

THEOREM II. The map T conjugates the actions of a on si and T on 01.

We first need two easy lemmas.

LEMMA 6.4. Suppose £ * 77 e si. Then eog * eor) € si and eog * eo-q = cr(^ * 17).

Proof Let £/ = e_ie_2 . . . , % = e0e1e2 Since £ * 77 e si, it follows by the characteri-
sation of 2 + in § 4 that eoe_xe~-2 • • • e £ + and exe2 • • • e 2 + . Define £', 77' to be the
points with these / and / expansions respectively. By definition, / (£ ' ) = e o ( £ ) = £
and/(T/) = eo(T]) = T/'. Thus f '= eo£ 77'= eO77 as required.

LEMMA 6.5. Let y = y(£ T])e0t and let the cutting sequence ofE(y) be e0e1..., start-
ing at the side where y leaves R, and let j]f = ^^^ Then -q0 = e0 unless
eoex • • • begins with an anticlockwise chain ending in a half cycle or pseudo half cycle,
in which case rj0 is the first term of the half cycle complementary to eoex..., and y
passes near a vertex of R.

Proof. It is clear that 77 e C(e0) and that 770= e0 unless 77 e [Pi+1, Q,], where eo= g,.
In this case y passes near v(e0, r}0), and has anticlockwise orientation. The result
now follows by the method of (5.3). It is clear that 770 is the first term in the
complementary half cycle to eoex

Proof of theorem II. We divide the proof into four cases, depending on whether y
and r(y) lie in 01 n si or 01 — si. We always write y = y(£ 17), 77̂  = 77077!..., and
suppose y leaves R across e0, so that r(y) = eoy.

Case (i): y, r(y) e 0t n si. We claim that eo= TJ0. If not, by lemma 6.5, y begins
with an anticlockwise chain passing near v(e0, r)0). Since v is also a vertex of e0R,
we see that eoy passes anticlockwise near a vertex of R. Then by proposition 5.4,
eoy i. si, which is impossible.

Hence T(ry) = T(eoy) = eo£ * eor) and cr(Ty) = <r(g * 77). The result follows by
lemma 6.4.

Case (ii): ye0lnsi, r(y)e0i-si. Since r(y)e0t-si, it follows from (5.1), (5.2)
and (5.4) that r(y) passes anticlockwise round v = v(eog, eor]) and cuts off v on R.

Thus y goes anticlockwise around eov and cuts off eov on e0R. Now eov is also
a vertex of R. However, y cannot cut off eov on R for y would still be going
anticlockwise, which is impossible in view of (5.4) since yesin&t.

By lemma 5.3 the path E(y) contains a chain beginning or ending with a half
cycle or pseudo half cycle; by the above observations this chain must begin at R.
In other words the cutting sequence eoex • • • of y begins with a chain ending in a
half cycle or pseudo half cycle, so by lemma 6.5, 770 is the first term in the
complementary half chain. Since the paths E(y), E(g * 77) coincide in R, the next
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regions e0R, T]0R are matched in the two paths. Therefore in the paths
e0E(y), eo£(£* rj) the regions R,eo7joR are matched. Since by lemma 5.6,
e0E(g * 17) = E(eoi; * eot}) (both are shortest paths containing only clockwise half
cycles) we have that

T(eoy) = r\oeo{eoy) = rjoy.

Now cr(Ty) = cr(y) = rjoy by lemma 6.4, and we are done.

Case (iii): y e 0t - si, r ( y ) e S n i . This is illustrated in figure 7. Using arguments
similar to those in case (ii) one sees that y goes anticlockwise around a vertex v of

FIGURE 7

R, cutting off v on R, but that y does not cut off the same vertex in the next region
e0R. Thus the edge sequence E(y) contains a chain beginning with a (pseudo) half
cycle and ending with e0. Let h0 be the last term in the complementary chain. Since
the chain in E{y) ends in e0R the paths E(y), E{$ * 77) must coincide in e0R. The
preceding region in E(y), £(f * -q) must coincide in e0R. The preceding region in
E(y) is R; the preceding region in £ ( | * 17) is eQh0R. Hence R, eohoR are matched
so that T(y) = hoeoy.

Now the cutting sequence eo«i • • • does not begin with an anticlockwise cycle, or
else this together with the cycle ending at e0 would be long. Thus by lemma 6.5,
T)0= e0. Thus /(17) = eoj) has / expansion ete2

We claim that Ke^ • • • e l By theorem 4.2 and the remarks following it is
enough to see that:

(i) K^eu
(ii) /io^iC2 is not a long anticlockwise cycle or chain;

(iii) hoei • • • is not a clockwise half cycle.
Case (i) is impossible since then • • • eoei would end in a long anticlockwise cycle
or chain. Case (ii) is impossible for the same reason. Case (iii) is impossible for
then e0 = e,.
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By the method of lemma 6.4, it follows that hoeor] has/expansion /ioe,e2 Thus
again by (6.4),

a-(Ty) = ho(Ty) = eoy = r(y) = T(ry).

Case (iv): y, ry e <% - si. In this case y passes near a common vertex v of R and
e0R anticlockwise, cutting off the vertex in both regions. This vertex is common to
the edge paths E(y), E(g * rj). Let gR be the region matched to R and let gh0R
be matched to e0R, so that gh0R and gR are adjacent along the side Cho{gR) of
gR. Then T(y) = gy and

T(eoy) = hogeo(eoy) = hogy,

since eoghoR is matched to R in the paths £(eoy), E(eot; * eor]) = eo£(£ * 17).
To compute cr( Ty) we must find the first term in the / expansion of grj. Consider

the position of grj relative to gR and R (figure 8). Since gy leaves gR across R,

FIGURE 8

one has grj e Aeo(gR). Since gy cannot cross into R, we also have grj e Aho(R). Since
Ceo(gR) e N(gv) and is not the same side as Cho(R) (for otherwise gy would enter
R), we have

Aeo(gR)nAho(R)<zAto(R).

Hence the / expansion of £77 begins with h0, so

<T{ Ty) = a(gy) = ho(gy) = T( ry),

and we are done.
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