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1. Introduction

In this paper a denotes a square matrix with real or complex elements
(though the theorems and their proofs are valid in any Banach algebra).
Its spectral radius p(a) is given by

(1) P(a) = lim Ha"!!1/", a s v - ^ o o ,

with any matrix norm (see [4], p. 183). If p(a) < 1 and n is a positive in-
teger then the binomial series

(2) S(a) = 2 ( ( -« ) '

converges and its sum satisfies S(a)n = (1—a)"1. Let

r(n-1+v)x"

where q is any integer exceeding 1. Then u{a) is the sum of the first q
terms of the series (2). Write

(4) f(x) = l+u(x)"(x-l)

and let a0, a1> a2) • • • be the sequence of matrices obtained by the iterative
procedure

(5) a0 = a, av+1 = /(«„).

Defining polynomials ^o^). ^ I ^ ) . <f>2{x)> ' ' ' inductively by

(6) &(*)=*. *.+iV) = 1{U*)).
we have «„ = <j>v{a) and therefore a/lav = avaJi for all /<, v. The following
is proved in section 2:

THEOREM 1. If p(a) < 1 /̂ie«

(7) P(a) = Uu(af)
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converges and P(a) = S(a). Furthermore, if p(a) < r < 1, then

(8) |K||<MK

for all v, where M depends on r and a but is independent of v and q.
Inequality (8) shows that P(a) converges very rapidly. This could

make it useful for the numerical computation of S(a). In general the
series (2) converges too slowly to be used for this purpose. In section 3
it is shown that when n > 1 the infinite product (7) converges for a larger
class of matrices a than does the series (2). If n = 1 then (3) and (4) give
f(x) = x". The solution of (5) is then av = aqV and (7) reduces to

(9) (1 - a ) - 1 = f l {1+«"v+«2aVH \-a{Q-1)gV}.
i>=0

This well-known formula goes back to Euler. Its use for practical com-
putation was suggested by Ostrowski [6], Hotelling [3] and others. Hotel-
ling was able to connect (9) in the special case q = 2 with an iterative
method for matrix inversion given by the Newton-Raphson formula.
For (7) there is a similar connection with the Newton-Raphson formula
which is discussed in section 4. Theorem 1 can be used to find a matrix
c satisfying c" = b for any square matrix b whose spectrum lies entirely
in the half plane Re X > 0. For the spectrum of a = (6+1)"1 (6—1) then
lies in the disc |A| < 1 and c = (l+a)1/"(l—a)"1/" can be computed with
the help of (7). In the special case when the eigenvalues of b are real and
positive it is simpler to take a = l—k^b, where k is any real number
satisfying k > \p(b). The eigenvalues of a then satisfy — 1 < A < 1 and
c — kVn{l—ayin can be computed with the help of (7).

2

LEMMA 1. If m is any integer in the range 1 ^ m ^ n and

u{x)m = po+pix+p2x*+- • •
then for all v,

(10) P, ^ / W ^ 0.

PROOF. Since (1— x)-1'" = u(x)+xqv1(x), it follows that

(11) (1—as)-"'- = u(x)m+x«vm(x),

where v^x), vm(x) are power series with positive coefficients. Comparing
coefficients in (11) we get {-l)"{~™ln) = ft, for 0 ^ v < q. If 1 ^ m ^ n

( ^ w ) Hthen (—l)"(~^w) is a positve monotonic decreasing function of v. Hence,
(10) holds in the range 0 ^ v < q—1 and its remains to prove (10) for the
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range v ^ <?—1. We do this by induction over m. Clearly (10) holds when
m = 1 because then /?„ = 0 for all v ^ q. If the lemma holds for some
m in the range 1 ^ m < n then (3) gives

where

a"= %r^) and y' =loa"^-"
for all v ̂  y—1. Since (10) holds for all v we have

Q-l 8 -1

/i=0 /»=0

for all v ^ ?—1- The lemma is therefore true for m-f-1 also. This establishes
Lemma 1.

LEMMA 2. f{x) = xqg(x) and <f>v(x) = xQVfv(x) where g(x), fy(x) are
polynomials with real non-negative coefficients which satisfy g(l) = ^,,(1) = 1.

PROOF. With m = n, (11) gives

x"vn{x){l-x) = l+u(x)n(x-l) = f(x).

Hence f(x) = x"g{x) for some polynomial g(x). If u(x)n = /30+/31a:+/32a;2H
then /So = 1 and aflg(x) = l+u(x)n(x-l) = ^Zo i^-^+i)^-

The coefficients of g(x) are therefore non-negative by Lemma 1. Also
g(l) = /(I) = 1 from (4). Induction over v will be used to prove that
<j>v(x) is of the form x"v yv(x), where y>v(x) has non-negative coefficients.
This is trivial for v = 0 since <f>0(x) = x. If it is true for some integer v
then (6) gives

where ipv+1 = {y>vYg{4>v) is a polynomial with non-negative coefficients.
The result is therefore true for v+1 also and the induction is complete. Since
/(I) = 1 it follows from (6) by induction that <£,,(1) = 1 for all v. Hence
^,,(1) = ^,,(1) = 1 and the proof of Lemma 2 is finished.

When q = 2, (3) gives u(x) = \-\-n~xx. Then (4) gives

(12) / = l+nun+1-{n+l)un,
= ( M - 1 ) 2 ( 1 + 2 M + 3 « 2 H

== a;2»-2(l+2«+3«2+

This is the relation f[x) = x"g(x) for the special case q = 2. If a; is small
then f{x) can be computed more accurately from the relation f(x) = x"g(x)
than from (4) which involves internal cancellation when x is small.
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PROOF OF THEOREM 1. If p(a) < r then (1) gives

(13) ||a'|| <*Mr"

for some constant M. Hence ||A(a)ll = M</>y(r) since the coefficients of
<f>v(x) are non-negative by Lemma 2. Since 0 < r < 1, Lemma 2 also gives
HA (a) 11 ^ MrqVy),,(r) ^ MrqVipv{\) = MrqV.

This proves (8) because av = <f>v{a). From (4) and (5),

Since allav = a^a^ it follows by induction that

K

(H) (i-««+i) = [ n «(«»)]"(!-«)•

Since av = <f>v{a) we have U*=o «(«„) = WK(a), where VFK(a;) is a polynomial
with non-negative coefficients. When — 1 < x < 1 it follows from (2) and
(14) that

(15) s(x) = ( i -a : ) -v = w . O c K i - A ^ n - v - .

Expanding {1—^K+i(a;)}""1/n by the binomial theorem and using Lemma 2
we get

where VK{x) is a power series with non-negative coefficients. This and (13)
give \\S(a) — WK(a)\\ = \\aq'*lVK(a)\\ ^ MrqK+1VK{r). Since none of the
coefficients of S(x) exceeds 1 by (2), the same is true of the coefficients of
VK{x) by (16). Hence,

(17)
S(a)=limW» = n «(«»)•

K-»OO »=0

This completes the proof of Theorem 1.

3. Domain of convergence

Let D = L)£Lo &v where Dv is the set of points in the complex z plane
for which IA(z)| < 1- Each Dv is an open set and Do is the disc \z\ < 1.

THEOREM 2. / / the spectrum of a lies wholly in D then the infinite product
(7) converges and satisfies P(a)n = (1—a)"1.

PROOF. Lemma 2 gives \f(z)\ < g{\z\) < g(l) = 1 for \z\ < 1.
This and (6) show that \4>y+1(z)\ < 1 when \fa(z)\ < 1. That is,
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Dv+1 D Dp for all v. Since the spectrum of a is compact it must lie in D^
for some fi. Then the spectrum of a^ = <^(#) lies wholly in the disc \z\ < 1.
Hence p(a/t) < 1 and S(a/l) = Tl^p u(a>>) by Theorem 1. From (14) with
K = (i—1 we get

P(«)« = SiaJ* [n«*(«r)]* = SiaJ'il-dJil-a)-* = (l-a)"1.
l>=0

This completes the proof of Theorem 2. If n = 1 then <£„(.?) = z9" and
Dv = Do for all v. That this is not so when n > 1 is shown by the next
theorem.

THEOREM 3. / / n > 1 few Z>x includes all of the closed disc \z\ sS 1 except
the point z = 1.

PROOF. Lemma 2 gives |/(z)| ^ /(|«|) ^ /(I) = 1 for \z\ ^ 1. The
inequality |/(x)| ^ f(\z\) can reduce to equality only when the terms of
/(z) all have the same complex argument (see [2], p. 26). If

u(z) =
then (4) gives

f{z) = k"zl+n^-1

where the terms shown are those of the highest degrees. If n > 1 then both
these terms have positive coefficients because k% S; kx > 0 by (3). These
terms have the same complex argument only when z is real and positive.
Therefore |/(z)| ^ f{\z\) reduces to equality only when z is real and positive.
Hence z = 1 is the only point of the disc \z\ 5g 1 at which |/(z)| ^ 1 reduces
to equality. Since f(z) = ^(z) it follows that Dx includes all of the disc
\z\ rg 1 except the point 2 = 1 . This established Theorem 3.

Since Dx is an open set Theorem 3 shows that a part of it must lie
outside the circle \z\ = 1 when n > 1. The region of convergence of the
infinite product P(a) is therefore somewhat larger than that of the series
(2) which diverges if a has an eigenvalue outside the circle \z\ = 1. More
precise information about the size of D will be given only for the special
case q = 2. Let H be the convex hull of the set which is the union of the
closed disc \z\ £S 1 and the single point z = —n. Let Ho be the set obtained
by deleting from H the two points z = — n, 1.

THEOREM 4. / / q = 2 and n > 1 then Dl includes Ho.

PROOF. If z+n = deiS then 0 < d < n+1 and

1 1
(18) ^ sin d ^ —

n n

for all z in Ho. Also u (z) = l + « - 1 z = n^de*3 since q = 2. From (12) we get
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|/(2)|2 = {l+nun+1—(n+l)un}{l+nun+1-{n+l)un}.

With u = n-ldeiS this gives |/(z)|2 = l+{dln)nh{d, d) where

h(d,d) = (dln)n{d2-2{n+l)dcosd+(n+l)2}
+2d cos (n+l)d—2(n+l) cos nb.

Hence |/(z)| < 1 if and only if A(i, 6) < 0. Since f(z) = ^(z) it follows that
^ e Dx if and only if h(d, 8) < 0. To prove Theorem 4 it is therefore sufficient
to show that h(d, 8) < 0 throughout Ho. Clearly A(rf, <5) < 0 in Ho n £ 0

since Dx includes the closed disc Do, except for the point z = 1, by Theorem
3. To prove that h(d, 8) < 0 in the whole of Ho it is therefore sufficient
to show that dhjdd > 0 in Ho—Do because each point of Ho—I>0 lies
on some line segment joining z = — n to a point of H0r\Z>0. Since
\z\2 = \—n-\-deif\2 = w2—2nd cos b-\-d2, we can express dhjdd in the form

(19) dhjdd = «-<"+1>^n-1{(n+l)2|z|2-^2}+2 cos {n+l)d.

Since or1 sin x 5; 3/71 in 0 < x sS TT/6, (18) gives

sin |<5| ^ M"1 ^ 3(2«+2)~1 ^ sin {{2n+2)~1n}.

Hence |6| ^ {2n+2)-17t and cos (»+l)3 ^ 0 for all z in Ho. This and (19)
give

dh/dd ^ n-^+D^- iK^+l) 2 ^! 2 -^ 2 } > »-<»+i)rf«-i(»+l)a{|«|2—1},

for all z in Ho. Therefore dh/dd > 0 in Ho—Do. This completes the proof
of Theorem 4. Notice that the points z = —n, 1 which were omitted fiom
HQ lie outside D because /(—») = 1 when q = 2 and therefore <f>v(—n) = <f>r(l)
= 1 for all v ^ 1 by (6).

4. Connection with Newton-Raphson

The Newton-Raphson formula for the numerical solution of an equation
Y(x) = 0 is xv-xp+1 = Y(xv)jY'{xv). With Y{x) = b-x~n this becomes

(20) xv+1==

As a generalisation of this we consider the formula

(21) xy+1 = xvu(ay), av—\—bxn
v,

where u(x) is given by (3) with any q. This reduces to (20) when q = 2
because then u(x) = l+n^x. When xv and b are square matrices, (21)
gives

(22) xr+1 = aJowKJw^)- • • u[av).

Also, (4) and (21) show that f(av) = l + (av—l)u{av)
n = l-bxv

lu{a,)n.
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If xvav — avxv then x"u(at.)
n = x"+1 by (21) and

(23) f{av) = \-b(x,+1)" = av+x.

Compare this with (5). The condition xvav = avxv is satisfied if xvb — bxv

and this is true by induction provided that xob — bx0. When this is so,
(22), (23) and Theorem 1 show that xv+1 - • x0P(a0) as v -> oo provided
that p(a0) < 1. If x0P(a0) = L then

L" = xo"PK)» = xo"(l-ao)-i = J-i.

The following theorem is therefore true.

THEOREM 5. / / a0 = 1—bx% has p(a0) < 1 and xob = bx0 then the
sequence of matrices x0, xlt x2, • • • obtained from (21) tends to a limit matrix
L which satisfies Ln = b'1. Furthermore, the rate of convergence is of the q-th
order.

Altman [1] and Petryshyn [7] have studied (21) in the special case
when n = 1. They obtain results similar to Theorem 5 but without the
requirement xob = bx0. This requirement can be deleted from Theorem 5
in the case n = 1 because (23) then follows without use of the relation
xvav — avxv. The following counter-example shows that xob = bx0 cannot
be deleted from Theorem 5 when n > 1. If

0 W
then £ = (/J,—l)"1^"—1) and p(a0) = 0 where a0 = 1—bx%. These matri-
ces satisfy (20) provided that f„ = (1—«-1£)"|0 for all v. If n > 1 and
H :> 4 then |1— M" 1 ^ > 1 and a;,, does not tend to a limit as v ->• oo because
||v| -> oo. The deletion of xob = bx0 from Theorem 5 therefore produces a
false proposition when n > 1. When w > 1 and q = 2, Theorem 4 enables
the condition p{a0) < 1 in Theorem 5 to be replaced by the requirement
that the spectrum of a0 lie wholly in Ho.

With Y(x) = bxn—\ the Newton-Raphson formula becomes

(24) xv+x = (1 _»-!)*„+ (nter1)"1.

A higher order formula of Traub [8] generalises this is the same way that
(21) generalises (20). Laasonen [5] has shown that (24) can be used to
find a square root of any real matrix whose eigenvalues are all positive.
Each iteration of (24) requires a matrix inversion which could introduce
considerable error when b~Vn is ill-conditioned. The iterations of (5) and (21)
do not involve matrix inversions.
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