INFINITE PRODUCT EXPANSIONS FOR MATRIX n-th ROOTS

R. A. SMITH
(Received 22 September 1966)

1. Introduction

In this paper a denotes a square matrix with real or complex elements (though the theorems and their proofs are valid in any Banach algebra). Its spectral radius $\rho(a)$ is given by

$$
\begin{equation*}
\rho(a)=\lim \left\|a^{\nu}\right\|^{1 / \nu} \text {, as } \nu \rightarrow \infty, \tag{1}
\end{equation*}
$$

with any matrix norm (see [4], p. 183). If $\rho(a)<1$ and n is a positive integer then the binomial series

$$
\begin{equation*}
S(a)=\sum_{\nu=0}^{\infty}\binom{-1 / n}{\nu}(-a)^{\nu} \tag{2}
\end{equation*}
$$

converges and its sum satisfies $S(a)^{n}=(1-a)^{-1}$. Let

$$
\begin{equation*}
u(x)=1+\sum_{\nu=1}^{q-1} \frac{\Gamma\left(n^{-1}+v\right) x^{\nu}}{v!\Gamma\left(n^{-1}\right)}, \tag{3}
\end{equation*}
$$

where q is any integer exceeding 1 . Then $\boldsymbol{u}(a)$ is the sum of the first q terms of the series (2). Write

$$
\begin{equation*}
f(x)=1+u(x)^{n}(x-1) \tag{4}
\end{equation*}
$$

and let $a_{0}, a_{1}, a_{2}, \cdots$ be the sequence of matrices obtained by the iterative procedure

$$
\begin{equation*}
a_{0}=a, \quad a_{\nu+1}=f\left(a_{\nu}\right) . \tag{5}
\end{equation*}
$$

Defining polynomials $\phi_{0}(x), \phi_{1}(x), \phi_{2}(x), \cdots$ inductively by

$$
\begin{equation*}
\phi_{0}(x)=x, \quad \phi_{\nu+1}(x)=f\left(\phi_{\nu}(x)\right), \tag{6}
\end{equation*}
$$

we have $a_{\nu}=\phi_{\nu}(a)$ and therefore $a_{\mu} a_{\nu}=a_{\nu} a_{\mu}$ for all μ, ν. The following is proved in section 2:

Theorem 1. If $\rho(a)<1$ then

$$
\begin{equation*}
P(a)=\prod_{v=0}^{\infty} u\left(a_{\nu}\right) \tag{7}
\end{equation*}
$$

converges and $P(a)=S(a)$. Furthermore, if $\rho(a)<r<1$, then

$$
\begin{equation*}
\left\|a_{\nu}\right\|<M r^{q^{\nu}} \tag{8}
\end{equation*}
$$

for all v, where M depends on r and a but is independent of v and q.
Inequality (8) shows that $P(a)$ converges very rapidly. This could make it useful for the numerical computation of $S(a)$. In general the series (2) converges too slowly to be used for this purpose. In section 3 it is shown that when $n>1$ the infinite product (7) converges for a larger class of matrices a than does the series (2). If $n=1$ then (3) and (4) give $f(x)=x^{q}$. The solution of (5) is then $a_{\nu}=a^{q^{\nu}}$ and (7) reduces to

$$
\begin{equation*}
(1-a)^{-1}=\prod_{\nu=0}^{\infty}\left\{1+a^{q^{\nu}}+a^{2 q^{\nu}}+\cdots+a^{(q-1) q^{\nu}}\right\} \tag{9}
\end{equation*}
$$

This well-known formula goes back to Euler. Its use for practical computation was suggested by Ostrowski [6], Hotelling [3] and others. Hotelling was able to connect (9) in the special case $q=2$ with an iterative method for matrix inversion given by the Newton-Raphson formula. For (7) there is a similar connection with the Newton-Raphson formula which is discussed in section 4 . Theorem 1 can be used to find a matrix c satisfying $c^{n}=b$ for any square matrix b whose spectrum lies entirely in the half plane $\operatorname{Re} \lambda>0$. For the spectrum of $a=(b+1)^{-1}(b-1)$ then lies in the disc $|\lambda|<1$ and $c=(1+a)^{1 / n}(1-a)^{-1 / n}$ can be computed with the help of (7). In the special case when the eigenvalues of b are real and positive it is simpler to take $a=1-k^{-1} b$, where k is any real number satisfying $k>\frac{1}{2} \rho(b)$. The eigenvalues of a then satisfy $-1<\lambda<1$ and $c=k^{1 / n}(1-a)^{1 / n}$ can be computed with the help of (7).

2

LEMMA 1. If m is any integer in the range $1 \leqq m \leqq n$ and

$$
u(x)^{m}=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}+\cdots
$$

then for all ν,

$$
\begin{equation*}
\beta_{\nu} \geqq \beta_{\nu+1} \geqq 0 \tag{10}
\end{equation*}
$$

Proof. Since $(1-x)^{-1 / n}=u(x)+x^{q} v_{1}(x)$, it follows that

$$
\begin{equation*}
(1-x)^{-m / n}=u(x)^{m}+x^{q} v_{m}(x), \tag{11}
\end{equation*}
$$

where $v_{1}(x), v_{m}(x)$ are power series with positive coefficients. Comparing coefficients in (11) we get $(-1)^{\nu}\binom{-m / n}{\nu}=\beta_{\nu}$ for $0 \leqq \nu<q$. If $1 \leqq m \leqq n$ then $(-1)^{\nu}\binom{-m / n}{\nu}$ is a positve monotonic decreasing function of ν. Hence, (10) holds in the range $0 \leqq v<q-1$ and its remains to prove (10) for the
range $v \geqq q-1$. We do this by induction over m. Clearly (10) holds when $m=1$ because then $\beta_{\nu}=0$ for all $\nu \geqq q$. If the lemma holds for some m in the range $\mathbf{1} \leqq m<n$ then (3) gives

$$
u(x)^{m+1}=u(x)^{m} u(x)=\left(\sum_{\nu=0}^{\infty} \beta_{\nu} x^{\nu}\right)\left(\sum_{\nu=0}^{a-1} \alpha_{\nu} x^{\nu}\right)=\sum_{\nu=0}^{\infty} \gamma_{\nu} x^{\nu},
$$

where

$$
\alpha_{\mu}=\frac{\Gamma\left(n^{-1}+\mu\right)}{\mu!\Gamma\left(n^{-1}\right)} \text { and } \gamma_{\nu}=\sum_{\mu=0}^{q-1} \alpha_{\mu} \beta_{\nu-\mu}
$$

for all $v \geqq q-1$. Since (10) holds for all v we have

$$
0 \leqq \gamma_{\nu+1}=\sum_{\mu=0}^{q-1} \alpha_{\mu} \beta_{\nu+1-\mu} \leqq \sum_{\mu=0}^{q-1} \alpha_{\mu} \beta_{\nu-\mu}=\gamma_{\nu}
$$

for all $v \geqq q-1$. The lemma is therefore true for $m+1$ also. This establishes Lemma 1.

Lemma 2. $f(x)=x^{q} g(x)$ and $\phi_{\nu}(x)=x^{q^{\nu}} \psi_{\nu}(x)$ where $g(x), \psi_{\nu}(x)$ are polynomials with real non-negative coefficients which satisfy $g(1)=\psi_{\nu}(1)=1$.

Proof. With $m=n$, (11) gives

$$
x^{q} v_{n}(x)(1-x)=1+u(x)^{n}(x-1)=f(x)
$$

Hence $f(x)=x^{q} g(x)$ for some polynomial $g(x)$. If $u(x)^{n}=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}+\cdots$ then $\beta_{0}=1$ and $x^{q} g(x)=1+u(x)^{n}(x-1)=\sum_{\nu=0}^{\infty}\left(\beta_{\nu}-\beta_{\nu+1}\right) x^{\nu}$.

The coefficients of $g(x)$ are therefore non-negative by Lemma 1. Also $g(1)=f(1)=1$ from (4). Induction over v will be used to prove that $\phi_{\nu}(x)$ is of the form $x^{q^{\nu}} \psi_{\nu}(x)$, where $\psi_{\nu}(x)$ has non-negative coefficients. This is trivial for $\nu=0$ since $\phi_{0}(x)=x$. If it is true for some integer v then (6) gives

$$
\phi_{\nu+1}=\left(\phi_{\nu}\right)^{q} g\left(\phi_{\nu}\right)=\left(x^{q^{\nu}} \psi_{\nu}\right)^{q} g\left(\phi_{\nu}\right)=x^{q^{\nu+1}} \psi_{\nu+1},
$$

where $\psi_{v+1}=\left(\psi_{\nu}\right)^{q} g\left(\phi_{\nu}\right)$ is a polynomial with non-negative coefficients. The result is therefore true for $\nu+1$ also and the induction is complete. Since $f(1)=1$ it follows from (6) by induction that $\phi_{\nu}(1)=1$ for all ν. Hence $\psi_{\nu}(1)=\phi_{\nu}(1)=1$ and the proof of Lemma 2 is finished.

When $q=2$, (3) gives $u(x)=1+n^{-1} x$. Then (4) gives

$$
\begin{align*}
f & =1+n u^{n+1}-(n+1) u^{n}, \tag{12}\\
& =(u-1)^{2}\left(1+2 u+3 u^{2}+\cdots+n u^{n-1}\right), \\
& =x^{2} n^{-2}\left(1+2 u+3 u^{2}+\cdots+n u^{n-1}\right) .
\end{align*}
$$

This is the relation $f(x)=x^{q} g(x)$ for the special case $q=2$. If x is small then $f(x)$ can be computed more accurately from the relation $f(x)=x^{q} g(x)$ than from (4) which involves internal cancellation when x is small.

Proof of theorem 1. If $\rho(a)<r$ then (l) gives

$$
\begin{equation*}
\left\|a^{\nu}\right\| \leqq M r^{\nu} \tag{13}
\end{equation*}
$$

for some constant M. Hence $\left\|\phi_{v}(a)\right\| \leqq M \phi_{\nu}(r)$ since the coefficients of $\phi_{\nu}(x)$ are non-negative by Lemma 2. Since $0<r<1$, Lemma 2 also gives $\left\|\phi_{\nu}(a)\right\| \leqq M r^{q^{v}} \psi_{\nu}(r) \leqq M r^{q^{\nu}} \psi_{\nu}(1)=M r^{q^{\nu}}$.

This proves (8) because $a_{\nu}=\phi_{\nu}(a)$. From (4) and (5),

$$
\left(1-a_{\nu+1}\right)=u\left(a_{\nu}\right)^{n}\left(1-a_{\nu}\right) .
$$

Since $a_{\mu} a_{\nu}=a_{\nu} a_{\mu}$ it follows by induction that

$$
\begin{equation*}
\left(1-a_{\kappa+1}\right)=\left[\prod_{\nu=0}^{\kappa} u\left(a_{\nu}\right)\right]^{n}(1-a) . \tag{14}
\end{equation*}
$$

Since $a_{\nu}=\phi_{\nu}(a)$ we have $\prod_{\nu=0}^{\kappa} u\left(a_{\nu}\right)=W_{\kappa}(a)$, where $W_{\kappa}(x)$ is a polynomial with non-negative coefficients. When $-1<x<1$ it follows from (2) and (14) that

$$
\begin{equation*}
S(x)=(1-x)^{-1 / n}=W_{\kappa}(x)\left\{1-\phi_{\kappa+1}(x)\right\}^{-1 / n} . \tag{15}
\end{equation*}
$$

Expanding $\left\{1-\phi_{\kappa+1}(x)\right\}^{-1 / n}$ by the binomial theorem and using Lemma 2 we get

$$
\begin{equation*}
S(x)=W_{\kappa}(x)+x^{q^{\kappa+1}} V_{\kappa}(x), \tag{16}
\end{equation*}
$$

where $V_{\kappa}(x)$ is a power series with non-negative coefficients. This and (13) give $\left\|S(a)-W_{\kappa}(a)\right\|=\left\|a^{\alpha^{\kappa+1}} V_{\kappa}(a)\right\| \leqq M{r^{\alpha+1}}^{\alpha_{\kappa}}(r)$. Since none of the coefficients of $S(x)$ exceeds 1 by (2), the same is true of the coefficients of $V_{\kappa}(x)$ by (16). Hence,

$$
\begin{align*}
& \left\|S(a)-W_{\kappa}(a)\right\| \leqq M r^{\mu^{\kappa+1}}(1-r)^{-1} \\
& S(a)=\lim _{\kappa \rightarrow \infty} W_{\kappa}(a)=\prod_{\nu=0}^{\infty} u\left(a_{\nu}\right) \tag{17}
\end{align*}
$$

This completes the proof of Theorem 1.

3. Domain of convergence

Let $D=\bigcup_{\nu=0}^{\infty} D_{\nu}$ where D_{ν} is the set of points in the complex z plane for which $\left|\phi_{\nu}(z)\right|<1$. Each D_{ν} is an open set and D_{0} is the disc $|z|<1$.

Theorem 2. If the spectrum of a lies wholly in D then the infinite product (7) converges and satisfies $P(a)^{n}=(1-a)^{-1}$.

Proof. Lemma 2 gives $|f(z)|<g(|z|)<g(1)=1$ for $|z|<1$.
This and (6) show that $\left|\phi_{\nu+1}(z)\right|<1$ when $\left|\phi_{\nu}(z)\right|<1$. That is,
$D_{\nu+1} \supset D_{\nu}$ for all ν. Since the spectrum of a is compact it must lie in D_{μ} for some μ. Then the spectrum of $a_{\mu}=\phi_{\mu}(a)$ lies wholly in the disc $|z|<1$. Hence $\rho\left(a_{\mu}\right)<1$ and $S\left(a_{\mu}\right)=\prod_{\nu=\mu}^{\infty} u\left(a_{\nu}\right)$ by Theorem 1. From (14) with $\kappa=\mu-1$ we get

$$
P(a)^{n}=S\left(a_{\mu}\right)^{n}\left[\prod_{\nu=0}^{\mu-1} u\left(a_{\nu}\right)\right]^{n}=S\left(a_{\mu}\right)^{n}\left(1-a_{\mu}\right)(1-a)^{-1}=(1-a)^{-1}
$$

This completes the proof of Theorem 2. If $n=1$ then $\phi_{\nu}(z)=z^{q^{\nu}}$ and $D_{\nu}=D_{0}$ for all ν. That this is not so when $n>1$ is shown by the next theorem.

Theorem 3. If $n>1$ then D_{1} includes all of the closed disc $|z| \leqq 1$ except the point $z=1$.

Proof. Lemma 2 gives $|f(z)| \leqq f(|z|) \leqq f(1)=1$ for $|z| \leqq 1$. The inequality $|f(z)| \leqq f(|z|)$ can reduce to equality only when the terms of $f(z)$ all have the same complex argument (see [2], p. 26). If

$$
u(z)=k_{1} z^{q-1}+k_{2} z^{q-2}+\cdots
$$

then (4) gives

$$
f(z)=k_{1}^{n} z^{1+n(q-1)}+\left(n k_{2}-k_{1}\right) k_{1}^{n-1} z^{n(q-1)}+\cdots
$$

where the terms shown are those of the highest degrees. If $n>1$ then both these terms have positive coefficients because $k_{2} \geqq k_{1}>0$ by (3). These terms have the same complex argument only when z is real and positive. Therefore $|f(z)| \leqq f(|z|)$ reduces to equality only when z is real and positive. Hence $z=1$ is the only point of the disc $|z| \leqq 1$ at which $|f(z)| \leqq 1$ reduces to equality. Since $f(z)=\phi_{1}(z)$ it follows that D_{1} includes all of the disc $|z| \leqq 1$ except the point $z=1$. This established Theorem 3.

Since D_{1} is an open set Theorem 3 shows that a part of it must lie outside the circle $|z|=1$ when $n>1$. The region of convergence of the infinite product $P(a)$ is therefore somewhat larger than that of the series (2) which diverges if a has an eigenvalue outside the circle $|z|=1$. More precise information about the size of D will be given only for the special case $q=2$. Let H be the convex hull of the set which is the union of the closed disc $|z| \leqq 1$ and the single point $z=-n$. Let H_{0} be the set obtained by deleting from H the two points $z=-n, 1$.

Theorem 4. If $q=2$ and $n>1$ then D_{1} includes H_{0}.
Proof. If $z+n=d e^{i \delta}$ then $0<d<n+1$ and

$$
\begin{equation*}
-\frac{1}{n} \leqq \sin \delta \leqq \frac{1}{n} \tag{18}
\end{equation*}
$$

for all z in H_{0}. Also $u(z)=1+n^{-1} z=n^{-1} d e^{i 8}$ since $q=2$. From (12) we get

$$
|f(z)|^{2}=\left\{1+n u^{n+1}-(n+1) u^{n}\right\}\left\{1+n \bar{u}^{n+1}-(n+1) \bar{u}^{n}\right\} .
$$

With $u=n^{-1} d e^{i \delta}$ this gives $|f(z)|^{2}=1+(d / n)^{n} h(d, \delta)$ where

$$
\begin{aligned}
h(d, \delta)= & (d / n)^{n}\left\{d^{2}-2(n+1) d \cos \delta+(n+1)^{2}\right\} \\
& +2 d \cos (n+1) \delta-2(n+1) \cos n \delta
\end{aligned}
$$

Hence $|f(z)|<1$ if and only if $h(d, \delta)<0$. Since $f(z)=\phi_{1}(z)$ it follows that $z \in D_{1}$ if and only if $h(d, \delta)<0$. To prove Theorem 4 it is therefore sufficient to show that $h(d, \delta)<0$ throughout H_{0}. Clearly $h(d, \delta)<0$ in $H_{0} \cap D_{0}$ since D_{1} includes the closed disc \bar{D}_{0}, except for the point $z=1$, by Theorem 3. To prove that $h(d, \delta)<0$ in the whole of H_{0} it is therefore sufficient to show that $\partial h / \partial d>0$ in $H_{0}-D_{0}$ because each point of $H_{0}-D_{0}$ lies on some line segment joining $z=-n$ to a point of $H_{0} \cap \bar{D}_{0}$. Since $|z|^{2}=\left|-n+d e^{i \delta}\right|^{2}=n^{2}-2 n d \cos \delta+d^{2}$, we can express $\partial h / \partial d$ in the form

$$
\begin{equation*}
\partial h / \partial d=n^{-(n+1)} d^{n-1}\left\{(n+1)^{2}|z|^{2}-d^{2}\right\}+2 \cos (n+1) \delta \tag{19}
\end{equation*}
$$

Since $x^{-1} \sin x \geqq 3 / \pi$ in $0<x \leqq \pi / 6$, (18) gives

$$
\sin |\delta| \leqq n^{-1} \leqq 3(2 n+2)^{-1} \leqq \sin \left\{(2 n+2)^{-1} \pi\right\}
$$

Hence $|\delta| \leqq(2 n+2)^{-1} \pi$ and $\cos (n+1) \delta \geqq 0$ for all z in H_{0}. This and (19) give

$$
\partial h / \partial d \geqq n^{-(n+1)} d^{n-1}\left\{(n+1)^{2}|z|^{2}-d^{2}\right\}>n^{-(n+1)} d^{n-1}(n+1)^{2}\left\{|z|^{2}-1\right\}
$$

for all z in H_{0}. Therefore $\partial h / \partial d>0$ in $H_{0}-\bar{D}_{0}$. This completes the proof of Theorem 4. Notice that the points $z=-n, 1$ which were omitted from H_{0} lie outside D because $f(-n)=1$ when $q=2$ and therefore $\phi_{\nu}(-n)=\phi_{\nu}(1)$ $=1$ for all $\nu \geqq 1$ by (6).

4. Connection with Newton-Raphson

The Newton-Raphson formula for the numerical solution of an equation $Y(x)=0$ is $x_{\nu}-x_{\nu+1}=Y\left(x_{\nu}\right) / Y^{\prime}\left(x_{\nu}\right)$. With $Y(x)=b-x^{-n}$ this becomes

$$
\begin{equation*}
x_{\nu+1}=x_{\nu}\left\{1+n^{-1}\left(1-b x_{\nu}^{n}\right)\right\} . \tag{20}
\end{equation*}
$$

As a generalisation of this we consider the formula

$$
\begin{equation*}
x_{\nu+1}=x_{\nu} u\left(a_{\nu}\right), \quad a_{\nu}=1-b x_{\nu}^{n} \tag{21}
\end{equation*}
$$

where $u(x)$ is given by (3) with any q. This reduces to (20) when $q=2$ because then $u(x)=1+n^{-1} x$. When x_{ν} and b are square matrices, (21) gives

$$
\begin{equation*}
x_{\nu+1}=x_{0} u\left(a_{0}\right) u\left(a_{1}\right) \cdots u\left(a_{\nu}\right) \tag{22}
\end{equation*}
$$

Also, (4) and (21) show that $f\left(a_{\nu}\right)=1+\left(a_{\nu}-1\right) u\left(a_{\nu}\right)^{n}=1-b x_{\nu}^{n} u\left(a_{v}\right)^{n}$.

If $x_{\nu} a_{v}=a_{v} x_{v}$ then $x_{v}^{n} u\left(a_{v}\right)^{n}=x_{\nu+1}^{n}$ by (21) and

$$
\begin{equation*}
f\left(a_{\nu}\right)=1-b\left(x_{\nu+1}\right)^{n}=a_{\nu+1} . \tag{23}
\end{equation*}
$$

Compare this with (5). The condition $x_{\nu} a_{\nu}=a_{\nu} x_{\nu}$ is satisfied if $x_{\nu} b=b x_{\nu}$ and this is true by induction provided that $x_{0} b=b x_{0}$. When this is so, (22), (23) and Theorem 1 show that $x_{\nu+1} \rightarrow x_{0} P\left(a_{0}\right)$ as $v \rightarrow \infty$ provided that $\rho\left(a_{0}\right)<1$. If $x_{0} P\left(a_{0}\right)=L$ then

$$
L^{n}=x_{0}^{n} P\left(a_{0}\right)^{n}=x_{0}^{n}\left(1-a_{0}\right)^{-1}=b^{-1} .
$$

The following theorem is therefore true.
Theorem 5. If $a_{0}=1-b x_{0}^{n}$ has $\rho\left(a_{0}\right)<1$ and $x_{0} b=b x_{0}$ then the sequence of matrices $x_{0}, x_{1}, x_{2}, \cdots$ obtained from (21) tends to a limit matrix L which satisfies $L^{n}=b^{-1}$. Furthermore, the rate of convergence is of the q-th order.

Altman [1] and Petryshyn [7] have studied (21) in the special case when $n=1$. They obtain results similar to Theorem 5 but without the requirement $x_{0} b=b x_{0}$. This requirement can be deleted from Theorem 5 in the case $n=1$ because (23) then follows without use of the relation $x_{\nu} a_{\nu}=a_{\nu} x_{\nu}$. The following counter-example shows that $x_{0} b=b x_{0}$ cannot be deleted from Theorem 5 when $n>1$. If

$$
b=\left(\begin{array}{ll}
1 & 0 \\
0 & \mu^{-n}
\end{array}\right), \quad x_{\nu}=\left(\begin{array}{ll}
1 & \xi_{\nu} \\
0 & \mu
\end{array}\right), \quad x_{\nu}^{n}=\left(\begin{array}{ll}
1 & \zeta \xi_{\nu} \\
0 & \mu^{n}
\end{array}\right)
$$

then $\zeta=(\mu-1)^{-1}\left(\mu^{n}-1\right)$ and $\rho\left(a_{0}\right)=0$ where $a_{0}=1-b x_{0}^{n}$. These matrices satisfy (20) provided that $\xi_{\nu}=\left(1-n^{-1} \zeta\right)^{\nu} \xi_{0}$ for all ν. If $n>1$ and $\mu \geqq 4$ then $\left|1-n^{-1} \zeta\right|>1$ and x_{v} does not tend to a limit as $\nu \rightarrow \infty$ because $\left|\xi_{v}\right| \rightarrow \infty$. The deletion of $x_{0} b=b x_{0}$ from Theorem 5 therefore produces a false proposition when $n>1$. When $n>1$ and $q=2$, Theorem 4 enables the condition $\rho\left(a_{0}\right)<1$ in Theorem 5 to be replaced by the requirement that the spectrum of a_{0} lie wholly in H_{0}.

With $Y(x)=b x^{n}-1$ the Newton-Raphson formula becomes

$$
\begin{equation*}
x_{\nu+1}=\left(1-n^{-1}\right) x_{\nu}+\left(n b x_{\nu}^{n-1}\right)^{-1} . \tag{24}
\end{equation*}
$$

A higher order formula of Traub [8] generalises this is the same way that (21) generalises (20). Laasonen [5] has shown that (24) can be used to find a square root of any real matrix whose eigenvalues are all positive. Each iteration of (24) requires a matrix inversion which could introduce considerable error when $b^{-1 / n}$ is ill-conditioned. The iterations of (5) and (21) do not involve matrix inversions.

References

[1] M. Altman, An optimum cubically convergent iterative method for inverting a linear bounded operator in Hilbert space', Pacific J. Math. 10 (1960), 1107-1113.
[2] G. H. Hardy, J. E. Littlewood and G. Polya, Inequalities (C.U.P., 2nd ed. 1952).
[3] H. Hotelling, 'Some new methods in matrix calculation', Ann. Math. Statist. 14 (1943), 1-34.
[4] A. S. Householder, The theory of matrices in numerical analysis (Blaisdell, New York, 1964).
[5] P. Laasonen, 'On the iterative solution of the matrix equation $A X^{2}-I=O$ ', Math. Tables Aids Comput. 12 (1958), 109-116.
[6] A. Ostrowski, 'Sur quelques transformations de la série de Liouville-Neumann', C.R. Acad. Sci. Paris 206 (1938), 1345-1347.
[7] W. V. Petryshyn, 'On the inversion of matrices and linear operators', Proc. Amer. Math. Soc. 16 (1965), 893-901.
[8] J. F. Traub, 'Comparison of iterative methods for the calculation of n-th roots', Comm. $A C M 4$ (1961), $143-145$.

Department of Mathematics

University of Durham, England

