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THE HADAMARD PRODUCT OF TWO BROWNIAN MATRICES:
ANALYTIC INVERSE AND DETERMINANT
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Abstract

The explicit inverse and determinant of a class of matrices is given. The class is the
Hadamard product of two already known classes. Its elements are defined by 3n - 1
parameters, analytical expressions of which compose the Hessenberg form inverse. These
expressions enable a recursive formula to be obtained, which gives the inverse in O(«2)
multiplications/divisions and O(n) additions/subtractions.

1. Introduction

Linear models are frequently used in the theory of digital signal processing. A
common characteristic of such models is that they lead to linear systems of general
form Bx = c, where B denotes a generalized resultant matrix obtained from certain
Brownian matrices. This is due to the fact that discrete-time Brownian motion is
a proper model for discrete-time signals, of which, in turn, the covariance matrix
is Brownian (see, for example, [3], [9], and references therein). Furthermore, if
there are two discrete-time-signal devices, represented by their covariance Brownian
matrices, Bx and B2, respectively, then their coupling results in a generalized resultant
matrix B = Bx .op. B2, where the operator .op. may be (i) matrix multiplication or
(ii) Hadamard product. If fl,"1 and B2' can be computed by "fast" algorithms, then the
same could also be true for B~l in the case (i). In the present paper a fast algorithm
is developed for computing B~l in the case (ii), when B\ and B2 are given Brownian
matrices, Bx = N and B2 = A.

In particular, in [10] the tridiagonal inverse of a symmetric class of matrices
N — fay] with elements a,y = Jfc,-, i > j , has been obtained. In [11] a more general
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type of the matrix N has been presented; namely, the matrix A = [au], where

aj i > j ,
bi i < j ,

the inverse of which is of upper Hessenberg form. In this paper we present the explicit
inverse and determinant of a class represented by the Hadamard product of these two
classes, that is, B = N o A, where B is the class under consideration and o denotes
the Hadamard product.

If we consider the n x n matrix P = [/?,,], with elements

PiJ ~ [ 0 otherwise,

then the matrix PNP is a pure Brownian matrix, while A is a Brownian matrix,
in agreement with the definitions of [9] and [3], respectively. In [1] the so-called
"diagonal innovation matrices" (DIM) are treated, special cases of which are both the
matrices N and A.

The Hadamard product of these matrices, besides its interest from both the math-
ematical and the digital-signal-processing viewpoint, does also constitute a significant
general case of already known classes of test matrices. In particular, by assigning
proper values to the 3/z — 1 parameters, a variety of matrices for testing computational
algorithms can be constructed. It is worth noting that, by restricting the a's, b's, and
k's, well-known classes of test matrices become subcases of the present category;
namely, the classes appeared in [2], [5] - [8], [10], [11], as well as in [4], pages 42
and 48.

2. The matrix and its inverse

Let us consider a matrix B — [b,j] with elements

kjb. i <j.

Its inverse B~l = [6y] is found to be an upper Hessenberg matrix with elements
given analytically by the formulae

(1r fm _^ IT J-| \ Iff f* \ J — I / ft 1
IIVI 1 C*(_J_] ^ ^ Atj_i_ J t / j J 11 V C | 1 ^*| / ' ^ ~ J ~™ ^»j • • • ) • * A )

kn-i/(kncn-i) i = j = n,

(2)^ Y\ KfJ Y\cv
v=i+l • u=l—1

< j ,

i > j + 1,
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where

c, = kiOi+i - fci+ibj i = 1, 2 , . . . , n - 1, co = au cn = \,

di = &,a,+1 - ki+iai i = 2 , 3 , . . . , « - 1, dn — \,
fi=bi-ai / = 2 , 3 , . . . , n - 1 ,
gi = kibi+l - ki+lbt i = 1 ,2, . . . , n - 2, g0 = bu and ( 3 )

y-i

J~~| kvfv = 1 whenever j — i + 1.

Evidently, the above formulae are valid if

kn^0 and c, ^ 0 / = 0,1 n — 1.

3. The proof

To verify (2), we adopt a similar method to that in [11]. By applying a number
of row operations to the matrix (1), we transform it to the identity matrix. Then the
product of the elementary matrices gives the inverse matrix (2). By adopting the
conventions (3) and k0 = 1, the row operations carried out are the following:

1. row i — ki/ki-i row (i — 1), / = n, n — 1 , . . . , 2
2. row i - £,g,_i/(*/-iS.) row (i + 1), i = 1, 2 , . . . , « - 2
3. row (n - 1) - kn^gn.2/(kn.2cn^) row « and

row / - kikigi-ifi+i/iki-igiCi) row 0 + 1), / = n - 2, n - 3 , . . . , 1.
4. \/{kxa\) row 1 and£,_i/(&,c,_i) row i, i = 2 , 3 , . . . , n .

The above operations transform the identity matrix to the following forms, respect-
ively:

1. The bidiagonal matrix consisting of the main diagonal (1, 1 , . . . , 1) and the lower
first diagonal {-k2/ku -k3/k2,..., -kn/kn-X).

2. The tridiagonal matrix with main diagonal

(kib2/gu k2(kib3 -k3bi)/(kig2),..., £n_2(£n_3&n-i -^ - i6 n _ 3 ) / ( fc n _ 3 g n _ 2 ) , 1, 1),

upper first diagonal

(-kibt/gi, -k2gi/(kig2),..., -kn-2gn-i/(kn_3gn_2), 0),

and lower first diagonal (—k2/ku —k3/k2,..., —kn/kn-{).
3. The upper Hessenberg matrix of the type (case n = 5)
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1

[4]

4. The upper Hessenberg matrix, the elements of which are given by (2).

4. The determinant

The determinant of B is derived easily by carrying out the row operation, row / —
ki/ ki-X row (/ — 1), / = n, n — 1 , . . . , 2, which provides the upper triangular matrix

knbx

o w*i
0 0 k3c2/k2 . . . kng2/k2

0 0 0 . . . kncn-x/kn.

using the abbreviations (3). Hence

det(B) = axkn(kxa2 — k2bx)(k2a3 — k3b2)... (kn-Xan — knbn-X),

which yields the criteria for the singularity of the matrix B; that is,

kn = 0 or c, = 0 for some / e {0, 1 n — 1}.

5. Numerical complexity

The formulae in (2), which give the elements of the inverse matrix above the main
diagonal, enable us to get a recursion relation in order to facilitate the evaluation of
B~l. This relation provides the recursive algorithm

- i = l , 2 , . . . , n - l ,

^i+s Jii+s 6U+S i = 1 ,2 , . . . , / i - 2 , s = 1 ,2 , ...,n-i - 1,
+S+1
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or, alternatively,

iit± y = 2 , 3 , . . . , n ,
, , , ,

Cj.2Cj.lCj

6,-_,_,.y = _&i—*}->&-> £._aj y = 3 , 4 , . . . . n , s = 1, 2 , . . . . 7 - 2 .
gj-s-\Cj-s-2

The above formulae estimate all the elements 6iy, for i < j , and reduce the number
of multiplications/divisions for the evaluation of the inverse matrix to «2/2 + 29«/2 —
25 in all, since the coefficient of 6,:,,-+, (67_j,y) depends only on the second (first)
subscript. Finally, the number of additions/subtractions is 5n — 9.
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