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Abstract

We use the best constants in the Khintchine inequality to generalise a theorem of Kato [‘Similarity for
sequences of projections’, Bull. Amer. Math. Soc. 73(6) (1967), 904–905] on similarity for sequences
of projections in Hilbert spaces to the case of unconditional Schauder decompositions in `p spaces. We
also sharpen a stability theorem of Vizitei [‘On the stability of bases of subspaces in a Banach space’, in:
Studies on Algebra and Mathematical Analysis, Moldova Academy of Sciences (Kartja Moldovenjaska,
Chişinău, 1965), 32–44; (in Russian)] in the case of unconditional Schauder decompositions in any
Banach space.
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1. Introduction

The stability theory for Schauder bases in Banach spaces originates in 1940 with the
work of Krein et al. [18] on the well-known basis problem for a Banach space. The
main theorem from [18] has the following important consequence: in any Banach
space with a basis, a basis may be chosen from an arbitrary dense set. This theorem, the
Krein–Milman–Rutman stability theorem, has many generalisations, analogues and
applications (see, for example, [19, 24]).

Throughout what follows, E denotes a Banach space, H denotes a Hilbert space
and Z+ is the set of nonnegative integers. In the 1960s, Marcus, Vizitei and
Kato investigated the stability property for Schauder decompositions in connection
with the problems of spectral theory in H. The results of Marcus and Vizitei
were applied to the spectral analysis of dissipative operators [10, 21] and slightly
perturbed normal operators [27]. Djakov and Mityagin applied a stability theorem
from [21] to show that spectral decompositions corresponding to Hill operators with
singular potentials [8], as well as decompositions associated with one-dimensional
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periodic Dirac operators [9], converge unconditionally. It follows that there exists
an unconditional Schauder decomposition consisting of invariant subspaces. In 2010,
Wyss [29] used a modification of a lemma from [22] to prove the same property for
p-subordinate perturbations of normal operators.

In the same year, Zwart [30] applied a lemma from [28] to obtain the following
remarkable spectral theorem for the generator A of a C0-group on H: if the
eigenvalues {λn} of A (counted with multiplicity) can be decomposed into K sets
{λn,1}, {λn,2}, . . . , {λn,K} with infn,m |λn,k − λm,k| > 0, k = 1, . . . , K, and the span of the
generalised eigenvectors of A is dense, then there are spectral projections {Jn}

∞
n=0

of A such that {JnH}∞n=0 forms an unconditional Schauder decomposition in H with
maxn dim JnH = K.

The present paper focuses on the generalisation of the following theorem.

Theorem 1.1 [16]. Let {Pn}
∞
n=0 be a sequence of nonzero selfadjoint projections in H

satisfying
∑∞

n=0 Pn = I, PnPm = δm
n Pn for n,m ∈ Z+, and let {Jn}

∞
n=0 be a sequence of

nonzero projections in H such that JnJm = δm
n Jn for n,m ∈ Z+. Furthermore, suppose

that
dim P0 = dim J0 = m <∞, (1.1)

∞∑
n=1

‖Pn(Jn − Pn)x‖2 ≤ c2‖x‖2 for all x ∈ H,

where c is a constant such that 0 ≤ c < 1. Then {Jn}
∞
n=0 is similar to {Pn}

∞
n=0, that is,

there exists an isomorphism S such that Jn = S PnS −1 for n ∈ Z+.

This theorem provides an effective tool for spectral analysis of various perturbations
of operators in H (see, for example, [7, 12, 17]). Recently, Adduci and Mityagin [1]
applied Theorem 1.1 to show that the eigensystem of the perturbed harmonic oscillator
−d2/dt2 + t2 + B, with B = b(t) and domain in L2(R), is an unconditional basis. In
[2], they also applied Theorem 1.1 to the spectral analysis of the perturbation of a
selfadjoint operator with discrete spectrum.

The main goal of this paper is to generalise Theorem 1.1 to the case of `p

spaces, where 1 ≤ p < ∞. For this purpose, we consider unconditional Schauder
decompositions in `p instead of orthogonal Schauder decompositions in H. Moreover,
we use intrinsic geometric properties of `p and the best constants in the Khintchine
inequality. As immediate consequences of the main result, we obtain some stability
theorems for unconditional and symmetric bases in `p. The paper [20] also studies the
interplay between the problem of stability for Schauder decompositions in a Banach
space and the intrinsic geometric properties of a Banach space. The main object
in [20] is `Ψ-Hilbertian Schauder decomposition. In the present paper, we focus
on the most interesting and informative case of stability for unconditional Schauder
decompositions in `p space. Moreover, we consider some applications concerning
symmetric bases in `p. Note that `∞ has no Schauder decomposition [25], although
there are nonseparable Banach spaces with Schauder decompositions [6, 23] and
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separable Banach spaces without them [3]. For more on Schauder decompositions
we refer to [4, 10, 13, 19, 20, 25].

The paper has the following structure. The next section presents an auxiliary
lemma (Lemma 2.3) which describes the dependence of the properties of unconditional
Schauder decompositions in E on the geometry of E. In Section 3, we use Lemma 2.3
to sharpen a stability theorem of Vizitei in the case of unconditional Schauder
decompositions in E. Section 4 is devoted to the main result concerning stability
of unconditional Schauder decompositions in `p spaces (Theorems 4.1 and 4.2). It
also provides some results on stability of unconditional and symmetric bases in `p

(Theorems 4.4 and 4.5). Finally, in Section 5 we discuss some applications and show
that certain sequences are symmetric bases of `p.

2. The auxiliary lemma

We will need the following definitions.

Definition 2.1 [25]. Let {Mn}
∞
n=0 be a Schauder decomposition in E. Then the sequence

of continuous linear projections {Pn}
∞
n=0 on E, defined by Pnx = xn, n ∈ Z+, where

x =
∑∞

n=0 xn, xn ∈Mn, is called the sequence of coordinate projections associated to the
decomposition {Mn}

∞
n=0, or, for short, the associated sequence of coordinate projections

(a.s.c.p.).

Definition 2.2. A Schauder decomposition {Mn}
∞
n=0 in E is said to be unconditional

with constant M provided there exists M ≥ 1 such that∥∥∥∥∥ n∑
i=0

δiyi

∥∥∥∥∥ ≤ M
∥∥∥∥∥ n∑

i=0

yi

∥∥∥∥∥ for all n ∈ Z+, yi ∈Mi, {δi}
n
i=0 ⊂ {0, 1}.

One trivially notices that every orthogonal Schauder decomposition in H is
unconditional with constant 1. The following auxiliary lemma shows how the
properties of unconditional Schauder decompositions in E depend on the inner
geometry of E and it will be useful throughout the paper.

Lemma 2.3. Let {Mn}
∞
n=0 be an unconditional Schauder decomposition in E with

constant M and the a.s.c.p. {Pn}
∞
n=0. Also assume that E has type or infratype p and

that E has cotype or M-cotype q. Then there exist constants T = T (p, M) > 0 and
C = C(q,M) > 0 such that for every x ∈ E

C
( ∞∑

n=0

‖Pnx‖q
)1/q
≤ ‖x‖ ≤ T

( ∞∑
n=0

‖Pnx‖p
)1/p

. (2.1)
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Proof. Since E has type or infratype p, for each x ∈ E and for every finite set
{P jx}nj=0 ⊂ E there exists a set {ε j}

n
j=0 ⊂ {−1, 1} such that∥∥∥∥∥ n∑

j=0

ε jP jx
∥∥∥∥∥ =

(
min
ε j=±1

∥∥∥∥∥ n∑
j=0

ε jP jx
∥∥∥∥∥2)1/2

≤



(
E
∥∥∥∥∥ n∑

j=0

ε jP jx
∥∥∥∥∥2)1/2

≤ Tp(E)
( n∑

j=0

‖P jx‖p
)1/p

when E has type p,

Ip(E)
( n∑

j=0

‖P jx‖p
)1/p

when E has infratype p

≤ T (p)
( n∑

j=0

‖P jx‖p
)1/p (

here E
∥∥∥∥∥ n∑

j=0

ε jx j

∥∥∥∥∥2
=

1
2n+1

∑
ε j=±1

∥∥∥∥∥ n∑
j=0

ε jx j

∥∥∥∥∥2)
.

Define the operators P+
n =

∑
j:ε j=1 P j, P−n =

∑
j:ε j=−1 P j on E. Then

‖x‖ = lim
n→∞
‖(P+

n − P−n )2x‖ ≤ 2M lim
n→∞
‖(P+

n − P−n )x‖ ≤ 2MT (p)
( ∞∑

n=0

‖Pnx‖p
)1/p

.

Hence, the right-hand side of (2.1) is proved with T = 2MT (p).
Further, since E has cotype or M-cotype q, for each x ∈ E and for every finite set

{P jx}nj=0 ⊂ E there exists a set {ε j}
n
j=0 ⊂ {−1, 1} such that∥∥∥∥∥ n∑

j=0

ε jP jx
∥∥∥∥∥ =

(
max
ε j=±1

∥∥∥∥∥ n∑
j=0

ε jP jx
∥∥∥∥∥2)1/2

≥



(
E
∥∥∥∥∥ n∑

j=0

ε jP jx
∥∥∥∥∥2)1/2

≥ Cq(E)
( n∑

j=0

‖P jx‖q
)1/q

when E has cotype q,

Mq(E)
( n∑

j=0

‖P jx‖q
)1/q

when E has M-cotype q

≥ C(q)
( n∑

j=0

‖P jx‖q
)1/q

.

Observe that for each set {ε j}
n
j=0 ⊂ {−1, 1} there exist two sets {δ+

j }
n
j=0 ⊂ {0, 1} and

{δ−j }
n
j=0 ⊂ {0, 1} such that∥∥∥∥∥ n∑

j=0

ε jP jx
∥∥∥∥∥ =

∥∥∥∥∥ n∑
j=0

δ+
j P jx −

n∑
j=0

δ−j P jx
∥∥∥∥∥ ≤ 2M‖x‖.

Therefore, C(q)(
∑n

j=0 ‖P jx‖q)1/q ≤ 2M‖x‖, and the left-hand side of (2.1) is proved
with C = (2M)−1C(q). �
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Lemma 2.3 is a generalisation of a lemma from [28]. Since every Banach
space has (trivially) type 1 and cotype ∞, Lemma 2.3 is valid for unconditional
Schauder decompositions in any Banach space. Note that (

∑∞
n=0 ‖Pnx‖q)1/q turns into

supn∈Z+
‖Pnx‖ when q =∞. Concerning type, infratype, cotype and M-cotype, see, for

example, [13–15, 19, 20].
In the case of unconditional Schauder decompositions in Lp(µ) spaces where

1 ≤ p <∞, we have the following corollary of Lemma 2.3.

Corollary 2.4. Let {Mn}
∞
n=0 be an unconditional Schauder decomposition in Lp(µ),

1 ≤ p <∞, with constant M and the a.s.c.p. {Pn}
∞
n=0. Denote by p0 the solution of

Γ

( p + 1
2

)
=

√
π

2
in the interval [1, 2], where Γ is the Euler gamma function (p0 ≈ 1.84742). Then for
each x ∈ Lp(µ) we have the following two-sided inequalities:

2−1/2−1/p

M

( ∞∑
n=0

‖Pnx‖2
)1/2
≤ ‖x‖ ≤ 2M

( ∞∑
n=0

‖Pnx‖p
)1/p

for 1 ≤ p ≤ p0,

2−1/2

M

(Γ
( p+1

2
)

√
π

)1/p( ∞∑
n=0

‖Pnx‖2
)1/2
≤ ‖x‖ ≤ 2M

( ∞∑
n=0

‖Pnx‖p
)1/p

for p0 ≤ p ≤ 2,

1
2M

( ∞∑
n=0

‖Pnx‖p
)1/p
≤ ‖x‖ ≤

√
8M

(Γ
( p+1

2
)

√
π

)1/p( ∞∑
n=0

‖Pnx‖2
)1/2

for p ≥ 2.

Proof. It is known [13] that Lp(µ) has the best possible type min{2, p} and the best
possible cotype max{2, p}. The best constants associated to these values of type and
cotype may be estimated as

Tp(Lp(µ)) = 1, C2(Lp(µ)) ≤ A−1
p for 1 ≤ p ≤ 2,

T2(Lp(µ)) ≤ Bp, Cp(Lp(µ)) = 1 for p ≥ 2,

where Ap and Bp are the best constants in the Khintchine inequality [13], namely,

Ap =



21/2−1/p for 0 < p ≤ p0,

21/2
(Γ

( p+1
2

)
√
π

)1/p
for p0 ≤ p ≤ 2,

1 for p ≥ 2,

Bp =


1 for 0 < p ≤ 2,

21/2
(Γ

( p+1
2

)
√
π

)1/p
for p ≥ 2,

(see [11]). Now the corollary follows from Lemma 2.3 and its proof. �
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3. A sharpening of the theorem of Vizitei

We will use the terminology from [25] in this section. The theorem of Vizitei
[26] provides some stability properties of p-Besselian Schauder decompositions in
E. It may be characterised as a stability theorem of geometric type (see also [25,
Theorem 15.17]. By virtue of Lemma 2.3, any unconditional Schauder decomposition
in a Banach space E, which has cotype or M-cotype q, is q-Besselian. Therefore, we
can sharpen the theorem of Vizitei as follows.

Theorem 3.1. Suppose E has cotype or M-cotype q with 2 ≤ q ≤ ∞ and define p by
1/p + 1/q = 1 (if q = ∞, then p = 1). Also suppose that E has an unconditional
Schauder decomposition {Mn}

∞
n=0 with constant M and the a.s.c.p. {Pn}

∞
n=0. Then the

following assertions hold.

(1) There is a constant λ ∈ (0, 1) such that every sequence of subspaces {Nn}
∞
n=0 of E

satisfying ( ∞∑
n=0

θ(Mn,Nn)p
)1/p
≤ λ

where
θ(M,N) = max

{
sup

x∈M,‖x‖=1
dist(x,N), sup

y∈N,‖y‖=1
dist(y,M)

}
is itself an unconditional Schauder decomposition of E, isomorphic to {Mn}

∞
n=0,

with constant M‖S ‖ ‖S −1‖, where Nn = SMn, n ∈ Z+. Note that the constant λ
may be chosen as λ = (4 sup0≤n<∞ ‖

∑n
j=0 P j‖(1 + sup0≤n<∞ ‖Pn‖)2)−1.

(2) Every sequence of subspaces {Nn}
∞
n=0 of E satisfying

∞∑
n=0

θ(Mn,Nn)p <∞, (3.1)

and admitting a sequence {Jn}
∞
n=0 such that ({Nn}

∞
n=0, {Jn}

∞
n=0) is an E-complete

generalised biorthogonal system, is a q-Besselian Schauder decomposition of E.
If, additionally, dimMn < ∞ for all n ∈ Z+, then the same conclusion holds for
every ω-linearly independent sequence of subspaces {Nn}

∞
n=0 satisfying (3.1).

Note that, since every Banach space has (trivially) cotype ∞, Theorem 3.1 is valid
in arbitrary Banach spaces possessing unconditional Schauder decompositions.

4. The main result

The main result of the paper is formulated as follows.

Theorem 4.1. Let {Nn}
∞
n=0 be a Schauder decomposition of the space `p, 1 ≤ p < ∞,

with the a.s.c.p. {Fn}
∞
n=0 such that dim F0 <∞ and

∞∑
n=0

‖Fnx‖p = ‖x‖p for each x ∈ `p. (4.1)
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Assume that {Mn}
∞
n=0 is an unconditional Schauder decomposition of `p with constant

M and the a.s.c.p. {Pn}
∞
n=0, where P0 = F0. Also suppose that {Jn}

∞
n=0 is a sequence of

nonzero projections in `p satisfying (1.1) such that JnJm = δm
n Jn for n,m ∈ Z+. Suppose

that, for each x ∈ `p,( ∞∑
n=1

‖Pn(Jn − Pn)x‖p
)1/p
≤ ς1‖x‖ where 0 ≤ ς1 <

1
2M

(4.2)

when 1 ≤ p ≤ 2, or( ∞∑
n=1

‖Pn(Jn − Pn)x‖2
)1/2
≤ ς2(p)‖x‖ where 0 ≤ ς2(p) <

1
√

8M

(Γ
( p+1

2
)

√
π

)−1/p
(4.3)

when p ≥ 2. Then {Jn(`p)}∞n=0 is also an unconditional Schauder decomposition of `p,
isomorphic to {Mn}

∞
n=0.

Proof. To prove the theorem we use the method of Kato, as proposed in [16], and
apply Corollary 2.4. Define the operator S on `p by

S =

∞∑
n=0

PnJn.

To show that S exists in the strong sense, we will prove that

∞∑
n=0

(Pn − PnJn) =

∞∑
n=0

Pn(Pn − Jn)

is strongly convergent. Since {Mn}
∞
n=0 is an unconditional Schauder decomposition in

`p with constant M and the a.s.c.p. {Pn}
∞
n=0, Corollary 2.4 yields the following two

assertions. For 1 ≤ p ≤ 2, x ∈ `p and N ∈ Z+, by (4.2),∥∥∥∥∥k+N∑
n=k

Pn(Pn − Jn)x
∥∥∥∥∥p
≤ (2M)p

∞∑
j=0

∥∥∥∥∥P j

(k+N∑
n=k

Pn(Pn − Jn)x
)∥∥∥∥∥p

= (2M)p
k+N∑
n=k

‖Pn(Pn − Jn)x‖p → 0

as k→∞. Analogously, using (4.3), for p ≥ 2, x ∈ `p and N ∈ Z+,∥∥∥∥∥k+N∑
n=k

Pn(Pn − Jn)x
∥∥∥∥∥2
≤ 8M2

(Γ
( p+1

2
)

√
π

)2/p ∞∑
j=0

∥∥∥∥∥P j

(k+N∑
n=k

Pn(Pn − Jn)x
)∥∥∥∥∥2

= 8M2
(Γ

( p+1
2

)
√
π

)2/p k+N∑
n=k

‖Pn(Pn − Jn)x‖2 → 0
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as k→∞. Thus,
∑∞

n=0 Pn(Pn − Jn)x converges and, consequently, the series

∞∑
n=0

PnJnx =

∞∑
n=0

Pnx −
∞∑

n=0

Pn(Pn − Jn)x

also converges. Now consider the operator

R =

∞∑
n=1

Pn(Pn − Jn) = I − P0 −

∞∑
n=1

PnJn.

Observe that, on the one hand, for 1 ≤ p ≤ 2 and each x ∈ `p,

‖Rx‖p =

∥∥∥∥∥ ∞∑
n=1

Pn(Pn − Jn)x
∥∥∥∥∥p

≤ (2M)p
∞∑
j=0

∥∥∥∥∥P j

( ∞∑
n=1

Pn(Pn − Jn)x
)∥∥∥∥∥p

by Corollary 2.4

= (2M)p
∞∑

n=1

‖Pn(Pn − Jn)x‖p ≤ (2M)pς
p
1 ‖x‖

p by (4.2).

On the other hand, for p ≥ 2 and each x ∈ `p,

‖Rx‖2 =

∥∥∥∥∥ ∞∑
n=1

Pn(Pn − Jn)x
∥∥∥∥∥2

≤ 8M2
(Γ

( p+1
2

)
√
π

)2/p ∞∑
j=0

∥∥∥∥∥P j

( ∞∑
n=1

Pn(Pn − Jn)x
)∥∥∥∥∥2

by Corollary 2.4

= 8M2
(Γ

( p+1
2

)
√
π

)2/p ∞∑
n=1

‖Pn(Pn − Jn)x‖2 ≤ 8M2
(Γ

( p+1
2

)
√
π

)2/p
ς2

2(p)‖x‖2 by (4.3).

It follows that ‖R‖ < 1. Further, we observe that, since S = P0J0 + I − P0 − R,

‖S ‖ < ‖J0‖ + 3 <∞.

Thus, the theorem will be proved if we show that S is continuously invertible. To
prove this, consider the operator

S̃ =

∞∑
n=1

PnJn = I − P0 − R.

Since dim P0 = m <∞ by the definition of the projection P0, we see that (I − P0) is a
Fredholm operator with

nul(I − P0) = m, ind(I − P0) = 0, γ(I − P0) = 1,
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where nul T denotes the nullity, ind T the index and γ(T ) the reduced minimum
modulus of the operator T (for these notions, see, for example, [17, Ch. IV,
Section 5.1]). Indeed, first we note that nul(I − P0) = dim P0 = m,

def(I − P0) = dim `p|Im(I−P0) = dim coker(I − P0) = dim(Im(I − P0))⊥ = m,

and ind(I − P0) = nul(I − P0) − def(I − P0) = 0, where def T denotes the deficiency
of T (see, for example, [4, 17]). Second, by virtue of (4.1) we observe that for each
x ∈ `p,

inf
v∈ker(I−P0)

‖x − v‖ = inf
v∈Im F0

( ∞∑
n=0

‖Fn(x − v)‖p
)1/p

=

( ∞∑
n=1

‖Fn(x − F0x)‖p
)1/p

=

( ∞∑
n=0

‖Fn(x − F0x)‖p
)1/p

= ‖(I − P0)x‖.

Consequently,

γ(I − P0) = sup
{
γ : ‖(I − P0)x‖ ≥ γ inf

v∈ker(I−P0)
‖x − v‖, x ∈ D(I − P0) = `p

}
= 1.

Furthermore, since ‖R‖ < 1 = γ(I − P0), S̃ = (I − P0) − R is also Fredholm with

nul S̃ ≤ nul(I − P0) = m, ind S̃ = ind(I − P0) = 0 (4.4)

(see [17, Ch. IV, Theorem 5.22]). Since S = P0J0 + S̃ , where P0J0 is compact, S is
also Fredholm and ind S = ind S̃ = 0 (see [17, Ch. IV, Theorem 5.26]). Therefore,
nul S = def S and S will be invertible if and only if nul S = def S = 0. Thus it is
sufficient to show that nul S = 0. To this end, we first prove that

ker S̃ = Im J0. (4.5)

If x ∈ Im J0, that is, x = J0y, then S̃ x = S̃ J0y =
∑∞

n=1 PnJnJ0y = 0 and, consequently,
x ∈ ker S̃ . On the other hand, ker S̃ ⊂ Im J0, since ker S̃ and Im J0 are linear subspaces,
dim Im J0 = m and dim ker S̃ ≤ m by (4.4). Now suppose that x ∈ ker S . Then,

0 = P0S x = P0

∞∑
n=0

PnJnx = P0J0x

and S̃ x = S x − P0J0x = 0. Hence, x ∈ ker S̃ , x = J0y by (4.5) and, therefore,

P0x = P0J0y = P0

∞∑
n=0

PnJnJ0y = P0

∞∑
n=0

PnJnx = 0.

As a result, (I − R)x = (S̃ + P0)x = 0, and, since ‖R‖ < 1, we obtain x = 0. Thus,
ker S = {0}, nul S = 0 and S is continuously invertible. Finally, we note that Jn =

S −1PnS , n ∈ Z+, impliesMn = S Jn`p, n ∈ Z+, which completes the proof. �
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Note that any Schauder decomposition {Nn}
∞
n=0 with the a.s.c.p. {Fn}

∞
n=0

satisfying (4.1) is called a Schauder–Orlicz decomposition in [20] with Orlicz function
Φ(t) = tp. For decompositions of this kind we have the following result.

Theorem 4.2. Let {Mn}
∞
n=0 be a Schauder–Orlicz decomposition of `p, 1 ≤ p <∞, with

Orlicz function Φ(t) = tp and the a.s.c.p. {Pn}
∞
n=0, where dim P0 < ∞. Suppose that

{Jn}
∞
n=0 is a sequence of nonzero projections in `p satisfying (1.1) such that JnJm = δm

n Jn

for n,m ∈ Z+. If for each x ∈ `p one has( ∞∑
n=1

‖Pn(Jn − Pn)x‖p
)1/p
≤ ς‖x‖ where 0 ≤ ς < 1,

then {Jn(`p)}∞n=0 is an unconditional Schauder decomposition of `p, isomorphic to
{Mn}

∞
n=0.

To formulate some stability results for unconditional and symmetric bases in `p

spaces we propose the following definition based on Definition 2.2.

Definition 4.3. We call a sequence {φn}
∞
n=0 ⊂ E an unconditional basis of E with

constant M if the sequence of corresponding one-dimensional subspaces {Lin {φn}}
∞
n=0

forms an unconditional Schauder decomposition of E with constant M.

For example, every orthonormal basis in H is unconditional with constant M = 1. In
the case dimMn = 1, n ∈ Z+, Theorem 4.1 leads to the following theorem on stability
of unconditional bases in `p.

Theorem 4.4. Let {φn}
∞
n=0 be a bounded unconditional basis of `p, 1 ≤ p < ∞, with

constant M and the associated sequence of coordinate functionals {φ∗n}
∞
n=0 such that,

for all x ∈ `p, 〈φ∗0, x〉φ0 = F0x, where {Fn}
∞
n=0 is the a.s.c.p. of the Schauder–Orlicz

decomposition in `p with Orlicz function Φ(t) = tp. Also assume that ({ψn}
∞
n=0, {ψ

∗
n}
∞
n=0)

is a biorthogonal system in `p satisfying

0 < inf
n
‖ψn‖ ≤ sup

n
‖ψn‖ <∞.

Suppose that, for every x ∈ `p,( ∞∑
n=1

|〈ψ∗n, x〉〈φ
∗
n, ψn〉 − 〈φ

∗
n, x〉|

p‖φn‖
p
)1/p
≤ ς1‖x‖ where 0 ≤ ς1 <

1
2M

,

in the case 1 ≤ p ≤ 2, or( ∞∑
n=1

|〈ψ∗n, x〉〈φ
∗
n, ψn〉 − 〈φ

∗
n, x〉|

2‖φn‖
2
)1/2
≤ ς2‖x‖ where 0 ≤ ς2 <

1
√

8M

(Γ
( p+1

2
)

√
π

)−1/p
,

in the case p ≥ 2 (ς2 = ς2(p)). Then {ψn}
∞
n=0 is also an unconditional basis of `p,

equivalent to {φn}
∞
n=0.
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In what follows, we denote by {en}
∞
n=0 the natural basis of `p, that is, en = (δn

i ),
n ∈ Z+. One easily observes that {Lin {en}}

∞
n=0 is a Schauder–Orlicz decomposition of

`p with Orlicz function Φ(t) = tp. Moreover, it is known that `p spaces, 1 ≤ p < ∞,
have a unique, up to equivalence, symmetric basis [19, Proposition 3.b.5]. Combining
these facts with Theorem 4.2, we obtain the following result.

Theorem 4.5. Let ({ψn}
∞
n=0, {ψ

∗
n}
∞
n=0) be a biorthogonal system in `p, 1 ≤ p < ∞,

satisfying

0 < inf
n
‖ψn‖ ≤ sup

n
‖ψn‖ <∞.

If, for every x ∈ `p,( ∞∑
n=1

|〈ψ∗n, x〉〈e
∗
n, ψn〉 − 〈e∗n, x〉|

p
)1/p
≤ ς‖x‖ where 0 ≤ ς < 1,

then {ψn}
∞
n=0 is a symmetric basis of `p.

5. Applications

Just as Theorem 1.1 plays a special role in the analysis of spectral properties of
nonselfadjoint and unbounded operators in H (see, for example, [1, 2, 7, 12, 17]),
Theorems 3.1, 4.1 and 4.2 may be very useful in the study of spectral properties of
perturbations of unbounded operators acting on E or `p. For this purpose, we consider
perturbations of operators generating unconditional spectral Schauder decompositions
in E or `p, instead of perturbations of selfadjoint operators, which generate orthogonal
spectral Schauder decompositions in H.

It is known that if {ϕn}
∞
n=1 is an orthonormal basis of H then {ϕn + (1/n)ϕn+1}

∞
n=1 is a

Riesz basis of H; see, for example, [5]. Note that this fact also follows from Theorem
1.1 of Kato. We will show that some similar facts are true for symmetric bases of `p.
Set e− j = 0 for j ∈ N and consider the following systems:

ψn = en − θn−1en−1 + θn−1θn−2en−2 + · · · + (−1)n+1
n−1∏
k=0

θk · e0 n ∈ Z+,

ψ∗n = en + θnen+1 n ∈ Z+.

Proposition 5.1. If |θn| ≤ c, n ∈ N, where c < 1, then {ψn}
∞
n=0 and {ψ∗n}

∞
n=0 are symmetric

bases of `p, 1 ≤ p <∞.

Proof. A trivial computation shows that ({ψn}
∞
n=0, {ψ

∗
n}
∞
n=0) is a biorthogonal system in

`p, 1 ≤ p <∞, such that 0 < infn ‖ψn‖ ≤ supn ‖ψn‖ <∞. Obviously,

〈e∗n, ψn〉 = 1, 〈ψ∗n, x〉 = 〈e∗n, x〉 + θn〈e∗n+1, x〉 n ∈ Z+.
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Hence,( ∞∑
n=1

|〈ψ∗n, x〉〈e
∗
n, ψn〉 − 〈e∗n, x〉|

p
)1/p

=

( ∞∑
n=1

|θn〈e∗n+1, x〉|
p
)1/p
≤ c

( ∞∑
n=1

|〈e∗n+1, x〉|
p
)1/p

≤ c
( ∞∑

n=0

|〈e∗n, x〉|
p
)1/p

= c‖x‖.

By virtue of Theorem 4.5, {ψn}
∞
n=0 is a symmetric basis of `p, 1 ≤ p <∞. Consequently,

{ψ∗n}
∞
n=0 is a symmetric basis of Lin {ψ∗n}

∞
n=0 in `q, where 1/p + 1/q = 1 (see [24,

Proposition 22.5]). Since every basis in a reflexive space is shrinking (see, for example,
[24, page 278, Example 4.3]), {ψ∗n}

∞
n=0 is a symmetric basis of the whole of `q, where

1 < q < ∞. To prove that {ψ∗n}
∞
n=0 is a symmetric basis of `1, we observe that {ψ∗n}

∞
n=0

is a bounded unconditional basis of `1. Therefore, by [24, Theorem 18.2], {ψ∗n}
∞
n=0

is equivalent to the natural basis of `1 and, by [19, Proposition 3.b.5], {ψ∗n}
∞
n=0 is a

symmetric basis of `1. �

In particular, from Proposition 5.1, {e0 + e1} ∪ {en + (1/(n + 1))en+1}
∞
n=1 forms a

symmetric basis of `p, 1 ≤ p <∞.
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