ORDERS IN POWER SEMIGROUPS by DAVID EASDOWN and VICTORIA GOULD

(Received 20 June, 1994)

1. Introduction. In this paper we consider examples of orders in restricted power semigroups, where for any semigroup S the restricted power semigroup $\mathcal{P}(S)$ is given by $\mathcal{P}(S) = \{X \subseteq S : 1 \le |X| < \aleph_0\}$ with multiplication $XY = \{xy : x \in X, y \in Y\}$ for all $X, Y \in \mathcal{P}(S)$. We use the notion of order introduced by Fountain and Petrich in [2] which first appears in the form used here in [3]. If S is a subsemigroup of Q then S is an order in Q and Q is a semigroup of quotients of S if any $q \in Q$ can be written as $q = a^*b = cd^*$ where $a,b,c,d \in S$ and $a^*(d^*)$ is the inverse of a(d) in a subgroup of Q, and in addition, all elements of S satisfying a weak cancellability condition called square-cancellability lie in a subgroup of Q.

It is clear that the concept of a semigroup of quotients extends that of the group of quotients G of a commutative cancellative semigroup S. Our first result shows that for such an S and G, the restricted power semigroup $\mathcal{P}(S)$ is an order in $\mathcal{P}(G)$.

In the latter part of the paper we turn our attention to orders in a semigroup Q which is a semilattice Y of commutative groups G_{α} , $\alpha \in Y$. To handle the idempotents of $\mathcal{P}(Q)$ we make the further assumption that the groups G_{α} , $\alpha \in Y$, are torsion-free. We find a necessary and sufficient condition for an order S in such a semigroup Q to have the property that $\mathcal{P}(S)$ is an order in $\mathcal{P}(Q)$. In fact we prove a slightly stronger result. We say that a subsemigroup S of Q is a *weak order* in Q if any $q \in Q$ can be written as $q = a^*b = cd^*$ where $a, b, c, d \in S$ and $a^*(d^*)$ is the inverse of a(d) in a subgroup of Q. Proposition 4.1 gives a necessary and sufficient condition on S such that $\mathcal{P}(S)$ is a weak order in $\mathcal{P}(Q)$, where S is an order in Q and Q is a semilattice of torsion-free commutative groups. We then show that for such an S and Q, if $\mathcal{P}(S)$ is a weak order in $\mathcal{P}(Q)$ then necessarily $\mathcal{P}(S)$ is an order in $\mathcal{P}(Q)$.

Section 2 consists of some preliminary definitions and results concerning orders and Green's relations in certain restricted power semigroups. Section 3 considers restricted power semigroups of orders in commutative groups. In our last section we turn our attention to restricted power semigroups of orders in semilattices of commutative torsion-free groups, and prove the results mentioned in the previous paragraph.

We comment that if S is an order in Q then S^0 (the semigroup S with a zero adjoined) is clearly an order in Q^0 . Moreover it is easy to see that if T is an order in Q^0 then $T = S^0$ where S is an order in Q. Including the empty set in $\mathcal{P}(S)$ would correspond to considering $\mathcal{P}(S)^0$. Thus excluding the empty set from $\mathcal{P}(S)$ does not affect our results in any essential way, it is merely convenient.

2. Preliminaries. We assume the reader has a basic knowledge of semigroup theory as in the early chapters of [1] or [4]. Any undefined notation or concepts may be found in these references. We deviate from standard notation in denoting by a^* the group inverse, where it exists, of an element a of a semigroup Q. That is, a^* exists if and only if a lies in

The authors are grateful to the ARC for its generous financial support.

Glasgow Math. J. 38 (1996) 39-47.

a subgroup of Q, and the inverse of a in this subgroup is a^* . By a famous result of Green [4, Theorem II 2.5], a^* exists if and only if a is related to its square by the relation \mathcal{H} . Moreover, where a^* exists it is unique, being the inverse of a in the group \mathcal{H} -class H_a .

Let a be an element of a semigroup S. Then a is square-cancellable if for all $x, y \in S^1$

$$xa^2 = ya^2$$
 implies $xa = ya$

and

 $a^2x = a^2y$ implies ax = ay.

It is clear that if a lies in a subgroup of an oversemigroup of S, then a is square-cancellable. We insist that if S is an order in Q, then all such elements lie in subgroups of Q. The set of square-cancellable elements of S is denoted by $\mathcal{G}(S)$.

Let Q be a semilattice Y of commutative groups G_{α} , $\alpha \in Y$. We follow the usual practice of abbreviating $\{g\}H$ where $g \in Q$ and $H \in \mathcal{P}(Q)$ by gH. Further, we make the notational convention that e_{α} denotes the idempotent of G_{α} , $\alpha \in Y$ and also e_i denotes the idempotent of G_{α} , $\alpha_i \in Y$, $i \in \mathbb{N}$. For $X \in \mathcal{P}(Q)$ and $\alpha \in Y$ put

$$X_{\alpha} = X \cap G_{\alpha}$$

and

$$\operatorname{supp} X = \{ \alpha \in Y : X_{\alpha} \neq \emptyset \}, \qquad \max X = \max\{ \operatorname{supp} X \}.$$

LEMMA 2.1. For $H, K \in \mathcal{P}(Q)$, if $H \mathcal{H} K$ then supp H = supp K and $|H_{\alpha}| = |K_{\alpha}|$ for all $\alpha \in Y$.

Proof. Suppose that $H\mathscr{H}K$. Then H = K (in which case the result is clearly true) or there exist $S,T \in \mathscr{P}(Q)$ with H = SK and K = TH. Let $\alpha \in \max H$. Since $H_{\alpha} \subseteq SK$ there exists $\beta \in \max K$ with $\alpha \leq \beta$. But $K_{\beta} \subseteq TH$ so $\beta \leq \gamma$ for some $\gamma \in \max H$. Thus $\alpha = \beta = \gamma$ so that $\alpha \in \max K$. With the dual argument this gives that $\max H = \max K$.

Now let $\delta \in \text{supp } H$. Then $\delta \leq \alpha$ for some $\alpha \in \max K$. Since $K_{\alpha} \subseteq TH$ there exists $\epsilon \in \text{supp } T$ with $\alpha \leq \epsilon$. Let $t \in T_{\epsilon}$, then $tH_{\delta} \subseteq K_{\delta}$ so $\delta \in \text{supp } K$; hence supp H = supp K. Further, $|H_{\delta}| = |tH_{\delta}| \leq |K_{\delta}|$ and with the dual we obtain that $|H_{\delta}| = |K_{\delta}|$.

The following corollaries are now easy to see.

COROLLARY 2.2 [5]. Let G be a commutative group. Then for any $H, K \in \mathcal{P}(G)$, $H\mathcal{H}K$ if and only if H = gK for some $g \in G$.

COROLLARY 2.3 [5]. Let G be a commutative group. The following conditions are equivalent for $H \in \mathcal{P}(G)$:

- (i) $H\mathcal{H}H^2$;
- (ii) $H^2 = gH$ for some $g \in G$;
- (iii) $H^2 = hH$ for any $h \in H$;
- (iv) $|H^2| = |H|$.

COROLLARY 2.4 [5]. Let G be a commutative group. Then $E \in \mathcal{P}(G)$ is idempotent if and only if E is a finite subgroup. Moreover if $H \in \mathcal{P}(G)$ then $H\mathcal{H}E$ if and only if H is a coset of E.

We now return to the case where Q is a semilattice Y of commutative groups G_{α} , $\alpha \in Y$. To adequately describe the idempotents of $\mathcal{P}(Q)$ and the elements of $\mathcal{P}(Q)$ lying

in group \mathcal{H} -classes, we make henceforth the additional assumption that each G_{α} is torsion-free. Clearly then the idempotents of $\mathcal{P}(Q)$ are the finite subsemigroups of E(Q). By Lemma 2.1, if $H \in \mathcal{P}(Q)$ and $H\mathcal{H}H^2$ then $|H_{\alpha}| = 1$ for all $\alpha \in \text{supp } H$. Also supp H must be a subsemilattice of Y. We write $H = \{h_1, \ldots, h_n\}$ where |H| = n and $h_i \in G_{\alpha_i}$, $1 \le i \le n$. Then $H\mathcal{H}E$ where $E = \{e_1, \ldots, e_n\}$ and $e_i = e_i^2 \in G_{\alpha_i}$, $1 \le i \le n$. Further, if $i, j \in \{1, \ldots, n\}$ and $\alpha_i \ge \alpha_j$ then from EH = H we have $e_j h_i = h_j$. This leads us to the following definition.

An element H of $\mathcal{P}(Q)$ is balanced if $|H_{\alpha}| = 1$ for all $\alpha \in \text{supp } H$ and $\alpha, \beta \in \text{supp } H$ with $\alpha \ge \beta$ implies $e_{\beta}h_{\alpha} = h_{\beta}$ where $\{h_{\alpha}\} = H_{\alpha}$ and $\{h_{\beta}\} = H_{\beta}$.

LEMMA 2.5. An element H of $\mathcal{P}(Q)$ is in a subgroup of $\mathcal{P}(Q)$ if and only if supp H is a subsemilattice of Y and H is balanced. In this case, writing $H = \{h_1, \ldots, h_n\}$ where supp $H = \{\alpha_1, \ldots, \alpha_n\}$ and $H_{\alpha_i} = \{h_i\}, 1 \le i \le n$, then $H^* = \{h_1^*, \ldots, h_n^*\}$ and $HH^* = \{e_1, \ldots, e_n\}$.

Proof. We have seen that if $H \in \mathcal{P}(Q)$ and $H\mathcal{H}H^2$ then supp H is a subsemilattice of Y and H is balanced.

Conversely, suppose these conditions hold. Put $H = \{h_1, \ldots, h_n\}$ where supp $H = \{\alpha_1, \ldots, \alpha_n\}$ and $\{h_i\} = H_{\alpha_i}$, $1 \le i \le n$. Certainly $E = \{e_1, \ldots, e_n\} \in E(\mathcal{P}Q)$) and $H \subseteq EH$; consider $i, j \in \{1, \ldots, n\}$ and put $\alpha_k = \alpha_i \alpha_j$. Then $e_i h_j = e_i e_k h_j = e_k h_j = h_k$ as $\alpha_k \le \alpha_j$ and H is balanced. So $EH \subseteq H$ and EH = H. Putting $K = \{h_1^*, \ldots, h_n^*\}$ we have K is balanced so that also EK = K.

Clearly $E \subseteq HK$. Let $i, j \in \{1, ..., n\}$ and again put $\alpha_k = \alpha_i \alpha_j$. Then $h_i h_j^* = h_i e_k(e_k h_j^*)$ and as Q is an inverse semigroup this gives $h_i h_j^* = h_i e_k(e_k h_j)^* = h_k h_k^* = e_k$ and it follows that E = HK. Thus H is in a group \mathcal{H} -class of $\mathcal{P}(Q)$ with $H^* = \{h_1^*, ..., h_n^*\}$ and $HH^* = \{e_1, ..., e_n\}$ as required.

3. Power semigroups of orders in commutative groups. In this section we show that if S is an order in a commutative group G then $\mathcal{P}(S)$ is an order in $\mathcal{P}(G)$. For such a G, $\mathcal{P}(G)$ has identity $\{e\}$, where $e^2 = e$, and group of units the singletons of G. If S is an order in G then as is well known the Common Denominator Theorem holds, that is, given any $g_1, \ldots, g_n \in G$ there exist $a, b_1, \ldots, b_n \in S$ with $g_i = a^{-1}b_i, 1 \le i \le n$. Thus we immediately have the following lemma.

LEMMA 3.1. Let S be an order in a commutative group G. Then $\mathcal{P}(S)$ is a weak order in $\mathcal{P}(G)$.

The more difficult task is to show that if S is an order in a commutative group G, then every square-cancellable element H of $\mathcal{P}(S)$ lies in a subgroup of $\mathcal{P}(G)$. By Corollary 2.3 this is equivalent to showing that $|H^2| = |H|$.

THEOREM 3.2. Let S be an order in a commutative group G. Then $\mathcal{P}(S)$ is an order in $\mathcal{P}(G)$.

Proof. From Lemma 3.1, $\mathcal{P}(S)$ is a weak order in $\mathcal{P}(G)$. Clearly the singletons of S are square-cancellable and lie in a subgroup (the group of units) of $\mathcal{P}(G)$.

At this point it is useful to make the following notational convention. If $x \in X$ and $\overline{y} \in X^n$ where $X \in \mathcal{P}(S)$, then by saying that x is an X-factor of \overline{y} , we mean that there exist $x_1, \ldots, x_{n-1} \in X$ such that $xx_1 \ldots x_{n-1} = \overline{y}$.

Suppose now that $X = \{x, y\} \in \mathcal{G}(\mathcal{P}(S))$ where $x \neq y$. Every element of X^5 contains x^3 or y^3 as an X-factor. Indeed, $X^5 = \{x^3, y^3\}X^2$. Since X is square-cancellable, $X^4 = \{x^3, y^3\}X$. Looking at the element x^2y^2 of X^4 we have $x^2y^2 = x^3x$, x^3y , y^3x or y^3y which each imply that $y^2 = x^2$. It follows that $X^3 = x^2X$ and so

$$|X| \le |X^2| \le |X^3| = |x^2X| = |X|$$

so that $|X| = |X^2|$ and by Corollary 2.3, X lies in a subgroup of $\mathcal{P}(G)$.

Now let $n \ge 3$ and suppose that $X = \{x_1, \ldots, x_n\} \in \mathcal{G}(\mathcal{P}(S))$ where |X| = n. Every element of X^{n^2} contains an X-factor x_i^n for some $i \in \{1, \ldots, n\}$. Hence

$$X^{n^2} = \{x_1^n, \ldots, x_n^n\} X^{n^2 - n^2}$$

and using the fact that X is square-cancellable we obtain $X^{n+1} = \{x_1^n, \dots, x_n^n\}X$.

Suppose that $X^{n+1} = \{x_1^n, \ldots, x_m^n\}X$ for some *m* with $1 < m \le n$. We show that (with some re-labelling), $X^{n+1} = \{x_1^n, \ldots, x_{m-1}^n\}X$. Since it is certainly true that $X^{n+1} = \{x_1^n, \ldots, x_m^n\}X$ with m = n, we obtain in n - 1 steps that $X^{n+1} = x_1^nX$. As above it follows that $|X| = |X^2|$ so that X lies in a subgroup of $\mathcal{P}(G)$.

Given $X^{n+1} = \{x_1^n, \ldots, x_m^n\}X$ with $1 \le m \le n$ we show that x_i is an X-factor of x_j^n for some $i, j \in \{1, \ldots, m\}$ with $i \ne j$. Consider first the element $x_1x_2 \ldots x_{m-1}x_m^2x_{m+1} \ldots x_n$ of X^{n+1} . This element has the following possible forms:

$$x_{1} \dots x_{m-1} x_{m}^{2} x_{m+1} \dots x_{n} = \begin{cases} x_{i}^{n+1} & \text{where} & 1 \le i < m \\ \text{or } x_{i}^{n} x_{j} & 1 \le i < m, 1 \le j \le m, i \ne j \\ \text{or } x_{i}^{n} x_{m} & 1 \le i < m \\ \text{or } x_{i}^{n} x_{j} & 1 \le i < m, m < j \le n \\ \text{or } x_{m}^{n} x_{i} & 1 \le i < m \\ \text{or } x_{m}^{n} x_{j} & m < j \le n. \end{cases}$$

In the first four cases we have x_m is an X-factor of x_i^n for some $i \in \{1, \ldots, m-1\}$. In the last two, x_1 is an X-factor of x_m^n .

In the fifth case,

$$x_1\ldots x_{m-1}x_m^2x_{m+1}\ldots x_n=x_m^nx_i,$$

where $1 \le i < m$, giving

$$x_1 \ldots x_{i-1} x_{i+1} \ldots x_{m-1} x_m^2 x_{m+1} \ldots x_n = x_m^n$$

so that, unless m = 2, we have x_j is an X-factor of x_m^n for some $j \in \{1, \ldots, m-1\}$. In the case where $m = 2, x_2^2 x_3 \ldots x_n = x_2^n$ so that $x_3 \ldots x_n = x_2^{n-2}$. At this point we look at the element $x_1^2 x_2 \ldots x_n$. Again using the hypothesis that $X^{n+1} = \{x_1^n, \ldots, x_m^n\}X$ we have that

$$x_{1}^{2}x_{2}\dots x_{n} = \begin{cases} x_{1}^{n+1} \\ \text{or } x_{1}^{n}x_{2} \\ \text{or } x_{1}^{n}x_{j} \\ \text{or } x_{2}^{n}x_{1} \\ \text{or } x_{2}^{n+1} \\ \text{or } x_{2}^{n+1} \\ \text{or } x_{2}^{n}x_{j} \end{cases} \quad 2 < j \le n.$$

Except for the second case, this yields that x_1 is an X-factor of x_2^n or x_2 is an X-factor of x_1^n . In the second case we have $x_3 ldots x_n = x_1^{n-2}$. Since also we know that $x_3 ldots x_n = x_2^{n-2}$ we have $x_1^{n-2} = x_2^{n-2}$ and so x_1 is certainly an X-factor of x_2^n .

We have now verified that there exist $i, j \in \{1, ..., m\}$ with $i \neq j$ such that x_i is an X-factor of x_j^n . For convenience we re-label $x_1, ..., x_m$ so that i = 1 and j = m, that is, x_1 is an X-factor of x_m^n . Since every product of n + 1 elements of X contains an X-factor x_i^n for some $i \in \{1, ..., m\}$, by raising X to a high enough power t we have that every element of X' contains an X-factor $x_i^{n^2}$ for some $i \in \{1, ..., m\}$. But if i = m then as x_1 is an X-factor of x_m^n we have that x_1^n is an X-factor of $x_m^{n^2}$. Thus every element of X' contains an X-factor x_i^n for some $i \in \{1, ..., m-1\}$. Then $X' = \{x_1^n, ..., x_{m-1}^n\}X^{i-n}$ and as $X \in \mathcal{G}(\mathcal{P}(S))$, $X^{n+1} = \{x_1^n, ..., x_{m-1}^n\}X$. This completes the proof that X lies in a subgroup of $\mathcal{P}(G)$.

4. Power semigroups of orders in semilattices of torsion-free commutative groups. Let Q be a semilattice Y of torsion-free commutative groups G_{α} , $\alpha \in Y$. We recall from Section 2 that $E \in \mathcal{P}(Q)$ is idempotent if and only if E is a finite subsemilattice of the idempotents of Q. Further, $H \in \mathcal{P}(Q)$ is in a subgroup of $\mathcal{P}(Q)$ if and only if supp H is a subsemilattice of Y and H is balanced.

Suppose now that S is an order in Q. As shown in Theorem 3.1 of [3], S is a semilattice Y of commutative cancellative semigroups $S_{\alpha} = S \cap G_{\alpha}$, and S_{α} is an order in $G_{\alpha}, \alpha \in Y$. It is not true that for any such S and Q, $\mathcal{P}(S)$ is an order in $\mathcal{P}(Q)$. In fact, as we show below, $\mathcal{P}(S)$ need not be a weak order in $\mathcal{P}(Q)$.

At this stage it is useful to make an elementary remark about weak orders, which we will use without further comment. Given a commutative semigroup Q we write $\leq_{\mathscr{H}}$ for the preorder associated with Green's relation \mathscr{H} . Now if S is a weak order in Q and $q \in Q$, then $q = a^*b$ for some $a, b \in S$. But then $q = (a^2)^*ab$ and $ab \leq_{\mathscr{H}} a^2$. Thus given $q \in Q$, we may write q as $q = c^*d$ for some $c, d \in S$ with $d \leq_{\mathscr{H}} c$ in Q. Further, if $h, k \in Q$ and k lies in a subgroup of Q then from $h \leq_{\mathscr{H}} k$ we deduce that $hk \mathscr{H}h$. So if $q = c^*d$ with $d \leq_{\mathscr{H}} c$ we have $q \mathscr{H}d$; it follows that S intersects every \mathscr{H} -class of Q.

Consider the three element semilattice $Q = \{\alpha, \beta, \gamma\}$ where $\alpha \leq \beta$ and $\alpha \leq \gamma$. Clearly Q is an order in Q; if $\mathcal{P}(Q)$ were a weak order in $\mathcal{P}(Q)$ then $\{\beta, \gamma\}$ could be written as $\{\beta, \gamma\} = U^*V$ for some $U, V \in \mathcal{P}(Q)$ with $V \leq_{\mathcal{H}} U$. As commented above, $V\mathcal{H}\{\beta, \gamma\}$ so that by Lemma 2.1, $V = \{\beta, \gamma\}$ and $\{\beta, \gamma\} = U\{\beta, \gamma\}$. But no such $U \in \mathcal{P}(Q)$ exists. Thus $\mathcal{P}(Q)$ is not a weak order in itself.

For the remainder of this section suppose that S is an order in Q, where Q is a semilattice Y of torsion-free commutative groups G_{α} , $\alpha \in Y$. Our aim is to give necessary and sufficient conditions on S such that $\mathcal{P}(S)$ is a weak order in $\mathcal{P}(Q)$. We then show that in this case, square-cancellable elements of $\mathcal{P}(S)$ lie in subgroups of $\mathcal{P}(Q)$ so that $\mathcal{P}(S)$ is an order in $\mathcal{P}(Q)$.

PROPOSITION 4.1. The semigroup $\mathcal{P}(S)$ is a weak order in $\mathcal{P}(Q)$ if and only if (*) holds: (*) given any distinct $\alpha_1, \ldots, \alpha_n \in Y$ with $s_i \in S_{\alpha_i}, 1 \le i \le n$, there exists $\alpha \in Y$ with $\alpha \ge \alpha_i$, $1 \le i \le n$ and elements $t_i \in S_{\alpha_i}, a \in S_{\alpha}$ such that $ae_{\alpha_i} = s_i t_i, 1 \le i \le n$.

Proof. Suppose that (*) holds and $X \in \mathcal{P}(Q)$; say $X = \{x_{ij}: 1 \le i \le n, 1 \le j \le m_i\}$ where $x_{i1}, \ldots, x_{im_i} \in G_{\alpha_i}, 1 \le i \le n$ and $\alpha_1, \ldots, \alpha_n$ are distinct elements of Y. Since S_{α_i} is an order in $G_{\alpha_i}, 1 \le i \le n$, there are elements $s_i, y_{i1}, \ldots, y_{im_i} \in S_{\alpha_i}$ with $x_{ij} = s_i^* y_{ij}, 1 \le j \le m_i$. Let $\alpha \in Y$ and $a, t_1, \ldots, t_n \in S$ be chosen as in (*). For $i \in \{1, \ldots, n\}$ and $j \in \{1, \ldots, m_i\}$ we have

$$x_{ij} = s_i^* y_{ij} = s_i^* t_i^* t_i y_{ij} = (s_i t_i)^* t_i y_{ij} = (ae_{\alpha_i})^* t_i y_{ij} = a^* e_{\alpha_i} t_i y_{ij} = a^* t_i y_{ij}.$$

So

$$X = a^* \{ t_i y_{ii} : 1 \le i \le n, 1 \le j \le m_i \},\$$

giving that $\mathcal{P}(S)$ is a weak order in $\mathcal{P}(Q)$.

Conversely, suppose that $\mathcal{P}(S)$ is a weak order in $\mathcal{P}(Q)$. First we take mutually incomparable elements β_1, \ldots, β_n in Y. We show that $\{\beta_1, \ldots, \beta_n\}$ has an upper bound in Y.

Pick $x_i \in S_{\beta_i}$, $1 \le i \le n$. Then $\{x_1, \ldots, x_n\} = H^*K$ for some $H, K \in \mathcal{P}(S)$ with $K \le_{\mathscr{H}} H$ in $\mathcal{P}(Q)$. Thus $H^*K\mathscr{H}K$ so that by Lemma 2.1, $K = \{y_1, \ldots, y_n\}$ where $y_i \in S_{\beta_i}$, $1 \le i \le n$. Since $x_1 \in H^*K$ we have that $x_1 = pk$ for some $p \in H^*$ and $k \in K$; if $p \in G_{\gamma}$, then $\beta_1 \le \gamma$. If $i \in \{2, \ldots, n\}$ then $py_i \in H^*K = \{x_1, \ldots, x_n\}$ and $py_i \in G_{\delta}$ where $\delta = \gamma\beta_i$. If $\beta_i \ne \gamma$ then $\delta < \beta_i$. But this is impossible since $\delta = \beta_j$ for some j and β_1, \ldots, β_n are mutually incomparable. Thus $\beta_i \le \gamma$ for all $i \in \{1, \ldots, n\}$.

Now suppose that $\alpha_1, \ldots, \alpha_n \in Y$ are distinct and $s_i \in S_{\alpha_i}, 1 \le i \le n$. By the above there exists $\gamma \in Y$ with $\gamma \ge \alpha_i, 1 \le i \le n$. Choose $x \in S_{\gamma}$, where if $\gamma = \alpha_i$ we take $x = s_i$. Then $\{x^*, s_1^*, \ldots, s_n^*\} = X^*Y$ for some $X, Y \in \mathcal{P}(S)$ with $Y \le_{\mathcal{H}} X$ in $\mathcal{P}(Q)$, so that $Y\mathcal{H}\{x^*, s_1^*, \ldots, s_n^*\}$. From Lemma 2.1, $Y = \{y, t_1, \ldots, t_n\}$ where $y \in S_{\gamma}$ and $t_i \in S_{\alpha_i}, 1 \le i \le n$; if $\gamma = \alpha_i$ then also $y = t_i$.

Since $x^* \in X^*Y$ we have that $x^* = zw$ for some $z \in X^*$ and $w \in Y$. If $z \in G_{\alpha}$ then $\gamma \leq \alpha$ so that $\alpha_i \leq \alpha$ for all $i \in \{1, \ldots, n\}$. By Lemma 2.5, $z = a^*$ for some $a \in S_{\alpha}$. Now for $i \in \{1, \ldots, n\}$, $a^*t_i \in X^*Y = \{x^*, s_1^*, \ldots, s_n^*\}$ and $a^*t_i \in G_{\alpha_i}$ so that $a^*t_i = s_i^*$. The semigroup Q is inverse so that $at_i^* = s_i$ and $ae_{\alpha_i} = at_i^*t_i = s_it_i$, $1 \leq i \leq n$. Thus (*) holds.

We note that in the above proposition we showed that if $\mathcal{P}(S)$ is a weak order in $\mathcal{P}(Q)$ then any $X \in \mathcal{P}(Q)$ can be written as $X = a^*Y$ where $a \in S_{\alpha}$, $y \in \mathcal{P}(S)$ and $\beta \leq \alpha$ for all $\beta \in \text{supp } Y$. Hence $X \mathcal{H} Y$ in $\mathcal{P}(Q)$. We now set out to prove that if $\mathcal{P}(S)$ is a weak order in $\mathcal{P}(Q)$ then it is necessarily an order.

LEMMA 4.2. If $\mathcal{P}(S)$ is a weak order in $\mathcal{P}(Q)$ and $X \in \mathcal{P}(S)$ is square-cancellable in $\mathcal{P}(S)$, then X is square-cancellable in $\mathcal{P}(Q)$.

Proof. Suppose that $\mathcal{P}(S)$ is a weak order in $\mathcal{P}(Q)$ and $X \in \mathcal{S}(\mathcal{P}(S))$. Let $U, V \in \mathcal{P}(Q)$ with $UX^2 = VX^2$. We can express $U \cup V$ as $U \cup V = a^*W$ for some $a \in S_\alpha$ and $W \in \mathcal{P}(S)$ such that $\beta \leq \alpha$ for all $\beta \in$ supp W. Clearly there exist subsets W_1, W_2 of W such that $U = a^*W_1$ and $V = a^*W_2$. Now $a^*W_1X^2 = a^*W_2X^2$ so that $e_\alpha W_1X^2 = e_\alpha W_2X^2$; but e_α is an identity for all elements of W, so that $W_1X^2 = W_2X^2$. Since $X \in \mathcal{S}(\mathcal{P}(S))$ we have $W_1X = W_2X$ and so $a^*W_1X = a^*W_2X$ and UX = VX.

If $U \in \mathcal{P}(Q)$ and $UX^2 = X^2$, then in view of (*) $UX^2 = e_{\alpha}X^2$ where $\alpha \ge \beta$ for all $\beta \in \text{supp } X$. Thus $UX = e_{\alpha}X = X$. Hence X is square-cancellable in $\mathcal{P}(Q)$.

For $X \in \mathcal{P}(Q)$ we put $\theta(X) = |\operatorname{supp} X|$.

LEMMA 4.3. Suppose that $\mathcal{P}(S)$ is a weak order in $\mathcal{P}(Q)$ and $X \in \mathcal{G}(\mathcal{P}(S))$. If $\alpha \in \max X$ then $|X_{\alpha}| = 1$.

Proof. If $\theta(X) = 1$ then $X \subseteq S_{\alpha}$ for some $\alpha \in Y$ and certainly $X \in \mathcal{G}(\mathcal{P}(S_{\alpha}))$ so that

by Theorem 3.2 X lies in a subgroup of $\mathcal{P}(G_{\alpha})$. Since $\{e_{\alpha}\}$ is the only idempotent of $\mathcal{P}(G_{\alpha})$ we have by Corollary 2.4 that |X| = 1.

Suppose now that $\theta(X) > 1$. Take $\alpha \in \max X$; we aim to show that $X_{\alpha} \in \mathscr{G}(\mathscr{P}(S_{\alpha}))$, so that as above $|X_{\alpha}| = 1$. Put $Y = X \setminus X_{\alpha}$ and note that if $y \in Y$ and $x \in X$ then $yx \notin X_{\alpha}$. Let $M = \max YX_{\alpha}$. Suppose now that $U, V \in \mathscr{P}(S_{\alpha})$ and $UX_{\alpha}^2 = VX_{\alpha}^2$. Put

$$\overline{U} = U \cup \bigcup \{e_{\gamma}U : \gamma \in M\} \cup \bigcup \{e_{\gamma}V : \gamma \in M\}$$

and

$$\overline{V} = V \cup \bigcup \{e_{\gamma}U \colon \gamma \in M\} \cup \bigcup \{e_{\gamma}V \colon \gamma \in M\}.$$

Then

$$\overline{U}X^2 = UX^2 \cup T = U(X_{\alpha} \cup Y)^2 \cup T = U(X_{\alpha}^2 \cup X_{\alpha}Y \cup Y^2) \cup T,$$

where

$$T = \left(\bigcup \{e_{\gamma}U : \gamma \in M\} \cup \bigcup \{e_{\gamma}V : \gamma \in M\} \right) X^{2}.$$

If $\beta \in \text{supp } UX_{\alpha}Y$ then $\beta \leq \gamma$ for some $\gamma \in M$ so that if $x \in (UX_{\alpha}Y)_{\beta}$ then $x = e_{\gamma}x \in T$. Similarly, $UY^2 \subseteq T$. Thus

$$\overline{U}X^2 = UX^2_{\alpha} \cup T$$

dually,

$$\bar{V}X^2 = VX^2_{\alpha} \cup T$$

so that $\overline{U}X^2 = \overline{V}X^2$ and as $X \in \mathcal{G}(\mathcal{P}(S))$, $\overline{U}X = \overline{V}X$. It follows easily that $UX_{\alpha} = VX_{\alpha}$.

Finally, if $U \in \mathcal{P}(S_{\alpha})$ and $UX_{\alpha}^{2} = X_{\alpha}^{2}$, then taking $a \in S_{\alpha}$ we have $aUX_{\alpha}^{2} = aX_{\alpha}^{2}$ and the above shows that $aUX_{\alpha} = aX_{\alpha}$; hence $UX_{\alpha} = X_{\alpha}$ and $X_{\alpha} \in \mathcal{G}(\mathcal{P}(S_{\alpha}))$.

We are now in a position to prove our final result.

THEOREM 4.4. The semigroup $\mathcal{P}(S)$ is an order in $\mathcal{P}(Q)$ if and only if S satisfies condition (*).

Proof. In view of Proposition 4.1 it only remains to show that if $\mathcal{P}(S)$ is a weak order in $\mathcal{P}(Q)$ then if $X \in \mathcal{G}(\mathcal{P}(S))$, X lies in a subgroup of $\mathcal{P}(Q)$. We use induction on $\theta(X)$ to show that X is balanced. If $\theta(X) = 1$ then $X \subseteq S_{\alpha}$ for some $\alpha \in Y$ and then from Theorem 3.2 X lies in a subgroup of $\mathcal{P}(Q)$ so that in particular, X is balanced by Lemma 2.5.

We make the inductive assumption that $\theta(X) > 1$ and if $Y \in \mathcal{G}(\mathcal{P}(S))$ with $\theta(Y) < \theta(X)$, then Y is balanced.

Let $\alpha \in \max X$; by Lemma 4.3, $|X_{\alpha}| = 1$. Suppose there exists $\beta \in \operatorname{supp} X$ with $\beta < \alpha$. Write

$$X = \{s, t_1, \ldots, t_n, u_1, \ldots, u_m\}$$

where $s \in X_{\alpha}, t_1, \ldots, t_n$ are distinct elements of X_{β} and u_1, \ldots, u_m are distinct elements of $X \setminus (X_{\alpha} \cup X_{\beta})$. Pick any $a \in S_{\beta}$ and put Z = aX; since $\beta \alpha = \beta \beta$ we have that $\theta(Z) < \theta(X)$. It is then easy to see that $Z \in \mathcal{G}(\mathcal{P}(S))$ so that by the inductive assumption, Z is balanced. In particular, $|Z_{\beta}| = 1$. Thus $at_1 = \ldots = at_n$ and so $t_1 = \ldots = t_n$, that is, $|X_{\beta}| = 1$. Moreover $as = at_1$ so that $se_{\beta} = t_1$. We can carry out this procedure for any $\alpha \in \max X$ and $\beta \in \operatorname{supp} X$ with $\beta < \alpha$; it follows that $|X_{\gamma}| = 1$ for all $\gamma \in \operatorname{supp} x$. Suppose now that β , $\gamma \in \operatorname{supp} X$ and $\beta < \gamma$. Then $\beta < \gamma \le \alpha$ for some $\alpha \in \max X$; from the above, if $x \in X_{\beta}$, $y \in X_{\gamma}$ and $z \in X_{\alpha}$, then $z = ze_{\beta}$ and $y = ze_{\gamma}$. Thus $ye_{\beta} = ze_{\gamma}e_{\beta} = ze_{\beta} = x$ and so X is balanced. By induction on $\theta(X)$, every element of $\mathcal{S}(\mathcal{P}(S))$ is balanced.

By Lemma 2.5, to show that $X \in \mathscr{G}(\mathscr{P}(S))$ lies in a subgroup of $\mathscr{P}(Q)$, it remains to show that supp X is a subsemilattice of Y. If $\theta(X) = n$ then supp X^n is a subsemilattice and also $X^n \in \mathscr{G}(\mathscr{P}(S))$. By the above, X^n is balanced so that by Lemma 2.5, X^n lies in a subgroup of $\mathscr{P}(Q)$. Further, if supp $X^n = \{\alpha_1, \ldots, \alpha_m\}$ then $EX^n = X^n$ where E = $\{e_1, \ldots, e_m\}$. We now call on Lemma 4.2 to give that EX = X. Let $\alpha, \beta \in \text{supp } X$; then $\alpha = \alpha_i \in \text{supp } X^n$ and if $x \in X_\beta$ then $e_i x \in EX = X$ so that $\alpha\beta \in \text{supp } X$. Thus supp X is a subsemilattice of Y and this completes the proof that X lies in a subgroup of $\mathscr{P}(Q)$. Hence $\mathscr{P}(S)$ is an order in $\mathscr{P}(Q)$.

Theorem 4.4 simplifies slightly in the case where Y is a chain.

COROLLARY 4.5. If Y is a chain then $\mathcal{P}(S)$ is an order in $\mathcal{P}(Q)$ if and only if S satisfies condition (**):

(**) for $\alpha, \beta \in Y$ with $\alpha > \beta$ and $x \in S_{\alpha}$, $y \in S_{\beta}$, there exists $p \in S_{\alpha}$ and $q \in S_{\beta}$ with $xpe_{\beta} = yq$.

Proof. If $\mathcal{P}(S)$ is an order in $\mathcal{P}(Q)$ then by Theorem 4.4, (*) holds. Let $\alpha, \beta \in Y$ with $\alpha > \beta$ and $x \in S_{\alpha}$, $y \in S_{\beta}$. By (*) there exists $\gamma \in Y$ with $\gamma \ge \alpha > \beta$ and elements $p \in S_{\alpha}$, $q \in S_{\beta}$ and $a \in S_{\gamma}$ with $ae_{\alpha} = xp$, $ae_{\beta} = yq$. Then $xpe_{\beta} = ae_{\alpha}e_{\beta} = ae_{\beta} = yq$ and (**) holds.

Conversely, suppose that (**) holds. Let $\alpha_1, \ldots, \alpha_n$ be distinct elements of Y and $s_i \in S_{\alpha_i}$, $1 \le i \le n$. Note that (*) holds trivially when n = 1. We assume inductively that n > 1 and (*) holds for all natural numbers less than n.

Without loss of generality we assume that $\alpha_1 > \alpha_2 > \ldots > \alpha_n$. By the inductive assumption there exist $\alpha' \in Y$ with $\alpha' \ge \alpha_2$ and elements $a' \in S_{\alpha'}$, $t'_i \in S_{\alpha_i}$, $2 \le i \le n$ with $a'e_{\alpha_i} = s_it'_i$, $2 \le i \le n$. Let $b \in S_{\alpha_2}$; by (**) with $x = s_1$, y = a'b there exist $p \in S_{\alpha_1}$ and $q \in S_{\alpha_2}$ with $s_1 p e_{\alpha_2} = a'bq$. Put $\alpha = \alpha_1$, $a = s_1p$, $t_1 = p$ and $t_i = t'_ibq \in S_{\alpha_i}$, $2 \le i \le n$. Then $ae_{\alpha_1} = s_1pe_{\alpha_1} = s_1pe_{\alpha_1} = s_1pe_{\alpha_2} = a'bqe_{\alpha_i} = s_1t'_i$ and for $i \in \{2, \ldots, n\}$ $ae_{\alpha_i} = s_1pe_{\alpha_i} = s_1pe_{\alpha_2}e_{\alpha_i} = a'bqe_{\alpha_i} = s_1t'_ibq = s_it_i$. Thus (*) holds.

We end the paper by illustrating Theorem 4.4 and Corollary 4.5 with a number of examples.

EXAMPLE 4.6. We consider several cases of orders in a two-element chain of torsion-free commutative groups.

Let G be the infinite cyclic group generated by an element z and let T be the infinite monogenic semigroup generated by z, so that T is an order in G.

Put $Q_1 = G^1$ and $S_1 = T^1$, so that S_1 is an order in Q_1 . For any $z^n \in T$,

 $11z^0 \neq zz^n$

so that (**) fails with x = 1 and y = z.

Now take $Q_2 = G^0$ and $S_2 = T^0$ so that again S_2 is an order in Q_2 . Then for any $z^n \in T$,

$$z^n z 0 = 00$$

so that (**) holds.

With G and T as above let H be the infinite cyclic group generated by t and let U be the infinite monogenic semigroup generated by t, so that U is an order in H. Moreover if we let $\phi: G \to H$ be the trivial homomorphism then $S_3 = T \cup U$ is an order in $Q_3 = G \cup H$, where Q_3 is the two element chain of groups G and H with structure homomorphism ϕ . Now for any $r, s \ge 1$,

$$zz^r t^0 = t^0 \neq tt^s$$

so that (**) does not hold with x = z and y = t.

On the other hand let $\psi: G \to H$ be the homomorphism given by $\psi(z) = t^n$ where $n \ge 1$. Put $S_4 = T \cup U$ and $Q_4 = G \cup H$ with structure homomorphism ψ . Again, S_4 is an order in Q_4 . Let $r, s \ge 1$ and pick u with n(r+u) > s. Then

$$z^{r}z^{u}t^{0} = z^{r+u}t^{0} = \psi(z^{r+u})t^{0} = (\psi(z))^{r+u}t^{0} = t^{n(r+u)}t^{0} = t^{n(r+u)} = t^{s}t^{n(r+u)-s}$$

which shows that (**) holds.

Moving now to an example of an order S in Q, where Q is an arbitrary semilattice Y of torsion-free commutative groups, we remark that by (*), if Y has a finite set of elements without an upper bound, then $\mathcal{P}(S)$ is not a weak order in $\mathcal{P}(Q)$. In particular, if Q is the three element semilattice with two incomparable elements then $\mathcal{P}(Q)$ is not a weak order in itself, as shown at the beginning of this section.

EXAMPLE 4.7. Let Y be the four element semilattice $\{\alpha_1, \ldots, \alpha_4\}$ where $\alpha_1 \ge \alpha_2$, $\alpha_3 \ge \alpha_4$. For $i \in \{1, \ldots, 4\}$ let G_{α_i} be the infinite cyclic group generated by x_i and let T_{α_i} be the order in G_{α_i} consisting of the positive powers of x_i . Let Q be the semilattice Y of groups G_{α_i} with structure homomorphisms $\phi_{\alpha_i\alpha_j}: G_{\alpha_i} \to G_{\alpha_j}$ given by $\phi_{\alpha_i\alpha_j}(x_i) = x_j$. Putting S to be the subsemigroup of Q consisting of positive words we have that S is an order in Q.

Consider positive integers a_1, \ldots, a_4 and choose *n* with $n > \max\{a_1, \ldots, a_4\}$. Put $\alpha = \alpha_1, a = x_1^n$ and $t_i = x_i^{n-a_i}, 1 \le i \le 4$. Then

$$ae_i = x_1^n e_i = x_i^n = x_i^{a_i} x_i^{n-a_i} = x_i^{a_i} t_i,$$

thus showing that (*) holds.

REFERENCES

1. A. H. Clifford and G. B. Preston, *The algebraic theory of semigroups*, (Mathematical Surveys 7, Vol 1 American Math. Soc. 1961).

2. J. B. Fountain and M. Petrich, Completely 0-simple semigroups of quotients, J. Algebra 101 (1986), 365-402.

3. V. A. R. Gould, Clifford semigroups of left quotients, Glasgow Math. J. 28 (1986), 181-191.

4. J. M. Howie, An introduction to semigroup theory (Academic Press 1976).

5. J.-E. Pin, Power semigroups and related varieties of finite semigroups in Semigroups and their applications (eds. S. M. Goberstein and P. M. Higgins 1987), 139–152.

SCHOOL OF MATHEMATICS AND STATISTICS	DEPARTMENT OF MATHEMATICS
University of Sydney	UNIVERSITY OF YORK
NSW 2006	Heslington
Australia	York YO1 5DD
	England