# ORDERS IN POWER SEMIGROUPS <br> by DAVID EASDOWN and VICTORIA GOULD 

(Received 20 June, 1994)

1. Introduction. In this paper we consider examples of orders in restricted power semigroups, where for any semigroup $S$ the restricted power semigroup $\mathscr{P}(S)$ is given by $\mathscr{P}(S)=\left\{X \subseteq S: 1 \leq|X|<\mathcal{H}_{0}\right\}$ with multiplication $X Y=\{x y: x \in X, y \in Y\}$ for all $X, Y \in$ $\mathscr{P}(S)$. We use the notion of order introduced by Fountain and Petrich in [2] which first appears in the form used here in [3]. If $S$ is a subsemigroup of $Q$ then $S$ is an order in $Q$ and $Q$ is a semigroup of quotients of $S$ if any $q \in Q$ can be written as $q=a^{*} b=c d^{*}$ where $a, b, c, d \in S$ and $a^{*}\left(d^{*}\right)$ is the inverse of $a(d)$ in a subgroup of $Q$, and in addition, all elements of $S$ satisfying a weak cancellability condition called square-cancellability lie in a subgroup of $Q$.

It is clear that the concept of a semigroup of quotients extends that of the group of quotients $G$ of a commutative cancellative semigroup $S$. Our first result shows that for such an $S$ and $G$, the restricted power semigroup $\mathscr{P}(S)$ is an order in $\mathscr{P}(G)$.

In the latter part of the paper we turn our attention to orders in a semigroup $Q$ which is a semilattice $Y$ of commutative groups $G_{\alpha}, \alpha^{\wedge} \in Y$. To handle the idempotents of $\mathscr{P}(Q)$ we make the further assumption that the groups $G_{\alpha}, \alpha \in Y$, are torsion-free. We find a necessary and sufficient condition for an order $S$ in such a semigroup $Q$ to have the property that $\mathscr{P}(S)$ is an order in $\mathscr{P}(Q)$. In fact we prove a slightly stronger result. We say that a subsemigroup $S$ of $Q$ is a weak order in $Q$ if any $q \in Q$ can be written as $q=a^{*} b=c d^{*}$ where $a, b, c, d \in S$ and $a^{*}\left(d^{*}\right)$ is the inverse of $a(d)$ in a subgroup of $Q$. Proposition 4.1 gives a necessary and sufficient condition on $S$ such that $\mathscr{P}(S)$ is a weak order in $\mathscr{P}(Q)$, where $S$ is an order in $Q$ and $Q$ is a semilattice of torsion-free commutative groups. We then show that for such an $S$ and $Q$, if $\mathscr{P}(S)$ is a weak order in $\mathscr{P}(Q)$ then necessarily $\mathscr{P}(S)$ is an order in $\mathscr{P}(Q)$.

Section 2 consists of some preliminary definitions and results concerning orders and Green's relations in certain restricted power semigroups. Section 3 considers restricted power semigroups of orders in commutative groups. In our last section we turn our attention to restricted power semigroups of orders in semilattices of commutative torsion-free groups, and prove the results mentioned in the previous paragraph.

We comment that if $S$ is an order in $Q$ then $S^{0}$ (the semigroup $S$ with a zero adjoined) is clearly an order in $Q^{0}$. Moreover it is easy to see that if $T$ is an order in $Q^{0}$ then $T=S^{0}$ where $S$ is an order in $Q$. Including the empty set in $\mathscr{P}(S)$ would correspond to considering $\mathscr{P}(S)^{0}$. Thus excluding the empty set from $\mathscr{P}(S)$ does not affect our results in any essential way, it is merely convenient.
2. Preliminaries. We assume the reader has a basic knowledge of semigroup theory as in the early chapters of [1] or [4]. Any undefined notation or concepts may be found in these references. We deviate from standard notation in denoting by $a^{*}$ the group inverse, where it exists, of an element $a$ of a semigroup $Q$. That is, $a^{*}$ exists if and only if $a$ lies in

The authors are grateful to the ARC for its generous financial support.
Glasgow Math. J. 38 (1996) 39-47.
a subgroup of $Q$, and the inverse of $a$ in this subgroup is $a^{*}$. By a famous result of Green [4, Theorem II 2.5], $a^{*}$ exists if and only if $a$ is related to its square by the relation $\mathscr{H}$. Moreover, where $a^{*}$ exists it is unique, being the inverse of $a$ in the group $\mathscr{H}$-class $H_{a}$. Let $a$ be an element of a semigroup $S$. Then $a$ is square-cancellable if for all $x, y \in S^{1}$

$$
x a^{2}=y a^{2} \text { implies } x a=y a
$$

and

$$
a^{2} x=a^{2} y \text { implies } a x=a y
$$

It is clear that if $a$ lies in a subgroup of an oversemigroup of $S$, then $a$ is square-cancellable. We insist that if $S$ is an order in $Q$, then all such elements lie in subgroups of $Q$. The set of square-cancellable elements of $S$ is denoted by $\mathscr{P}(S)$.

Let $Q$ be a semilatice $Y$ of commutative groups $G_{\alpha}, \alpha \in Y$. We follow the usual practice of abbreviating $\{g\} H$ where $g \in Q$ and $H \in \mathscr{P}(Q)$ by $g H$. Further, we make the notational convention that $e_{\alpha}$ denotes the idempotent of $G_{\alpha}, \alpha \in Y$ and also $e_{i}$ denotes the idempotent of $G_{\alpha_{i}}, \alpha_{i} \in Y, i \in \mathbb{N}$. For $X \in \mathscr{P}(Q)$ and $\alpha \in Y$ put

$$
X_{\alpha}=X \cap G_{\alpha}
$$

and

$$
\operatorname{supp} X=\left\{\alpha \in Y: X_{a} \neq \varnothing\right\}, \quad \max X=\max \{\operatorname{supp} X\} .
$$

Lemma 2.1. For $H, K \in \mathscr{P}(Q)$, if $H \mathscr{H} K$ then $\operatorname{supp} H=\operatorname{supp} K$ and $\left|H_{\alpha}\right|=\left|K_{\alpha}\right|$ for all $\alpha \in Y$.

Proof. Suppose that $H \mathscr{H} K$. Then $H=K$ (in which case the result is clearly true) or there exist $S, T \in \mathscr{P}(Q)$ with $H=S K$ and $K=T H$. Let $\alpha \in \max H$. Since $H_{\alpha} \subseteq S K$ there exists $\beta \in \max K$ with $\alpha \leq \beta$. But $K_{\beta} \subseteq T H$ so $\beta \leq \gamma$ for some $\gamma \in \max H$. Thus $\alpha=\beta=\gamma$ so that $\alpha \in \max K$. With the dual argument this gives that $\max H=\max K$.

Now let $\delta \in \operatorname{supp} H$. Then $\delta \leq \alpha$ for some $\alpha \in \max K$. Since $K_{\alpha} \subseteq T H$ there exists $\epsilon \in \operatorname{supp} T$ with $\alpha \leq \epsilon$. Let $t \in T_{\epsilon}$, then $t H_{\delta} \subseteq K_{\delta}$ so $\delta \in \operatorname{supp} K$; hence $\operatorname{supp} H=\operatorname{supp} K$. Further, $\left|H_{\delta}\right|=\left|t H_{\delta}\right| \leq\left|K_{\delta}\right|$ and with the dual we obtain that $\left|H_{\delta}\right|=\left|K_{\delta}\right|$.

The following corollaries are now easy to see.
Corollary 2.2 [5]. Let $G$ be a commutative group. Then for any $H, K \in \mathscr{P}(G), H \mathscr{H K}$ if and only if $H=g K$ for some $g \in G$.

Corollary 2.3 [5]. Let $G$ be a commutative group. The following conditions are equivalent for $H \in \mathscr{P}(G)$ :
(i) $H \mathscr{H} H^{2}$;
(ii) $H^{2}=g H$ for some $g \in G$;
(iii) $H^{2}=h H$ for any $h \in H$;
(iv) $\left|H^{2}\right|=|H|$.

Corollary 2.4 [5]. Let $G$ be a commutative group. Then $E \in \mathscr{P}(G)$ is idempotent if and only if $E$ is a finite subgroup. Moreover if $H \in \mathscr{P}(G)$ then $H \mathscr{H E}$ if and only if $H$ is a coset of $E$.

We now return to the case where $Q$ is a semilattice $Y$ of commutative groups $G_{\alpha}$, $\alpha \in Y$. To adequately describe the idempotents of $\mathscr{P}(Q)$ and the elements of $\mathscr{P}(Q)$ lying
in group $\mathscr{H}$-classes, we make henceforth the additional assumption that each $G_{\alpha}$ is torsion-free. Clearly then the idempotents of $\mathscr{P}(Q)$ are the finite subsemigroups of $E(Q)$. By Lemma 2.1, if $H \in \mathscr{P}(Q)$ and $H \mathscr{H} H^{2}$ then $\left|H_{\alpha}\right|=1$ for all $\alpha \in \operatorname{supp} H$. Also supp $H$ must be a subsemilattice of $Y$. We write $H=\left\{h_{1}, \ldots, h_{n}\right\}$ where $|H|=n$ and $h_{i} \in G_{a_{i}}$, $1 \leq i \leq n$. Then $H \mathscr{H E}$ where $E=\left\{e_{1}, \ldots, e_{n}\right\}$ and $e_{i}=e_{i}^{2} \in G_{\alpha_{i}}, 1 \leq i \leq n$. Further, if $i, j \in\{1, \ldots, n\}$ and $\alpha_{i} \geq \alpha_{j}$ then from $E H=H$ we have $e_{j} h_{i}=h_{j}$. This leads us to the following definition.

An element $H$ of $\mathscr{P}(Q)$ is balanced if $\left|H_{\alpha}\right|=1$ for all $\alpha \in \operatorname{supp} H$ and $\alpha, \beta \in \operatorname{supp} H$ with $\alpha \geq \beta$ implies $e_{\beta} h_{\alpha}=h_{\beta}$ where $\left\{h_{\alpha}\right\}=H_{\alpha}$ and $\left\{h_{\beta}\right\}=H_{\beta}$.

Lemma 2.5. An element $H$ of $\mathscr{P}(Q)$ is in a subgroup of $\mathscr{P}(Q)$ if and only if supp $H$ is a subsemilattice of $Y$ and $H$ is balanced. In this case, writing $H=\left\{h_{1}, \ldots, h_{n}\right\}$ where $\operatorname{supp} H=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ and $H_{\alpha_{i}}=\left\{h_{i}\right\}, 1 \leq i \leq n$, then $H^{*}=\left\{h_{1}^{*}, \ldots, h_{n}^{*}\right\}$ and $H H^{*}=$ $\left\{e_{1}, \ldots, e_{n}\right\}$.

Proof. We have seen that if $H \in \mathscr{P}(Q)$ and $H \mathscr{H} H^{2}$ then supp $H$ is a subsemilattice of $Y$ and $H$ is balanced.

Conversely, suppose these conditions hold. Put $H=\left\{h_{1}, \ldots, h_{n}\right\}$ where $\operatorname{supp} H=$ $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ and $\left\{h_{i}\right\}=H_{\alpha_{i}}, 1 \leq i \leq n$. Certainly $E=\left\{e_{1}, \ldots, e_{n}\right\} \in E(\mathscr{P} Q)$ ) and $H \subseteq E H ;$ consider $i, j \in\{1, \ldots, n\}$ and put $\alpha_{k}=\alpha_{i} \alpha_{j}$. Then $e_{i} h_{j}=e_{i} e_{k} h_{j}=e_{k} h_{j}=h_{k}$ as $\alpha_{k} \leq \alpha_{j}$ and $H$ is balanced. So $E H \subseteq H$ and $E H=H$. Putting $K=\left\{h_{1}^{*}, \ldots, h_{n}^{*}\right\}$ we have $K$ is balanced so that also $E K=K$.

Clearly $E \subseteq H K$. Let $i, j \in\{1, \ldots, n\}$ and again put $\alpha_{k}=\alpha_{i} \alpha_{j}$. Then $h_{i} h_{j}^{*}=h_{i} e_{k}\left(e_{k} h_{j}^{*}\right)$ and as $Q$ is an inverse semigroup this gives $h_{i} h_{j}^{*}=h_{i} e_{k}\left(e_{k} h_{j}\right)^{*}=h_{k} h_{k}^{*}=e_{k}$ and it follows that $E=H K$. Thus $H$ is in a group $\mathscr{H}$-class of $\mathscr{P}(Q)$ with $H^{*}=\left\{h_{1}^{*}, \ldots, h_{n}^{*}\right\}$ and $H H^{*}=\left\{e_{1}, \ldots, e_{n}\right\}$ as required.
3. Power semigroups of orders in commutative groups. In this section we show that if $S$ is an order in a commutative group $G$ then $\mathscr{P}(S)$ is an order in $\mathscr{P}(G)$. For such a $G$, $\mathscr{P}(G)$ has identity $\{e\}$, where $e^{2}=e$, and group of units the singletons of $G$. If $S$ is an order in $G$ then as is well known the Common Denominator Theorem holds, that is, given any $g_{1}, \ldots, g_{n} \in G$ there exist $a, b_{1}, \ldots, b_{n} \in S$ with $g_{i}=a^{-1} b_{i}, 1 \leq i \leq n$. Thus we immediately have the following lemma.

Lemma 3.1. Let $S$ be an order in a commutative group $G$. Then $\mathscr{P}(S)$ is a weak order in $\mathscr{P}(G)$.

The more difficult task is to show that if $S$ is an order in a commutative group $G$, then every square-cancellable element $H$ of $\mathscr{P}(S)$ lies in a subgroup of $\mathscr{P}(G)$. By Corollary 2.3 this is equivalent to showing that $\left|H^{2}\right|=|H|$.

Theorem 3.2. Let $S$ be an order in a commutative group $G$. Then $\mathscr{P}(S)$ is an order in $\mathscr{P}(G)$.

Proof. From Lemma 3.1, $\mathscr{P}(S)$ is a weak order in $\mathscr{P}(G)$. Clearly the singletons of $S$ are square-cancellable and lie in a subgroup (the group of units) of $\mathscr{P}(G)$.

At this point it is useful to make the following notational convention. If $x \in X$ and $\bar{y} \in X^{n}$ where $X \in \mathscr{P}(S)$, then by saying that $x$ is an $X$-factor of $\bar{y}$, we mean that there exist $x_{1}, \ldots, x_{n-1} \in X$ such that $x x_{1} \ldots x_{n-1}=\bar{y}$.

Suppose now that $X=\{x, y\} \in \mathscr{P}(\mathscr{P}(S))$ where $x \neq y$. Every element of $X^{5}$ contains $x^{3}$ or $y^{3}$ as an $X$-factor. Indeed, $X^{5}=\left\{x^{3}, y^{3}\right\} X^{2}$. Since $X$ is square-cancellable, $X^{4}=$ $\left\{x^{3}, y^{3}\right\} X$. Looking at the element $x^{2} y^{2}$ of $X^{4}$ we have $x^{2} y^{2}=x^{3} x, x^{3} y, y^{3} x$ or $y^{3} y$ which each imply that $y^{2}=x^{2}$. It follows that $X^{3}=x^{2} X$ and so

$$
|X| \leq\left|X^{2}\right| \leq\left|X^{3}\right|=\left|x^{2} X\right|=|X|
$$

so that $|X|=\left|X^{2}\right|$ and by Corollary 2.3, $X$ lies in a subgroup of $\mathscr{P}(G)$.
Now let $n \geq 3$ and suppose that $X=\left\{x_{1}, \ldots, x_{n}\right\} \in \mathscr{P}(\mathscr{P}(S))$ where $|X|=n$. Every element of $X^{n^{2}}$ contains an $X$-factor $x_{i}^{n}$ for some $i \in\{1, \ldots, n\}$. Hence

$$
X^{n^{2}}=\left\{x_{1}^{n}, \ldots, x_{n}^{n}\right\} X^{n^{2}-n}
$$

and using the fact that $X$ is square-cancellable we obtain $X^{n+1}=\left\{x_{1}^{n}, \ldots, x_{n}^{n}\right\} X$.
Suppose that $X^{n+1}=\left\{x_{1}^{n}, \ldots, x_{m}^{n}\right\} X$ for some $m$ with $1<m \leq n$. We show that (with some re-labelling), $X^{n+1}=\left\{x_{1}^{n}, \ldots, x_{m-1}^{n}\right\} X$. Since it is certainly true that $X^{n+1}=$ $\left\{x_{1}^{n}, \ldots, x_{m}^{n}\right\} X$ with $m=n$, we obtain in $n-1$ steps that $X^{n+1}=x_{1}^{n} X$. As above it follows that $|X|=\left|X^{2}\right|$ so that $X$ lies in a subgroup of $\mathscr{P}(G)$.

Given $X^{n+1}=\left\{x_{1}^{n}, \ldots, x_{m}^{n}\right\} X$ with $1<m \leq n$ we show that $x_{i}$ is an $X$-factor of $x_{j}^{n}$ for some $i, j \in\{1, \ldots, m\}$ with $i \neq j$. Consider first the element $x_{1} x_{2} \ldots x_{m-1} x_{m}^{2} x_{m+1} \ldots x_{n}$ of $X^{n+1}$. This element has the following possible forms:

$$
x_{1} \ldots x_{m-1} x_{m}^{2} x_{m+1} \cdots x_{n}=\left\{\begin{array}{lll}
x_{i}^{n+1} & \text { where } & 1 \leq i<m \\
\text { or } x_{i}^{n} x_{j} & 1 \leq i<m, 1 \leq j \leq m, i \neq j \\
\text { or } x_{i}^{n} x_{m} & 1 \leq i<m \\
\text { or } x_{i}^{n} x_{j} & 1 \leq i<m, m<j \leq n \\
\text { or } x_{m}^{n} x_{i} & 1 \leq i<m \\
\text { or } x_{m}^{n+1} & \\
\text { or } x_{m}^{n} x_{j} & m<j \leq n .
\end{array}\right.
$$

In the first four cases we have $x_{m}$ is an $X$-factor of $x_{i}^{n}$ for some $i \in\{1, \ldots, m-1\}$. In the last two, $x_{1}$ is an $X$-factor of $x_{m}^{n}$.

In the fifth case,

$$
x_{1} \ldots x_{m-1} x_{m}^{2} x_{m+1} \ldots x_{n}=x_{m}^{n} x_{i}
$$

where $1 \leq i<m$, giving

$$
x_{1} \ldots x_{i-1} x_{i+1} \ldots x_{m-1} x_{m}^{2} x_{m+1} \ldots x_{n}=x_{m}^{n}
$$

so that, unless $m=2$, we have $x_{j}$ is an $X$-factor of $x_{m}^{n}$ for some $j \in\{1, \ldots, m-1\}$. In the case where $m=2, x_{2}^{2} x_{3} \ldots x_{n}=x_{2}^{n}$ so that $x_{3} \ldots x_{n}=x_{2}^{n-2}$. At this point we look at the element $x_{1}^{2} x_{2} \ldots x_{n}$. Again using the hypothesis that $X^{n+1}=\left\{x_{1}^{n}, \ldots, x_{m}^{n}\right\} X$ we have that

$$
x_{1}^{2} x_{2} \ldots x_{n}=\left\{\begin{array}{ll}
x_{1}^{n+1} & \\
\text { or } x_{1}^{n} x_{2} \\
\text { or } x_{1}^{n} x_{j} \\
\text { or } x_{2}^{n} x_{1} \\
\text { or } x_{2}^{n+1} \\
\text { or } x_{2}^{n} x_{j} & \text { where }
\end{array} \quad 2<j \leq n\right.
$$

Except for the second case, this yields that $x_{1}$ is an $X$-factor of $x_{2}^{n}$ or $x_{2}$ is an $X$-factor of $x_{1}^{n}$. In the second case we have $x_{3} \ldots x_{n}=x_{1}^{n-2}$. Since also we know that $x_{3} \ldots x_{n}=x_{2}^{n-2}$ we have $x_{1}^{n-2}=x_{2}^{n-2}$ and so $x_{1}$ is certainly an $X$-factor of $x_{2}^{n}$.

We have now verified that there exist $i, j \in\{1, \ldots, m\}$ with $i \neq j$ such that $x_{i}$ is an $X$-factor of $x_{j}^{n}$. For convenience we re-label $x_{1}, \ldots, x_{m}$ so that $i=1$ and $j=m$, that is, $x_{1}$ is an $X$-factor of $x_{m}^{n}$. Since every product of $n+1$ elements of $X$ contains an $X$-factor $x_{i}^{n}$ for some $i \in\{1, \ldots, m\}$, by raising $X$ to a high enough power $t$ we have that every element of $X^{\prime}$ contains an $X$-factor $x_{i}^{n^{2}}$ for some $i \in\{1, \ldots, m\}$. But if $i=m$ then as $x_{1}$ is an $X$-factor of $x_{m}^{n}$ we have that $x_{1}^{n}$ is an $X$-factor of $x_{m}^{n^{2}}$. Thus every element of $X^{t}$ contains an $X$-factor $x_{i}^{n}$ for some $i \in\{1, \ldots, m-1\}$. Then $X^{t}=\left\{x_{1}^{n}, \ldots, x_{m-1}^{n}\right\} X^{t-n}$ and as $X \in \mathscr{P}(\mathscr{P}(S))$, $X^{n+1}=\left\{x_{1}^{n}, \ldots, x_{m-1}^{n}\right\} X$. This completes the proof that $X$ lies in a subgroup of $\mathscr{P}(G)$.
4. Power semigroups of orders in semilattices of torsion-free commutative groups. Let $Q$ be a semilattice $Y$ of torsion-free commutative groups $G_{\alpha}, \alpha \in Y$. We recall from Section 2 that $E \in \mathscr{P}(Q)$ is idempotent if and only if $E$ is a finite subsemilattice of the idempotents of $Q$. Further, $H \in \mathscr{P}(Q)$ is in a subgroup of $\mathscr{P}(Q)$ if and only if supp $H$ is a subsemilattice of $Y$ and $H$ is balanced.

Suppose now that $S$ is an order in $Q$. As shown in Theorem 3.1 of [3], $S$ is a semilattice $Y$ of commutative cancellative semigroups $S_{\alpha}=S \cap G_{\alpha}$, and $S_{\alpha}$ is an order in $G_{\alpha}, \alpha \in Y$. It is not true that for any such $S$ and $Q, \mathscr{P}(S)$ is an order in $\mathscr{P}(Q)$. In fact, as we show below, $\mathscr{P}(S)$ need not be a weak order in $\mathscr{P}(Q)$.

At this stage it is useful to make an elementary remark about weak orders, which we will use without further comment. Given a commutative semigroup $Q$ we write $\leq_{\mathscr{H}}$ for the preorder associated with Green's relation $\mathscr{H}$. Now if $S$ is a weak order in $Q$ and $q \in Q$, then $q=a^{*} b$ for some $a, b \in S$. But then $q=\left(a^{2}\right)^{*} a b$ and $a b \leq_{\mathscr{H}} a^{2}$. Thus given $q \in Q$, we may write $q$ as $q=c^{*} d$ for some $c, d \in S$ with $d \leq \mathscr{H} c$ in $Q$. Further, if $h, k \in Q$ and $k$ lies in a subgroup of $Q$ then from $h \leq_{\mathscr{H}} k$ we deduce that $h k \mathscr{H} h$. So if $q=c^{*} d$ with $d \leq_{\mathscr{H}} c$ we have $q \mathscr{H e d}$; it follows that $S$ intersects every $\mathscr{H}$-class of $Q$.

Consider the three element semilattice $Q=\{\alpha, \beta, \gamma\}$ where $\alpha \leq \beta$ and $\alpha \leq \gamma$. Clearly $Q$ is an order in $Q$; if $\mathscr{P}(Q)$ were a weak order in $\mathscr{P}(Q)$ then $\{\beta, \gamma\}$ could be written as $\{\beta, \gamma\}=U^{*} V$ for some $U, V \in \mathscr{P}(Q)$ with $V \leq_{\mathscr{H}} U$. As commented above, $V \mathscr{H}\{\beta, \gamma\}$ so that by Lemma 2.1, $V=\{\beta, \gamma\}$ and $\{\beta, \gamma\}=U\{\beta, \gamma\}$. But no such $U \in \mathscr{P}(Q)$ exists. Thus $\mathscr{P}(Q)$ is not a weak order in itself.

For the remainder of this section suppose that $S$ is an order in $Q$, where $Q$ is a semilattice $Y$ of torsion-free commutative groups $G_{\alpha}, \alpha \in Y$. Our aim is to give necessary and sufficient conditions on $S$ such that $\mathscr{P}(S)$ is a weak order in $\mathscr{P}(Q)$. We then show that in this case, square-cancellable elements of $\mathscr{P}(S)$ lie in subgroups of $\mathscr{P}(Q)$ so that $\mathscr{P}(S)$ is an order in $\mathscr{P}(Q)$.

Proposition 4.1. The semigroup $\mathscr{P}(S)$ is a weak order in $\mathscr{P}(Q)$ if and only if $\left(^{*}\right)$ holds: $\left.{ }^{*}\right)$ given any distinct $\alpha_{1}, \ldots, \alpha_{n} \in Y$ with $s_{i} \in S_{\alpha_{i}}, 1 \leq i \leq n$, there exists $\alpha \in Y$ with $\alpha \geq \alpha_{i}$, $1 \leq i \leq n$ and elements $t_{i} \in S_{\alpha_{i}}, a \in S_{\alpha}$ such that ae $\alpha_{\alpha_{i}}=s_{i} t_{i}, 1 \leq i \leq n$.

Proof. Suppose that $\left({ }^{*}\right)$ holds and $X \in \mathscr{P}(Q)$; say $X=\left\{x_{i j}: 1 \leq i \leq n, 1 \leq j \leq m_{i}\right\}$ where $x_{i}, \ldots, x_{i m_{i}} \in G_{\alpha_{i}}, 1 \leq i \leq n$ and $\alpha_{1}, \ldots, \alpha_{n}$ are distinct elements of $Y$. Since $S_{\alpha_{i}}$ is an order in $G_{\alpha_{i}}, 1 \leq i \leq n$, there are elements $s_{i}, y_{i 1}, \ldots, y_{i m_{1}} \in S_{\alpha_{i}}$ with $x_{i j}=s_{i}^{*} y_{i j}$, $1 \leq j \leq m_{i}$.

Let $\alpha \in Y$ and $a, t_{1}, \ldots, t_{n} \in S$ be chosen as in $\left({ }^{*}\right)$. For $i \in\{1, \ldots, n\}$ and $j \in\left\{1, \ldots, m_{i}\right\}$ we have

$$
x_{i j}=s_{i}^{*} y_{i j}=s_{i}^{*} t_{i}^{*} t_{i} y_{i j}=\left(s_{i} t_{i}\right)^{*} t_{i} y_{i j}=\left(a e_{\alpha_{i}}\right)^{*} t_{i} y_{i j}=a^{*} e_{\alpha_{i}} t_{i} y_{i j}=a^{*} t_{i} y_{i j}
$$

So

$$
X=a^{*}\left\{t_{i} y_{i j}: 1 \leq i \leq n, 1 \leq j \leq m_{i}\right\}
$$

giving that $\mathscr{P}(S)$ is a weak order in $\mathscr{P}(Q)$.
Conversely, suppose that $\mathscr{P}(S)$ is a weak order in $\mathscr{P}(Q)$. First we take mutually incomparable elements $\beta_{1}, \ldots, \beta_{n}$ in $Y$. We show that $\left\{\beta_{1}, \ldots, \beta_{n}\right\}$ has an upper bound in $Y$.

Pick $x_{i} \in S_{\beta_{i}}, 1 \leq i \leq n$. Then $\left\{x_{1}, \ldots, x_{n}\right\}=H^{*} K$ for some $H, K \in \mathscr{P}(S)$ with $K \leq \mathscr{H} H$ in $\mathscr{P}(Q)$. Thus $H^{*} K \mathscr{H} K$ so that by Lemma $2.1, K=\left\{y_{1}, \ldots, y_{n}\right\}$ where $y_{i} \in S_{\beta_{1}, 1 \leq i \leq n}$. Since $x_{1} \in H^{*} K$ we have that $x_{1}=p k$ for some $p \in H^{*}$ and $k \in K$; if $p \in G_{\gamma}$, then $\beta_{1} \leq \gamma$. If $i \in\{2, \ldots, n\}$ then $p y_{i} \in H^{*} K=\left\{x_{1}, \ldots, x_{n}\right\}$ and $p y_{i} \in G_{\delta}$ where $\delta=\gamma \beta_{i}$. If $\beta_{i} \neq \gamma$ then $\delta<\beta_{i}$. But this is impossible since $\delta=\beta_{j}$ for some $j$ and $\beta_{1}, \ldots, \beta_{n}$ are mutually incomparable. Thus $\beta_{i} \leq \gamma$ for all $i \in\{1, \ldots, n\}$.

Now suppose that $\alpha_{1}, \ldots, \alpha_{n} \in Y$ are distinct and $s_{i} \in S_{\alpha_{i}}, 1 \leq i \leq n$. By the above there exists $\gamma \in Y$ with $\gamma \geq \alpha_{i}, 1 \leq i \leq n$. Choose $x \in S_{\gamma}$, where if $\gamma=\alpha_{i}$ we take $x=s_{i}$. Then $\left\{x^{*}, s_{1}^{*}, \ldots, s_{n}^{*}\right\}=X^{*} Y$ for some $X, Y \in \mathscr{P}(S)$ with $Y \leq_{\mathscr{H}} X$ in $\mathscr{P}(Q)$, so that $Y \mathscr{H}\left\{x^{*}, s_{1}^{*}, \ldots, s_{n}^{*}\right\}$. From Lemma 2.1, $Y=\left\{y, t_{1}, \ldots, t_{n}\right\}$ where $y \in S_{\gamma}$ and $t_{i} \in S_{\alpha_{i}}$, $1 \leq i \leq n$; if $\gamma=\alpha_{i}$ then also $y=t_{i}$.

Since $x^{*} \in X^{*} Y$ we have that $x^{*}=z w$ for some $z \in X^{*}$ and $w \in Y$. If $z \in G_{\alpha}$ then $\gamma \leq \alpha$ so that $\alpha_{i} \leq \alpha$ for all $i \in\{1, \ldots, n\}$. By Lemma $2.5, z=a^{*}$ for some $a \in S_{\alpha}$. Now for $i \in\{1, \ldots, n\}, a^{*} t_{i} \in X^{*} Y=\left\{x^{*}, s_{1}^{*}, \ldots, s_{n}^{*}\right\}$ and $a^{*} t_{i} \in G_{\alpha_{i}}$ so that $a^{*} t_{i}=s_{i}^{*}$. The semigroup $Q$ is inverse so that $a t_{i}^{*}=s_{i}$ and $a e_{\alpha_{i}}=a t_{i}^{*} t_{i}=s_{i} t_{i}, 1 \leq i \leq n$. Thus ( ${ }^{*}$ ) holds.

We note that in the above proposition we showed that if $\mathscr{P}(S)$ is a weak order in $\mathscr{P}(Q)$ then any $X \in \mathscr{P}(Q)$ can be written as $X=a^{*} Y$ where $a \in S_{\alpha}, y \in \mathscr{P}(S)$ and $\beta \leq \alpha$ for all $\beta \in \operatorname{supp} Y$. Hence $X \mathscr{H} Y$ in $\mathscr{P}(Q)$. We now set out to prove that if $\mathscr{P}(S)$ is a weak order in $\mathscr{P}(Q)$ then it is necessarily an order.

Lemma 4.2. If $\mathscr{P}(S)$ is a weak order in $\mathscr{P}(Q)$ and $X \in \mathscr{P}(S)$ is square-cancellable in $\mathscr{P}(S)$, then $X$ is square-cancellable in $\mathscr{P}(Q)$.

Proof. Suppose that $\mathscr{P}(S)$ is a weak order in $\mathscr{P}(Q)$ and $X \in \mathscr{S}(\mathscr{P}(S))$. Let $U, V \in \mathscr{P}(Q)$ with $U X^{2}=V X^{2}$. We can express $U \cup V$ as $U \cup V=a * W$ for some $a \in S_{\alpha}$ and $W \in \mathscr{P}(S)$ such that $\beta \leq \alpha$ for all $\beta \in \operatorname{supp} W$. Clearly there exist subsets $W_{1}, W_{2}$ of $W$ such that $U=a^{*} W_{1}$ and $V=a^{*} W_{2}$. Now $a^{*} W_{1} X^{2}=a^{*} W_{2} X^{2}$ so that $e_{\alpha} W_{1} X^{2}=e_{\alpha} W_{2} X^{2}$; but $e_{\alpha}$ is an identity for all elements of $W$, so that $W_{1} X^{2}=W_{2} X^{2}$. Since $X \in \mathscr{S}(\mathscr{P}(S))$ we have $W_{1} X=W_{2} X$ and so $a^{*} W_{1} X=a^{*} W_{2} X$ and $U X=V X$.

If $U \in \mathscr{P}(Q)$ and $U X^{2}=X^{2}$, then in view of ( $\left.{ }^{*}\right) U X^{2}=e_{\alpha} X^{2}$ where $\alpha \geq \beta$ for all $\beta \in \operatorname{supp} X$. Thus $U X=e_{\alpha} X=X$. Hence $X$ is square-cancellable in $\mathscr{P}(Q)$.

For $X \in \mathscr{P}(Q)$ we put $\theta(X)=|\operatorname{supp} X|$.
Lemma 4.3. Suppose that $\mathscr{P}(S)$ is a weak order in $\mathscr{P}(Q)$ and $X \in \mathscr{S}(\mathscr{P}(S)$. If $\alpha \in \max X$ then $\left|X_{\alpha}\right|=1$.

Proof. If $\theta(X)=1$ then $X \subseteq S_{\alpha}$ for some $\alpha \in Y$ and certainly $X \in \mathscr{P}\left(\mathscr{P}\left(S_{\alpha}\right)\right)$ so that
by Theorem $3.2 X$ lies in a subgroup of $\mathscr{P}\left(G_{\alpha}\right)$. Since $\left\{e_{\alpha}\right\}$ is the only idempotent of $\mathscr{P}\left(G_{\alpha}\right)$ we have by Corollary 2.4 that $|X|=1$.

Suppose now that $\theta(X)>1$. Take $\alpha \in \max X$; we aim to show that $X_{\alpha} \in \mathscr{P}\left(\mathscr{P}\left(S_{\alpha}\right)\right)$, so that as above $\left|X_{\alpha}\right|=1$. Put $Y=X \backslash X_{\alpha}$ and note that if $y \in Y$ and $x \in X$ then $y x \notin X_{\alpha}$. Let $M=\max Y X_{\alpha}$. Suppose now that $U, V \in \mathscr{P}\left(S_{\alpha}\right)$ and $U X_{\alpha}^{2}=V X_{\alpha}^{2}$. Put

$$
\bar{U}=U \cup \bigcup\left\{e_{\gamma} U: \gamma \in M\right\} \cup \bigcup\left\{e_{\gamma} V: \gamma \in M\right\}
$$

and

$$
\bar{V}=V \cup \bigcup\left\{e_{\gamma} U: \gamma \in M\right\} \cup \bigcup\left\{e_{\gamma} V: \gamma \in M\right\}
$$

Then

$$
\bar{U} X^{2}=U X^{2} \cup T=U\left(X_{\alpha} \cup Y\right)^{2} \cup T=U\left(X_{\alpha}^{2} \cup X_{\alpha} Y \cup Y^{2}\right) \cup T
$$

where

$$
T=\left(\bigcup\left\{e_{\gamma} U: \gamma \in M\right\} \cup \bigcup\left\{e_{\gamma} V: \gamma \in M\right\}\right) X^{2}
$$

If $\beta \in \operatorname{supp} U X_{\alpha} Y$ then $\beta \leq \gamma$ for some $\gamma \in M$ so that if $x \in\left(U X_{\alpha} Y\right)_{\beta}$ then $x=e_{\gamma} x \in T$. Similarly, $U Y^{2} \subseteq T$. Thus

$$
\bar{U} X^{2}=U X_{\alpha}^{2} \cup T
$$

dually,

$$
\bar{V} X^{2}=V X_{a}^{2} \cup T
$$

so that $\bar{U} X^{2}=\bar{V} X^{2}$ and as $X \in \mathscr{S}(\mathscr{P}(S)), \bar{U} X=\bar{V} X$. It follows easily that $U X_{\alpha}=V X_{\alpha}$.
Finally, if $U \in \mathscr{P}\left(S_{\alpha}\right)$ and $U X_{\alpha}^{2}=X_{\alpha}^{2}$, then taking $a \in S_{\alpha}$ we have $a U X_{\alpha}^{2}=a X_{\alpha}^{2}$ and the above shows that $a U X_{\alpha}=a X_{\alpha}$; hence $U X_{\alpha}=X_{\alpha}$ and $X_{\alpha} \in \mathscr{F}\left(\mathscr{P}\left(S_{\alpha}\right)\right)$.

We are now in a position to prove our final result.
Theorem 4.4. The semigroup $\mathscr{P}(S)$ is an order in $\mathscr{P}(Q)$ if and only if $S$ satisfies condition ( ${ }^{*}$ ).

Proof. In view of Proposition 4.1 it only remains to show that if $\mathscr{P}(S)$ is a weak order in $\mathscr{P}(Q)$ then if $X \in \mathscr{S}(\mathscr{P}(S)), X$ lies in a subgroup of $\mathscr{P}(Q)$. We use induction on $\theta(X)$ to show that $X$ is balanced. If $\theta(X)=1$ then $X \subseteq S_{\alpha}$ for some $\alpha \in Y$ and then from Theorem 3.2 $X$ lies in a subgroup of $\mathscr{P}(Q)$ so that in particular, $X$ is balanced by Lemma 2.5.

We make the inductive assumption that $\theta(X)>1$ and if $Y \in \mathscr{S}(\mathscr{P}(S))$ with $\theta(Y)<$ $\theta(X)$, then $Y$ is balanced.

Let $\alpha \in \max X$; by Lemma 4.3, $\left|X_{\alpha}\right|=1$. Suppose there exists $\beta \in \operatorname{supp} X$ with $\beta<\alpha$. Write

$$
X=\left\{s, t_{1}, \ldots, t_{n}, u_{1}, \ldots, u_{m}\right\}
$$

where $s \in X_{\alpha}, t_{1}, \ldots, t_{n}$ are distinct elements of $X_{\beta}$ and $u_{1}, \ldots, u_{m}$ are distinct elements of $X \backslash\left(X_{\alpha} \cup X_{\beta}\right)$. Pick any $a \in S_{\beta}$ and put $Z=a X$; since $\beta \alpha=\beta \beta$ we have that $\theta(Z)<\theta(X)$. It is then easy to see that $Z \in \mathscr{P}(\mathscr{P}(S))$ so that by the inductive assumption, $Z$ is balanced. In particular, $\left|Z_{\beta}\right|=1$. Thus $a t_{1}=\ldots=a t_{n}$ and so $t_{1}=\ldots=t_{n}$, that is, $\left|X_{\beta}\right|=1$. Moreover as $=a t_{1}$ so that $s e_{\beta}=t_{1}$.

We can carry out this procedure for any $\alpha \in \max X$ and $\beta \in \operatorname{supp} X$ with $\beta<\alpha$; it follows that $\left|X_{\gamma}\right|=1$ for all $\gamma \in \operatorname{supp} x$. Suppose now that $\beta, \gamma \in \operatorname{supp} X$ and $\beta<\gamma$. Then $\beta<\gamma \leq \alpha$ for some $\alpha \in \max X$; from the above, if $x \in X_{\beta}, y \in X_{\gamma}$ and $z \in X_{\alpha}$, then $z=z e_{\beta}$ and $y=z e_{\gamma}$. Thus $y e_{\beta}=z e_{\gamma} e_{\beta}=z e_{\beta}=x$ and so $X$ is balanced. By induction on $\theta(X)$, every element of $\mathscr{S}(\mathscr{P}(S))$ is balanced.

By Lemma 2.5 , to show that $X \in \mathscr{P}(\mathscr{P}(S))$ lies in a subgroup of $\mathscr{P}(Q)$, it remains to show that $\operatorname{supp} X$ is a subsemilattice of $Y$. If $\theta(X)=n$ then $\operatorname{supp} X^{n}$ is a subsemilattice and also $X^{n} \in \mathscr{P}(\mathscr{P}(S))$. By the above, $X^{n}$ is balanced so that by Lemma 2.5, $X^{n}$ lies in a subgroup of $\mathscr{P}(Q)$. Further, if $\operatorname{supp} X^{n}=\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}$ then $E X^{n}=X^{n}$ where $E=$ $\left\{e_{1}, \ldots, e_{m}\right\}$. We now call on Lemma 4.2 to give that $E X=X$. Let $\alpha, \beta \in \operatorname{supp} X$; then $\alpha=\alpha_{i} \in \operatorname{supp} X^{n}$ and if $x \in X_{\beta}$ then $e_{i} x \in E X=X$ so that $\alpha \beta \in \operatorname{supp} X$. Thus supp $X$ is a subsemilattice of $Y$ and this completes the proof that $X$ lies in a subgroup of $\mathscr{P}(Q)$. Hence $\mathscr{P}(S)$ is an order in $\mathscr{P}(Q)$.

Theorem 4.4 simplifies slightly in the case where $Y$ is a chain.
Corollary 4.5. If $Y$ is a chain then $\mathscr{P}(S)$ is an order in $\mathscr{P}(Q)$ if and only if $S$ satisfies condition ( ${ }^{* *}$ ):
(**) for $\alpha, \beta \in Y$ with $\alpha>\beta$ and $x \in S_{\alpha}, y \in S_{\beta}$, there exists $p \in S_{\alpha}$ and $q \in S_{\beta}$ with $x p e_{\beta}=y q$.

Proof. If $\mathscr{P}(S)$ is an order in $\mathscr{P}(Q)$ then by Theorem $4.4,\left(^{*}\right)$ holds. Let $\alpha, \beta \in Y$ with $\alpha>\beta$ and $x \in S_{\alpha}, y \in S_{\beta}$. By (*) there exists $\gamma \in Y$ with $\gamma \geq \alpha>\beta$ and elements $p \in S_{\alpha}$, $q \in S_{\beta}$ and $a \in S_{\gamma}$ with $a e_{\alpha}=x p, a e_{\beta}=y q$. Then $x p e_{\beta}=a e_{\alpha} e_{\beta}=a e_{\beta}=y q$ and (**) holds.

Conversely, suppose that (**) holds. Let $\alpha_{1}, \ldots, \alpha_{n}$ be distinct elements of $Y$ and $s_{i} \in S_{\alpha_{i}}, 1 \leq i \leq n$. Note that (*) holds trivially when $n=1$. We assume inductively that $n>1$ and (*) holds for all natural numbers less than $n$.

Without loss of generality we assume that $\alpha_{1}>\alpha_{2}>\ldots>\alpha_{n}$. By the inductive assumption there exist $\alpha^{\prime} \in Y$ with $\alpha^{\prime} \geq \alpha_{2}$ and elements $a^{\prime} \in S_{\alpha^{\prime}}, t_{i}^{\prime} \in S_{\alpha_{i}, 2 \leq i \leq n}$ with $a^{\prime} e_{\alpha_{i}}=s_{i} t_{i}^{\prime}, 2 \leq i \leq n$. Let $b \in S_{\alpha_{2}}$; by $\left({ }^{* *}\right)$ with $x=s_{1}, y=a^{\prime} b$ there exist $p \in S_{\alpha_{1}}$ and $q \in S_{\alpha_{2}}$ with $s_{1} p e_{\alpha_{2}}=a^{\prime} b q$. Put $\alpha=\alpha_{1}, a=s_{1} p, t_{1}=p$ and $t_{i}=t_{i}^{\prime} b q \in S_{\alpha_{i}}, 2 \leq i \leq n$. Then $a e_{\alpha_{1}}=s_{1} p e_{\alpha_{1}}=s_{1} p=s_{1} t_{1}$ and for $i \in\{2, \ldots, n\} \quad a e_{\alpha_{i}}=s_{1} p e_{\alpha_{1}}=s_{1} p e_{\alpha_{2}} e_{\alpha_{i}}=a^{\prime} b q e_{\alpha_{i}}=$ $s_{i} t_{i}^{\prime} b q=s_{i} t_{i}$. Thus $\left(^{*}\right)$ holds.

We end the paper by illustrating Theorem 4.4 and Corollary 4.5 with a number of examples.

Example 4.6. We consider several cases of orders in a two-element chain of torsion-free commutative groups.

Let $G$ be the infinite cyclic group generated by an element $z$ and let $T$ be the infinite monogenic semigroup generated by $z$, so that $T$ is an order in $G$.

Put $Q_{1}=G^{1}$ and $S_{1}=T^{1}$, so that $S_{1}$ is an order in $Q_{1}$. For any $z^{n} \in T$,

$$
11 z^{0} \neq z z^{n}
$$

so that $\left({ }^{* *}\right)$ fails with $x=1$ and $y=z$.
Now take $Q_{2}=G^{0}$ and $S_{2}=T^{0}$ so that again $S_{2}$ is an order in $Q_{2}$. Then for any $z^{n} \in T$,

$$
z^{n} z 0=00
$$

so that (**) holds.

With $G$ and $T$ as above let $H$ be the infinite cyclic group generated by $t$ and let $U$ be the infinite monogenic semigroup generated by $t$, so that $U$ is an order in $H$. Moreover if we let $\phi: G \rightarrow H$ be the trivial homomorphism then $S_{3}=T \cup U$ is an order in $Q_{3}=G \cup H$, where $Q_{3}$ is the two element chain of groups $G$ and $H$ with structure homomorphism $\phi$. Now for any $r, s \geq 1$,

$$
z z^{r} t^{0}=t^{0} \neq t t^{s}
$$

so that (**) does not hold with $x=z$ and $y=t$.
On the other hand let $\psi: G \rightarrow H$ be the homomorphism given by $\psi(z)=t^{n}$ where $n \geq 1$. Put $S_{4}=T \cup U$ and $Q_{4}=G \cup H$ with structure homomorphism $\psi$. Again, $S_{4}$ is an order in $Q_{4}$. Let $r, s \geq 1$ and pick $u$ with $n(r+u)>s$. Then

$$
z^{r} z^{u} t^{0}=z^{r+u} t^{0}=\psi\left(z^{r+u}\right) t^{0}=(\psi(z))^{r+u} t^{0}=t^{n(r+u)} t^{0}=t^{n(r+u)}=t^{s} t^{n(r+a)-s}
$$

which shows that (**) holds.
Moving now to an example of an order $S$ in $Q$, where $Q$ is an arbitrary semilattice $Y$ of torsion-free commutative groups, we remark that by (*), if $Y$ has a finite set of elements without an upper bound, then $\mathscr{P}(S)$ is not a weak order in $\mathscr{P}(Q)$. In particular, if $Q$ is the three element semilattice with two incomparable elements then $\mathscr{P}(Q)$ is not a weak order in itself, as shown at the beginning of this section.

Example 4.7. Let $Y$ be the four element semilattice $\left\{\alpha_{1}, \ldots, \alpha_{4}\right\}$ where $\alpha_{1} \geq \alpha_{2}$, $\alpha_{3} \geq \alpha_{4}$. For $i \in\{1, \ldots, 4\}$ let $G_{\alpha_{i}}$ be the infinite cyclic group generated by $x_{i}$ and let $T_{\alpha_{i}}$ be the order in $G_{\alpha_{i}}$ consisting of the positive powers of $x_{i}$. Let $Q$ be the semilattice $Y$ of groups $G_{\alpha_{i}}$ with structure homomorphisms $\phi_{\alpha_{i} \alpha_{j}}: G_{\alpha_{i}} \rightarrow G_{\alpha_{j}}$ given by $\phi_{\alpha_{i} \alpha_{j}}\left(x_{i}\right)=x_{j}$. Putting $S$ to be the subsemigroup of $Q$ consisting of positive words we have that $S$ is an order in $Q$.

Consider positive integers $a_{1}, \ldots, a_{4}$ and choose $n$ with $n>\max \left\{a_{1}, \ldots, a_{4}\right\}$. Put $\alpha=\alpha_{1}, a=x_{1}^{n}$ and $t_{i}=x_{i}^{n-a_{i}}, 1 \leq i \leq 4$. Then

$$
a e_{i}=x_{1}^{n} e_{i}=x_{i}^{n}=x_{i}^{a_{i}} x_{i}^{n-a_{i}}=x_{i}^{a_{i}} t_{i},
$$

thus showing that (*) holds.

## REFERENCES

1. A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, (Mathematical Surveys 7, Vol 1 American Math. Soc. 1961).
2. J. B. Fountain and M. Petrich, Completely 0 -simple semigroups of quotients, J. Algebra 101 (1986), 365-402.
3. V. A. R. Gould, Clifford semigroups of left quotients, Glasgow Math. J. 28 (1986), 181-191.
4. J. M. Howie, An introduction to semigroup theory (Academic Press 1976).
5. J.-E. Pin, Power semigroups and related varieties of finite semigroups in Semigroups and their applications (eds. S. M. Goberstein and P. M. Higgins 1987), 139-152.

School of Mathematics and Statistics
University of Sydney
NSW 2006
Australia

Department of Mathematics University of York
Heslington
York YO1 5DD
England

