1 A Computational Approach
to Causality

Chapter Summary

As discussed in the previous chapter, distinguishing cause from effect is essential
in science, in particular for understanding complex and living systems. In this
chapter, we will provide a general overview of approaches bridging computation
and causality. We begin by surveying concepts and outlining the current state of the
field to convey its richness, its multiple difficulties, and its challenges. In particular,
we survey how causality has been addressed from different conceptual standpoints.
Interestingly, two of these strands reflect the tension that has characterised Al
research since the 1956 Dartmouth workshop considered the inception of Al. The
first modern take on causality derives from a discrete logical and symbolic mode
of thinking. Central in this paradigm is the belief that to construct intelligent
reasoning, i.e., causally competent systems, we need symbolic representation and
computations thereof. The second framework that we discuss in this chapter
essentially displaces causality as represented in terms of discrete symbolic elements
in favour of statistical continuous distributions. It has pre-empted progress in the
study of causality and replaced it with the study of correlations and associations,
plunging the field of causality into a spell of wintry aridity. Correlations in data
and observations assumed saliency during this period spanning several decades and
still prevail in all areas of science. The third line of thinking flips the problem on
its head. Instead of saying ‘let us assume a statistical model and ask how our data
could or could not be accounted for by it’, a machine learning approach reformats
the problem as a learning task. Given the data, it says, ‘let us discern an implicit
model capturing the regularities that characterise it’. There is also a major line of
research that merges statistical and learning approaches to finding patterns in data.
Bayesian approaches, including network representation, are examples of this. Yet,
as we will see, both the statistical and the learning approach often confound causes
and effects in data, a shortcoming inherited from traditional statistics. This is not
entirely surprising, as many of these approaches were not primarily designed for
elucidating causality from data without recourse to probability distributions. The
fourth paradigm that we review originates in what could be considered a scientific
computing and dynamical systems mode of thinking. In practice, it uses a model
which is generative in a mechanistic sense (e.g., differential equations), not a merely

https://doi.org/10.1017/9781108596619.004 Published online by Cambridge University Press



https://doi.org/10.1017/9781108596619.004

10 1 A Computational Approach to Causality

statistical model, and it asks whether such a generative model is sufficient to account
for the observations. The advantage is that, here, candidate models are made explicit
and can be tested against data and predictions. Yet the sufficiency of a model does
not imply its necessity, as there could well be other casual models (explanations)
for the same set of observations. This chapter sets the stage for the major ways
scientists have dealt with causality in the quantitative sciences, exploring their
advantages and inherent limitations. It paves the way for critically inquiring into
what we need to accomplish in order to come to grips with causality. The chapter
ends with a set of multiple choice and discussion questions to establish key takeaway
points.

1.1 The Challenge of Causality

Below we will review several concepts — as outlined above — that are relevant to the
objective of this book, which is to explain how the theories of computability, dynamical
systems, and algorithmic complexity can help address the challenge of causal dis-
covery, specifically by helping to generate mechanistic models underlying data and
observations, that is, models that one can run on a computer, for example, in order
to make educated guesses about the cause of a system’s behaviour, its likely future
behaviour, and how it may be manipulated.

Because there are many things we cannot understand or predict, we tend to believe
that we are dominated by chance. However, science tells us that much of what we
believe to be random is in fact highly determined by events in our world, events that
precede and determine other events. Science, or at least classical physics, tells us that
everything happens for a reason. What turns out to be difficult is to find or identify these
reasons. Later in this book, we will explain that determinism and predictability are not
the same thing and do not imply each other. In particular, we will see that determinism
does not imply predictability.

Causality is a property of objects and systems that have been produced by a cause, as
opposed to having occurred or appeared by chance. Causality is the property that dis-
tinguishes science from magic, and is the driver of the scientific method as it attempts
to discover the causes of what happens in the natural world. The ultimate aim of science
is to understand the world through simplified causal models and thereby to predict and
change events. These events can be of any kind, for example, producing a new drug to
treat a disease, or designing a new electric plant to generate more energy. Most of the
time, the connection between cause and effect is anything but trivial. One of the most
popular examples is the so-called butterfly effect, the idea that a small perturbation in
one part of the world can cause a cascade of unpredictable effects on the other side of
the world.

This type of butterfly phenomenon is referred to as non-linearity. Non-linearity
means that effects feed back into themselves, becoming further magnified in complex
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and unpredictable ways. Later on in this book we will explore some of the technical
aspects of complex systems.

At the core of the challenge of causality is something more mundane, and that is the
fact that we rarely witness a process unfolding in real time. We usually start studying
something when it has already happened, whether it is how dinosaurs became extinct,
how multi-cellular life emerged on earth, or how a virus spreads. And when we do
happen to witness a process of interest unfolding, or perform experiments to make it
happen, we may attempt to isolate the system of interest from other causes, but in fact
we rarely succeed. In the real world, we must necessarily deal with incomplete data
from limited observations, and confront systems interacting with other systems at all
scales, forcing us to settle for educated guesses about causation rather than strive for
complete certainty. This is why we are forced to use tools such as statistics to study
probable causes of natural phenomena. Usually, systems interacting with each other
appear to us as noise as they cannot be distinguished from the data of interest, thus
impeding our understanding of events.

Science has managed to come up with partial solutions to some of these challenges.
Scientists perform experiments to force events to happen in real time so as to watch
them unfold firsthand. Researchers have also come up with tools that we like to group
under different rubrics, such as logic, statistics, probability, and information theory, to
mention a few. But all of these have the same purpose even if they approach the problem
in different ways, namely, to empower scientists with suitable means to characterise the
relationship between observations, causes, and effects. To the action of discovering the
direct causes of natural phenomena, we give the name science, and all subfields of
science, from data science and logic to astrophysics and biology, are devoted to this
activity.

In the next section, we will discuss causality and models of the world, in particular
mechanistic models.

1.2 What Is a Mechanistic Model?

Central to causality is the notion of a ‘source’ whence a process arises, a generating
mechanism underlying an observation. We often talk about primordial causes as first
principles. We also think in terms of what we call a mechanistic model, a model that
can be followed from cause to effect step by step, as in an algorithm.

What has come to be known as a Rube Goldberg machine after its creator, a car-
toonist, is the perfect illustration of a mechanistic model, because in this rather silly,
convoluted mechanism, every process corresponds to an action and a consequence, all
linked in a long chain of causes and effects (see Fig. 1.1). In this cartoon, a so-called
self-operating napkin is activated by the action of a person using a spoon to eat soup.
It is comical because the mechanism for activating the napkin comprises a series of
risibly sophisticated tasks, only to achieve the rather mundane end result of moving
the napkin.
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Figure 1.1 Self-operating napkin cartoon by Rube Goldberg illustrating a long and rather silly
chain of intermediate cause-effect events with a trivial end result.

A Rube Goldberg machine, or Goldberg machine for short, illustrates another impor-
tant aspect of the challenge of causality, particularly in relation to the area of modelling,
which is that if we were not able to witness the processes leading to the movement of
the napkin, we would not be able to rule out a Goldberg machine as the generating
mechanism. The funniest thing about a Goldberg machine is that it is very transparent —
we see its inner workings. But if we were only looking at the napkin, we wouldn’t
know whether it is the hand of a person that moves the napkin or a series of comically
sophisticated actions. In other words, a Goldberg machine also illustrates that it is
generally impossible to know the underlying cause of an event.

While we would like to say that a Rube Goldberg machine is among the least likely
explanations for what happens in the world, we truly do not know, and we have to
find arguments in favour of or against such explanations. Perhaps what strikes us as
funny in this cartoon is not that far from what actually happens inside the human mind,
for example, or at a molecular level, even if it does not involve gears, pulleys, and
parrots. Clearly, a causal model like this one is far from random because the mechanism
constrains the degrees of freedom of movement so that movement can only happen in
a constrained space and can only be activated by a previously activated movement.
The more control from original causes, the less random the effect when movement is
limited in space and controlled by a prior cause.

For many centuries a geocentric model of the universe reigned and was based on
what we call epicycles (Fig. 1.2). This model was used to explain the movement of
the stars and planets in the sky, with the earth occupying the centre of the universe.
Planets traced an additional movement around a small circle called an epicycle, which,
in turn, moved along a larger circle called a deferent. Both circles rotated clockwise
and were roughly parallel to the plane of the sun’s orbit. This explained the apparent
retrograde motion of the five planets known at the time, but one can see how complex
the epicycles model was.
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Figure 1.2 Intricate planetary motions as observed in the night sky leading to Ptolemy’s
epicycles model.

Even though the epicycles model of the universe was, for most purposes, incorrect,
it was able to explain and describe, with virtually the same accuracy as heliocentric
models, the movements of objects in the sky (see Fig. 1.3).

One of the most difficult movements to explain was that of the interior planets (closer
to the sun than the earth), because these planets appeared to move in one direction and
then suddenly switched to the opposite direction depending on the relative positions
of the planet and the earth in their revolution around the sun. This retrograde move-
ment was difficult to explain without placing the earth outside the centre of the solar
system, so the epicycles were needed if the heliocentric model was to be causal and
mechanistic.

Moreover, both the epicycles and the later heliocentric models had about the same
predictive power for certain features, meaning that it was possible to run the models
into the future to simulate the movements of the sun, planets, and stars as they appeared
in the sky and make predictions (see Fig. 1.4). For example, they explained changes in
the apparent distances of the planets from the earth.

So both the geocentric and heliocentric interpretations involved mechanistic
models, with the epicycles being a concomitant of the mechanistic geocentric model
and Kepler’s laws of planetary motion, for instance, being associated with the
mechanistic heliocentric model of Copernicus. Clearly, the effectiveness of both
the geocentric and heliocentric models are an indication that generating mechanisms
and predictions are not necessarily related. Nevertheless, mechanistic models are
very important because they are not passive descriptions of an active process; they
can actually be built, run, and followed step by step. This is why they are called
mechanistic.
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Figure 1.3 Heavenly bodies — An illustration of the Ptolemaic geocentric system by Portuguese
cosmographer and cartographer Bartolomeu Velho, 1568 (Bibliotheque Nationale, Paris).

Figure 1.4 An illustration of the (left) geocentric and (right) heliocentric models.
Source: Archives of Pearson Scott Foresman, donated to the Wikimedia Foundation.

A mechanistic model may reveal more information by virtue of being mechanistic
as opposed to being, say, merely descriptive. For instance, in the heliocentric model, if
the sun’s cycle requires 2 gears 20 times larger than the gear for the earth’s moon, the
mechanical model would suggest that the diameter of the sun is 2 multiplied by 20 times
the diameter of the moon and would also shed light on the moon’s distance from the sun,
especially as observed during solar eclipses, when the moon and sun appear to be about
the same size. Geocentric models would have required more convoluted explanations
to reveal just the right distances at all times. And this makes mechanistic models more
important than descriptive models.
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1.3 The First Approach: Logic and Symbolic Reasoning

When humans started thinking about the world, they could not explain most of it and
they tended to attribute everything to magic or the will of capricious gods. This is
exactly the kind of explanation that is not mechanistic. Non-mechanistic models can
come in many forms. Many cultures have attached importance to astronomical events,
connecting them to human and terrestrial affairs, and to a certain extent we continue to
do so. Every time they face something inexplicable some people are still apt to attribute
it to extraterrestrial intelligences or paranormal phenomena. But the first record of
progress toward finding tools to separate fact from myth and understand the natural
world is to be found in Greek philosophy, in the development of a form of formal logic
in arithmetic and geometry that remains the basis of modern science.

Aristotle was the first to deal with the principles of formal logic in a systematic way.
The history of logic is the history of valid inference. In fact ‘logos’ means ‘reason’ in
Greek, among other things. Logic as a formal way of reasoning was reinvigorated in
the mid-nineteenth century, at the beginning of a revolutionary period when the subject
developed into a rigorous and formal discipline that took as its paradigm the method
of proof used in Greek mathematics.

This copy of Euclid’s Elements (Fig. 1.5) was published in 1573 but it was written
around 300 BC, long before the Bible itself. The concept of mathematical proof reached
maturity at this point, and was systematically used thereafter.

The early thirteenth century witnessed a recovery of Greek philosophy after its
eclipse in the Middle Ages. And to return to mechanistic models, a philosopher named
William of Occam was exercised by the problem of finding arguments to rule out

Figure 1.5 Euclidis — Elementorum libri XV Paris, Hieronymum de Marnef & Guillaume
Cavelat, 1573 (second edition after the 1557 ed.); in-8, 350, (2)pp. THOMAS-STANFORD,
Early Editions of Euclid’s Elements, no. 32. Mentioned in T. L. Heath’s translation. Private
collection H. Zenil.
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16 1 A Computational Approach to Causality

explanations along the lines of a Rube Goldberg machine, that is, possible but overly
complicated explanations for even the simplest phenomena.

Today we know his argument as ‘Occam’s razor’, also known as the ‘law of par-
simony’. Occam’s razor establishes that when presented with competing models, one
should select the one that makes the fewest assumptions. So, in the case of the self-
activated napkin drawn by Rube Goldberg, we would simply discard all the mecha-
nisms involved if we had not seen them in operation firsthand, and we would instead
favour simpler models as possible explanations. For example, that the person them-
selves or someone else was manipulating the napkin and not an overly complicated
machine.

In science, Occam’s razor is used as a guiding principle in the development and
selection of theoretical models, but we will also see that there is good evidence in favour
of Occam’s razor. One of my own contributions to the topic is to show that Occam’s
razor is not only formalised by a concept central to this book, the concept of algorithmic
complexity, but also that numerical approximations to algorithmic complexity provide
strong evidence in its favour. We will see this later, formally and in detail; we will
see how algorithmic complexity is connected with the kind of simplicity advocated by
Occam.

The development of modern ‘symbolic’ and ‘mathematical’ logic is owed to authors
such as George Boole, Gottlob Frege, Bertrand Russell, Giuseppe Peano, David
Hilbert, and Kurt Godel. One of the most basic kinds of mathematical logic is that of
propositions that can be assigned a truth value, either true or false (Fig. 1.6).

logic operator | A (g |lv | v | =

negation m'@|

number of variables

shuffle operators |on |

[or]

allow resizing v

m| | H| 4] ©
M H| M| H] ©
T Al d ] <

Figure 1.6 Charles Sanders Peirce appears to be one of the earliest logicians (1893) to devise a
truth table matrix. While truth tables are relatively modern, their underlying principles are
similar to those of the Aristotelian syllogism (a subset of the current Boolean operators), which
Frege, Boole, and others would much later build upon to formalise what is today known as
first-order predicate logic. A program designed to illustrate the concept is available at: http://
demonstrations.wolfram.com/TruthTables/.
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1.3 The First Approach: Logic and Symbolic Reasoning 17

This type of logic is equivalent to a type of algebra known as Boolean logic, after
George Boole. Boolean logic turned out to be especially important for computer sci-
ence because it fits nicely with the binary system, in which each bit has a value of
either 1 or 0, comparable to True or False. Boolean logic will be important later on
in the book as we will be using a type of system called a Boolean network. Boolean
networks are networks with propositional formulae, such as the ones on a truth table,
that process information according to the way in which the network is connected.

In the truth table shown in Fig. 1.6, for example, there is a formula meaning P and
QO and written P AND Q, where P and Q are propositions that can be False or True,
represented by ‘F’ or “T’, which can also simply be 0 and 1. The connective ‘AND’ is
called a Boolean operator and assigns a value to two propositions, telling us whether
they can be true or false together. For example, for the operator AND, only when the
two propositions P and Q are True can the final formula be True.

Say the proposition P tells us that ‘the lights are on’ while proposition Q tells us
that ‘there are empty seats’. Both statements may be True or False, but if we say that
“The lights are on AND there are empty seats’ such an assertion can only be True if
both P and Q are true at the same time. This is different from the Boolean operator OR,
where if we claim that “The lights are on OR there are empty seats’ then the proposition
denoted by P OR Q can be True if either of the two propositions is True, that is, even
if one is False, for example, if the lights are off but there are empty seats (see Fig. 1.7).

These kinds of formulae can be arbitrarily long and so they become less trivial and
can implement more complicated structures when combined as, for example, is shown
in Fig. 1.8.

It can now be clearly seen how this simple logic can be deeply connected to causality.
For example, the formula P OR Q can only be True if either P, Q, or both are True, and
thus the observation that P OR Q is True or False tells us something about the truth
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Figure 1.7 The truth table for the Boolean operator OR. Source: http://demonstrations.wolfram
.com/TruthTables/.
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Figure 1.8 The truth table for a formula with combined logic operators. Source: http://
demonstrations.wolfram.com/TruthTables/.

value of the causes, that is, the truth values of P AND Q individually when the truth
value of the formula is True or False.

However, in general, mathematics and logic are more interested in truth, which is
only indirectly connected to causality, because a proof is not a generating mechanism as
it cannot be constructive. That is, it is impossible to write a program to effectively carry
out the details of a mathematical proof, as in the case of Peano’s famous diagonalisation
methods. But in the twentieth century, truth and proof in logic were uncoupled in a very
fundamental way, and this somehow broke the direct connection to causality.

Nevertheless, as we will see in this book when covering aspects of the theory of
computation, this rupture was essential to understanding some fundamental proper-
ties of the ways in which we can achieve truth and discover causation by means of
pure reasoning, logic, mechanism, and algorithm. Indeed, that logic and proof were
uncoupled did not mean that we regressed to magic and astrology to explain complex
phenomena. On the contrary, it led to new methods of calculation and to the way in
which we approach science today — through the lens of computation. And even more
importantly, it led to the concept of universal computation, which we will explore in
detail in the following chapters. But it is important to understand that causality is very
difficult to calculate, for the same reasons that led to the rupture of the connection
between truth and proof by formal logic.

1.4 The Second Approach: Probability and Statistics

Following what we think of as a first revolution in the formal approach to the problem of
causation, the advent of logical inference, there was a second revolution, so to speak,
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Figure 1.9 The current statistical approach to science assumes that processes are mostly
random, so when a deviation, such as a black swan, is observed in a long sequence of other
uninteresting events (white swans), it generates great surprise. However, if one assumes that a
sequence of events may not be randomly arranged and has been, for example, carefully sorted,
then black swan events can be expected, provided the underlying mechanism allows for them or
even promotes them.

consisting of an attempt to quantify the idea of chance, of things simply happening
without a particular reason, as opposed to being produced or having a cause. There are
all sorts of interesting epistemological challenges entailed in such an enterprise.

For example, science, and particularly classical mechanics, establishes that every-
thing has a cause, and that there is no such thing as chance. This may suggest that
something appearing to happen by ‘chance’ is precisely that, an appearance.

Italian and French mathematicians such as Cardano, Pascal, Fermat, and Borel were
the first to make attempts to characterise chance in a mathematical way, and we owe
them many of the concepts and ideas still in use today in probability and statistics. Fur-
ther progress was made by German-speaking mathematicians such as Jacob Bernoulli
and, much later, Richard von Mises, laying the foundations of modern probability
theory.

But it was Andrey Kolmogorov who formulated the definitive version of what we
know today as probability theory in its current formal mode, called an ‘axiomatisation’
in mathematics. Interestingly, both von Mises and Kolmogorov felt they had arrived ata
limited and weak characterisation of randomness by means of probability distributions.
However, while some crucial concepts necessary to an effective characterisation of ran-
domness were unavailable to von Mises, Kolmogorov combined ideas from the rising
field of computation to arrive at what we know today as the mathematical definition
of randomness, which is at the centre of this book and the techniques introduced and
studied here.

The aim of classical probability and traditional statistics is to help solve the problem
of causal inference by calculating probability distributions. A key criticism of the
way statistics approaches causality has to do with its dependence on assumptions and
expectations based on probability distributions. Indeed, without knowing the generat-
ing cause of the appearance of, for example, five thousand white swans parading in
single file, a statistician would approach the problem of guessing the colour of the next
swan to appear by simply calculating a distribution based on how many times white
swans have been spotted versus swans of other colours (Fig. 1.9).

Viewed through the lens of traditional statistics, the sudden appearance of a black
swan in the long parade of white swans would be a great surprise and would be consid-
ered an oddity — and may in fact be so. However, if there was a swan owner releasing the
swans in a specific order who had decided to release all the white ones first followed
by the black ones, we would have made the erroneous assumption that swans were

https://doi.org/10.1017/9781108596619.004 Published online by Cambridge University Press


https://doi.org/10.1017/9781108596619.004

20 1 A Computational Approach to Causality

appearing at random and thus that a black swan was an oddity when we saw one for
he first time. In other words, using, or attempting to devise a model of a generating
mechanism not based on an assumption of randomness has the advantage of leading
to better explanations, and affords the means to make more accurate predictions. Of
course it is one thing to attempt and another to achieve such an objective, but statistics is
not designed to generate candidate models but rather to describe data probabilistically.

Its limitations may include confounding causes and effects, that is, either difficulty
isolating a common cause in certain tangled situations, as happens frequently in science
and is among the main considerations in designing experiments, or else a lack of clarity
as regards what is cause and what effect. For example, a certain study may claim that
children who watch a lot of TV are the most violent. Clearly, TV makes children more
violent, it says. But this effect could easily be produced by some other cause. Perhaps
it could be that violent children watch more TV than less violent ones because they are
more likely to be reclusive.

In cases such as this, what one needs is to introduce what is called a ‘control experi-
ment’ to sort out whether the children were already violent and became more addicted
to TV as aresult of their violent personalities. Another problem is that one cannot reset
the same child as violent and then non-violent or vice versa, so the experiment has
to be performed on an already existing population that will necessarily be influenced
by other indirect causes that cannot be completely isolated. The purpose of control
experiments, however, is to control the most obvious bias or confounding cases, so as
to be able to draw more meaningful conclusions. Control experiments are always of
the form ‘what would have happened if something else had or had not happened, or
what would happen if we do or do not apply or remove a certain other influence’.

Pierre-Simon Laplace was the first to use what are called uniform priors when faced
with a complete lack of knowledge, that is, a distribution that assumes that all events
are equally likely. He introduced a principle known as the ‘principle of insufficient
reason,” also known as the ‘principle of indifference’ (Fig. 1.10).

The ‘principle of insufficient reason’ is similar to Occam’s razor in that it is a guiding
principle with no strong evidence in favour or against. The principle states that if there
are n possible causes indistinguishable except perhaps by their names, then possible
causes should each be assigned a probability equal to 1/, that is, equal probability,
and none should be discarded or ruled out.

While the principle of insufficient reason is a reasonable principle to follow, we
will challenge some of its assumptions because while it may be desirable to assign all
possible causes non-zero probability, as suggested by another principle, the Principle
of Multiple Explanations, which establishes that if several theories are consistent with
the observed data we should retain them all, there are strong reasons to assign different
rather than equal probabilities to different explanations. In fact, the ‘principle of indif-
ference’ seems to contradict Occam’s razor, which suggests that we not assign equal
probability to overly complicated causes unless there is a good reason for doing so.

All these assumptions made in traditional statistics reveal that there is a highly sub-
jective component in the way that classical probability deals with causality, particularly
in the absence of data and knowledge about the generating source, which is pretty much
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Figure 1.10 Principle of insufficient reason: when no other information is consistent with the
data, or the data is not observed, this principle suggests that we assume a distribution where all
events are equally possible, so if 10 events are possible causes of an effect, all them can,
independently, be responsible for the said effect with probability 1/10.

the general case. Nonetheless, all these methods are widely accepted and used in the
field of machine learning, for instance.

We will challenge the use of uniform priors, that is, the use of uniform distributions
as a first assumption when undertaking the study of causal systems, as opposed to
random systems, also called stochastic systems. We have shown that challenging the
common use of these uniform priors affords interesting insights — such as the acceler-
ation in the convergence of biological evolution — in comparison to assuming uniform
random mutations, something that we will cover in the last chapter, which will return
to all this in greater detail.

The idea that ‘probability’ should be interpreted as the ‘subjective degree of belief
in a proposition’ was proposed by John Maynard Keynes in the early 1920s, but even
today, methods such as Shannon entropy are taken far more seriously than they should
be. Entropy, in the sense in which Claude Shannon introduced it, is usually presented
as a measure of surprise in the context of communication.

As we will see, Shannon entropy is a measure of degree of uncertainty, which reflects
one’s own lack of knowledge rather than any objective indeterminacy in phenomena.
So, contrary to what’s generally claimed, we will demonstrate that Shannon entropy
is not a syntactic measure at all, but a highly semantic one — though this does not
mean that it is necessarily better or worse. Shannon entropy is interesting because it
introduced logic and computation as descriptions and operations of information. We
will explain in greater detail later why some of these ways to characterise randomness
are often, if not always, very fragile. We will illustrate this with examples, but it is
nevertheless important that you have a grasp of these concepts.

A fundamental concept in statistics is that of correlation, not a minor concept but
actually the heart of statistics in a sense. Statistics is all about finding statistical patterns
in the form of regularity. As we will see, anything more sophisticated than that will be
missed by statistical approaches to inferring causal mechanisms in data.
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p : -0.98966 p :-0.740416 p : -0.240208

p : =0.526359 p :0.000542649 p :0.253699

p :0.496713 p :0.759124 p :0.98994

Figure 1.11 Correlation values for different scatter plots. Source: Justin Matejka and George
Fitzmaurice, ACM CHI 2017. Same stats, different graphs: Generating datasets with varied
appearance and identical statistics through simulated annealing. (www.autodesk.com/
research/publications/same-stats-different-graphs).

A statistical regularity can be, for example, the tendency of some data points to lie
on a plane, or of a time series to display periods. These are typical plots of positive
and negative correlation. Think of two processes from which we obtain data, wishing
to ascertain whether they correlate and/or are causally connected by correlation, say,
a time series. A time series is a collection of data points sorted by time. Think of the
x-axis as recording the values of one time series and the y-axis those of the other one.
Then one can test whether the data points get aligned, meaning that they distribute in
a similar fashion.

Correlation test values used to measure the strength of association between vari-
ables, usually denoted by the Greek letter p (rho), are typically given between —1 and
1; when p is close to 1 or —1 the data is positively or negatively correlated, respectively
(Fig. 1.11).

The plots in Fig. 1.11 are called scatter plots. There are several ways to measure
correlation, but they are all very similar and consist of measuring distances among data
points. One of the most popular measures is called Pearson’s correlation, which gauges
the correlation among data point values. Another popular measure is Kendall’s or
Spearman’s correlation. These measures rank correlation when only the order matters.

Because of the limitations mentioned above, traditional statistics often leads, with
high probability, to spurious models from false negatives and false positives. A false
positive or false negative is a regularity in the data that appears real but is only an arte-
fact giving the wrong impression regarding its cause or effect. Figure 1.12 shows exam-
ples of false negatives, meaning that the correlation test, quantified by rho, suggests that
there is no correlation between axis x and y. But if we look at the plots themselves, we
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p : -0.0126768 p : 0.007053

Figure 1.12 False negatives. Source: Justin Matejka and George Fitzmaurice, ACM CHI 2017.

Same stats, different graphs: Generating datasets with varied appearance and identical statistics
through simulated annealing. (www.autodesk.com/research/publications/same-stats-different-
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Figure 1.13 Scatter plots with equal correlation values but different structures. Source: Justin
Matejka and George Fitzmaurice, ACM CHI 2017. Same stats, different graphs: Generating
datasets with varied appearance and identical statistics through simulated annealing. (www
.autodesk.com/research/publications/same- stats- different- graphs).

see structure immediately, suggesting that something interesting is happening in the
way the data points are distributed along the axes. However, rho is almost O in these
four plots, suggesting that, on the contrary, nothing interesting is happening.

These are other examples where not only is the correlation 0 but all plots have exactly
the same rho value, despite there clearly being lots of different structures (see Fig. 1.13).

The Stanford Encyclopedia of Philosophy refers to attempts to analyse causation in
terms of statistical patterns as ‘regularity theories’ of causation [2]. Statistical regu-
larities are only a subset of the possible properties that a phenomenon may display. A
statistical approach offers an explanation for the distribution of data but leaves to the
scientist the arduous task of formulating an interpretation in order to come up with a
model underlying the data. Traditionally, what a scientist does is to fit a curve. Then the
equation of the curve is taken as the generating model, both to explain the distribution
of data and to make predictions. In the typical case of positive correlation, for example,
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Figure 1.14 Polynomial fit. One can always find a polynomial of degree equal to or greater than
the number of data points that fits the data points perfectly, but most likely this is only
necessary when such data points have no apparent common cause and are algorithmically
random. When at least one data point can be explained by a combination of the others, then the
polynomial equal to or greater than the number of original data points is most certainly
over-fitting the data.

it is not difficult to fit a line. This is called a linear fit because the function is linear as
fitted by a line.

However, one can always force a curve to pass through any number of data points
using a polynomial of degree proportional to the number of points. One can see how,
by increasing the degree of the polynomial, one can make the curve go through or very
close to the data points (see Fig. 1.14).

All these limitations of traditional statistical approaches to causality can be sum-
marised in what is one of the most common adages in the field: ‘association is not
causation’, or ‘correlation does not imply causation’, though lack of correlation does
not mean lack of causation. In other words, that you can fit a curve to a set of data
points does not necessarily mean that the curve actually has anything to do with said
data points.

In [3], the degree to which regression and correlation can be misleading was made
clear. All the scatter plots in Fig. 1.15 have identical values, that is, mean, standard
deviation, and Pearson’s correlation to 2 decimal places (x mean = 54.26, y mean =
47.83, x SD = 16.76, y SD = 26.93, Pearson’s R = —0.06), yet clearly they were
generated in different ways. They started from some points scattered randomly with
little displacement then using an annealing technique they pushed every dot to a target
image (a dinosaur), keeping all summary statistics the same. Clearly, once the data
points reach the dinosaur a lot of computation has been invested and the result is a
long chain of highly directed cause and effect, as opposed to more random configu-
rations. Yet all these forms are very different and represent shapes that do not imply
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Figure 1.15 Deceptive stats, graphs with the same statistical correlation values forming all sorts
of shapes, from a dinosaur to various other shapes that tools like correlation are blind to.
Credit: Justin Matejka and George Fitzmaurice, ACM CHI 2017, Source: www
.autodeskresearch.com/publications/samestats.

randomness. Some versions of traditional statistics, including Shannon entropy, may
distinguish certain trivial cases, but will fail in many ways, as illustrated in these plots.
What is missing is a method other than statistics that may be used to infer the underlying
algorithmic probability and linked chains of cause and effect. In the chapters to follow
we will propose that some of this can be tackled using computation and algorithmic
probability.

Another example that can serve to illustrate the limitations of statistical analysis can
be found in Fig. 1.16. According to the statistical description of the phenomenon, car
arrivals at any point on an open road follow what is known as a Poisson distribution.
This is because distributions can have characteristic shapes when they are plotted.
However, what the statistical approach describes is the effect of the mechanistic cause
and not the generating mechanism. It may provide clues to the causes that are then
left to the scientist to interpret, but the statistics in and of themselves do not provide a
model.

The reason why a Poisson distribution is produced is that slower drivers cause
faster drivers to cluster in their wake, producing knots of cars running together on the
highways and arriving at gas stations at about the same time. But it is not the Poisson
distribution that causes the cars to cluster, nor does it suggest how or why this happens.
In contrast, a mechanistic approach attempts to provide a causal model that may help
design ways to manipulate the effects, as it points out the exact submechanisms that can
be changed to achieve a different end. Probability and statistics have led a revolution in
the study of causality, but they have, in some fundamental way, exhausted their potential

https://doi.org/10.1017/9781108596619.004 Published online by Cambridge University Press


www.autodeskresearch.com/publications/samestats
www.autodeskresearch.com/publications/samestats
https://doi.org/10.1017/9781108596619.004

26 1 A Computational Approach to Causality

Figure 1.16 Times between cars in common traffic on a road can be described with statistics
and an associated probability distribution (Poisson), but the cause can only be suggested or
advanced externally. Taking a different approach, one can look for causes directly. In this case,
the cause is that slower cars lead to clustering. Source: JArrevillaga/Wikimedia, licensed under
the CC BY-SA 3.0 licence.

to engender further progress in modern science. This book is all about trying to provide
an alternative and complement to traditional statistics and classical probability. We will
see how what we call algorithmic information dynamics (AID) provides interesting
tools to help reveal and deal with mechanistic causes.

It is a common observation that some events are less predictable than others. When
are we justified in regarding a given phenomenon as random?

The most common approach in classical probability theory is to frame events within
a set-theoretic framework. Events have an outcome that belongs to a set of possible
outcomes. Traditionally, events are assumed to be repeatable, and such a repetition is
called a trial. Outcomes are direct observables. Let us denote the probability P of an
event A, as P(4,). For example, in the roll of a die, events {1}, {2}, {3}, {4}, {5}, {6}
are elements of a space of possible outcomes of the experiment. Two events A and
B are considered mutually exclusive, or disjoint, if the occurrence of A rules out the
occurrence of B. In the dice example, if a roll turns up ‘three dots’, this event rules out
the event ‘six dots’.

1.5 The Third Approach: Perturbation Analysis and Machine Learning

In the previous sections we saw how much progress had been made by formalising
the concepts of causality and chance with mathematics, in particular with logic,
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probability, and statistics. Another revolution brings these ideas together and takes
probability and statistics to their limits.

How informative an experiment may be in determining the strength of a cause
depends on a number of factors, such as whether there are control experiments to
discard or rule out certain causes, as we have seen before, but also how good the
measurements are, how well placed the observer that makes them, both at the input
and output levels of a system, and how distinguishable individual events are.

We have seen how correlation is central to statistics, but also how limited it can
be. One way to make the most of statistics is by performing systematic perturbations
according to a probabilistic calculus introduced by Judea Pearl and colleagues, with
a view to finding possible causes that can easily be ruled out upon further inspection.
These ideas are at the forefront of the practice of probabilistic causal discovery. Per-
turbation analysis allows us to update beliefs under conditions of uncertainty based on
previous knowledge derived from, e.g., performing perturbations or observing a stream
of data. It also accommodates the concept of a control experiment. For example, if
skin cancer is related to sun exposure and failure to wear sunscreen, then, using Bayes’
theorem, a person’s exposure to sunlight and failure to wear sunscreen can be used to
assess the probability that they will develop skin cancer more accurately than would
be possible if one knew nothing about their degree of exposure.

Central to this kind of calculation is the work of Thomas Bayes (circa 1701-1761).
Inits simplest form, Bayes’ theorem establishes a relationship between the probabilities
of two events A and B, P(A) and P(B) # 0, and the conditional probabilities P(A|B)
and P(B|A). Bayes’ theorem establishes that:

P(B|A)P(A
P(A|B) = %. (1.1)

Bayes’ theorem as a rule provides some kind of ‘backwards probability’ where
P(A) is traditionally called the prior (or initial degree of belief in A) and P(A|B) is
the constructed posterior.

As in the case of the experiments with time series mentioned in previous sections,
we can ask whether two time series resulting from different observations are causally
connected to each other (see Fig. 1.17). Now, traditional statistics would typically
suggest that the behaviour of two time series, let us call them X and Z, are causally
connected because they are correlated, but there are several other cases that are not
decidable following a simple correlation test.

A first possibility is that the time series simply show similar behaviour without
being at all causally connected, despite the possible positive result of a correlation
test. Another possibility is that they are causally connected, but correlation does not
tell us whether it is a case of X affecting Z, or vice versa. Yet another possibility is
that the two have some common cause upstream in their causal paths and that X and
Z are therefore not directly causally connected but connected through a third cause
Y that is concealed from the observer. So how are we to test all or some of these
hypotheses?
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Are these observations causally connected?
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Figure 1.17 Time series as an example of a sequence of observations to be tested for a causal
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Figure 1.18 Time series X and Z before and after perturbation.

One way to do so is to perform a perturbation on one time series and see how the
perturbation spreads to the other time series. Let us perturb a data point in the time
series Z; let us say that we multiply by —2 the data point in position 5. We can see that
nothing has happened to the values of time series X; it looks exactly the same as before
(see Fig. 1.18).

So if we perturb the values in the time series Z, at least for this data point we can
see that X remains the same. This suggests that there is no causal influence of Z on X.

However, if the perturbation is applied to a value of X, Z changes and follows the
direction of the new value, suggesting that the perturbation of X has a causal influence
on Z (see Fig. 1.19). From behind the scenes, we can reveal that Z is the moving average
of X, which means that each value of Z takes two values of X to calculate, and so is a
function of X. The results of these perturbations produce evidence in favour of a causal
relationship between these processes if we did not know that they were related by the
function we just described.
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Figure 1.19 Time series X and Z before and after another perturbation.
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Figure 1.20 Causal relationship between series X and Z.

This suggests that it is X which causally precedes Z. So we can say that this single
perturbation suggests the causal relationship shown in Fig. 1.20.

It is important to consider that performing interventions is not always simple or
possible in reality, but their simulation or emulation can offer great insights. This kind
of simulation of ‘impossible’ situations is what Judea Pearl identifies a ‘counterfactual’,
i.e., the opposite of a possible fact. Simulation and emulation will be at the heart of
our AID approach. Think of drugs as a way to perturb a biological system. Some drugs
may have adverse consequences, so interventions in the way of prescriptions are highly
regulated and one cannot easily do experiments relating to diseases on humans. But
assuming that one may perform such interventions, in cases where an intervention does
not lead to a change, it produces evidence against a causal connection between the
events.

Moreover, the underlying argument is that after an intervention, correlation may or
may not occur, and thus one still relies on classical statistics to make the final calls
if an inference engine that uses probability theory, regression, and correlation is not
replaced with something that does not. So while perturbation analysis does help to
rule out some cases, it still inherits the pitfalls of statistics and correlation analysis, for
the simple reason that we have not yet changed the tools; we have merely performed
more experiments on the data. And this is what AID is about, taking probability and
statistics out of the core of candidate models, even if these models must still rely on
some statistics or on a probability distribution — which we will never be completely
rid of.

As mentioned above, there are three possible types of causal relationships that can
be represented in what is known as a directed acyclic graph, that is, a graph that
has arrows implying a cause and effect relationship but has no loops, because a loop
would make a cause into the cause of itself, or an effect into its own cause, some-
thing that is not allowed because it would be incommensurate with causality (see
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Figure 1.21 Direct acyclic graphs of all possible causal relationships among three unlabelled
variables with no self-loops, i.e., no effect is the cause of itself.

Fig. 1.21). We will cover all this graph jargon in the next chapter. In these graphs,
nodes are events and events are linked to each other if there is a direct cause-and-effect
relationship.

In the first case, labelled A in orange, the event X is the cause of event Y, and Y is
the cause of event Z, and so X is said to be an indirect cause of Z. In general, we are
of course always more interested in direct causes, because almost anything can be an
indirect cause of anything else. In the second case, B, an event Y is a direct cause of both
Z and X. Finally, in case C, the event Y has 2 causes, X and Z. With an interventionist
calculus such as the one performed on the time series above, one may rule out some
cases but not all of them, but more importantly, the perturbation analysis offers the
means to start constructing a model explaining the system and data rather than merely
describing it in terms of simpler correlations.

In our approach to causality, we incorporate the ideas of an interventionist calculus
and perturbation analysis in AID, and we replace traditional probability theory and
classical statistics and correlation by a fully model-driven approach that is fed by data
but is not merely data-driven. The idea is to systematically produce the most likely
generating models that explain the observed behaviour. In the case of our two time
series experiments, the time series X is produced by the mathematical function f(x) =
sin(x), and thus sin(x) is the generating mechanism of time series X. On the other hand,
the generating mechanism of Z is MovAvg(f(x)), and clearly MovAvg(f(x)) depends
on f(x) which is sin(x), but sin(X) does not depend on MovAvg(f(x)), so how could
we have guessed these two functions that statistics alone cannot systematically find? In
other words, we need some sort of method to infer the function or algorithm behind the
data. Having found MovAvg(f(x)) and then f(x) = sin(x), we could not only establish
the actual causal relationship, we could also produce the observation and any number
of other data points in the future with perfect accuracy.

Some of this perturbation analysis and the graphical approach to causality was
based on what are called Bayesian networks, involving the calculation of conditional
probability distributions with the additional feature of asking ‘what happens with some
variable representing a possible event if this other variable representing another event
is observed, perturbed, or simulated’. These ideas on an interventionist calculus are
fundamental to causality and are incorporated into AID.
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1.5.1 Perturbation Analysis and Interventionist Calculus

Judea Pearl’s main contribution was to come up with the idea of perturbations, coun-
terfactuals, a calculus, and graphical representation of cause and effect. We built upon
Pearl’s idea of perturbing systems. But as we have established, Pearl could not move
away completely from traditional statistics and probability theory because he had to
resort to the very tools he was trying to leave behind to compare the original and the
perturbed or simulated system. This means that anyone using Pearl’s do-calculus would
be forced to resort to regression or correlation in the absence of better tools. In AID
we take the next step toward removing probability from candidate causal models. Once
a system is perturbed or simulated, one uses AID to compare the result to the origi-
nal system, that is, one examines the differences in the candidate models explaining
the original and the new model. AID incorporates perturbations and counterfactuals
naturally. In AID, we apply all possible perturbations to a system, including those that
can be seen as counterfactuals, and then we look at how the sets of candidate models
change. In contrast, perturbing a system or estimating a counterfactual effect in Pearl’s
calculus in practice involves comparing distributions, which means that we fall into the
same regression/correlation trap.

Candidate models in AID are computable models that explain both the original data
and the new (perturbed or simulated) data. Then one can see how much the underlying
model has changed as a result of the perturbation and decide which changes impact
the dynamics of the original system, something that Pearl’s calculus is unable to do
without an inference engine that does not offer the do-calculus, or at least not without
having to resort to probability distributions, which require traditional statistics.

There is a relationship between causal graphs, entropy, and algorithmic complexity
that we explore throughout the book. Algorithmic complexity is a generalisation of
entropy and has absolutely no problem dealing with Pearl’s causal graphs; they are
simply not necessary because we are no longer dealing with a language based on
probability distributions (which are usually difficult if not impossible to access in the
best case).

Solomonoff was aware that the theory of algorithmic probability, on which AID is
heavily reliant, was the ultimate optimal theory of inference. The Al community also
agreed that Solomonoff’s theory was the answer to causal inference, but because it was
uncomputable and there was not enough computational power back in the 60s — and
indeed until recently — it was difficult to really explore the field numerically, and most
researchers simply turned their backs on it. It is easy to see how Marvin Minsky could
say that the way forward, possibly the only or the most important way forward, was
algorithmic probability. He was speaking of Al at a panel discussion on The Limits
of Understanding at the World Science Festival, NYC, on 14 December 2014, just one
year before he passed away. Marvin Minsky is widely considered to be the founding
father of artificial intelligence. His astonishing claim describes what turns out to be
precisely the objective of our research programme and the main purpose of this book.
To quote his closing statement to the panel:
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It seems to me that the most important discovery since Godel was the discovery by Chaitin,
Solomonoft, and Kolmogorov of the concept called Algorithmic Probability, which is a
fundamental new theory of how to make predictions given a collection of experiences and this
is a beautiful theory, everybody should learn it, but it’s got one problem, that is, that you cannot
actually calculate what this theory predicts because it is too hard, it requires an infinite amount
of work. However, it should be possible to make practical approximations to the Chaitin,
Kolmogorov, Solomonoff theory that would make better predictions than anything we have
today. Everybody should learn all about that and spend the rest of their lives working on it.

1.6 The Fourth Approach: Model-Driven Inference, Dynamical
Systems, and Computation

1.6.1 Introducing Computation in Causal Analysis

Causality and computation have been linked since the inception by way of the concept
of calculation. Figure 1.22 shows an ancient Greek calculator used to predict celestial
events such as eclipses. It is known as the Antikythera Mechanism after the island on
which it was found. It is the first known ‘analogue computer’, believed to have been
made circa 87 BC, that is, more than 2,000 years ago. Possibly built by Archimedes,
this device is very similar to the mechanical artifact shown above that simulate the
planetary movements of the solar system. These cogwheels would turn in a precise
fashion to make a prediction based on the epicyles model that we encountered above.
Figure 1.23 shows a computer program designed to showcase the way in which the
mechanism worked and what it was able to predict.

Not everything is known about this ancient device. For example, it is not known
what additional components were needed to simulate and display planetary motions.
Turning the handle causes a sequence of interlocking gears to rotate, moving the Sun

Figure 1.22 The Antikythera mechanism. Courtesy: National Archaeological Museum, Athens.
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Figure 1.23 A computer simulation showing the presumed inner workings of the Antikythera
mechanism. Source: http://demonstrations.wolfram.com/AntikytheraMechanism/. Contributed
by Adam P. Goucher.

and Moon markers around a calendar disc. The reason that researchers have cracked
this device with partial success, inhabiting the mind and knowledge of the people who
designed it 2,000 years ago, is that it is a mechanical device disclosing the model that
it mechanistically simulates.

As we have seen before, mechanistic models such as this one does not necessarily
represent the actual mechanisms of the movements of the celestial bodies that they are
attempting to simulate, but they do capture some of their regularities. What is most
interesting is that while the mechanism was not the cause, the mechanism itself was
the cause of the numerical calculations indicating the future position of the celestial
bodies. This is literally a computer simulation performed more than 2,000 years ago,
illustrating how seriously the concept of causation was approached even back then —
with the use of a mechanical calculator or (analogue) computer.

What we will see in this textbook is that modern computer simulations are not very
different from this one. Simulations can be used to make optimal predictions and even
to try to figure out the most likely mechanistic models of natural processes. This simple
artefact actually illustrates the kinds of concepts that bring together computation and
simulation to serve the purpose of finding possible causes for natural or astronomical
phenomena, just as they set out to do on the Greek island of Antikythera.

Figure 1.24 shows various landmark approaches to the problem of causal discovery.
One can see how until very recently most approaches were based largely on data,
with almost no model production. This was the statistics-led approach of the last few
decades that is still most widely used today in the practice of research and science.
In mathematics, however, we have dealt with models all the time. These are mostly
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Figure 1.24 Landmarks of causal discovery indicating the place of model-driven approaches,
with algorithmic information dynamics based on algorithmic probability being the ultimate
theory of optimal model inference.

theoretical models in the area of dynamical systems, which we will cover in detail in
a future chapter using differential equations, one of the cornerstones of the field, used
in producing numerical and computer simulations. One can also see how perturbation
analysis and Bayesian networks move things in the direction of models.

Statistical machine learning (which we will refer to as ML) cannot find or generate
mechanistic models from data. Sometimes the work of scientists is facilitated by Al and
ML approaches, but traditionally neither AI nor ML can produce models by themselves
unless they are empowered by an inference engine of a symbolic type. Thus, if the
fundamental distinction between the statistical analysis of patterns and classification
versus mechanistic generative models is not taken into consideration, confusion may
occur. One example of this comes from biomarker discovery research in the medical
domain. Since a number of biomolecules exhibit correlated behaviour they will appear
as clusters in data analysis. There are therefore several distinct subsets of biomarkers
that are equally effective as predictors of a given phenotype, such as disease. Machine
learning and data-driven analytical techniques are excellent tools for finding such cor-
related patterns in large data sets. Yet, such sets of biomarkers are not equivalent to the
mechanisms of disease. The generative model of a disease is not necessarily the same as
a set of features correlated with the disease. The lack of appreciation of this (academic)
distinction has caused a significant amount of confusion, for example, through neglect
of the lack of repeatability in biomarkers.

Trends and methods in these areas, including deep learning and deep neural net-
works, are black-box approaches to data classification — and even prediction — that work
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amazingly well but provide little to no understanding of generating mechanisms. As a
consequence, they also fail to be scalable to domains for which they are not trained.
Supervised learning typically requires that tons of data be trained before anything
interesting can be done, and training is needed every time such methods must tackle
(even slightly) different data.

It seems reasonable to expect ML and Al to get deeper into model-driven approaches,
leaving traditional statistics behind by incorporating algorithmic principles. This
means promoting fundamental science rather than throwing more computational
resources at data-related problems, as is characteristic of current ML approaches. This
is exactly what we are doing with AID, and we will encourage you to test it on your
own data for your own purposes, and tell you how to do so in the last chapter involving
real-world applications.

Our aim is to go all the way and start from the opposite end of the spectrum in the
landmarks of causal discovery, at the most model-driven end, and from there move
to the data-driven side when necessary, in a feedback loop, so that a model is gener-
ated and improved upon based on the data observed, and once a candidate model is
produced or chosen it is tested against new data until we are left with only a handful
of likely mechanistic models that we can study and exploit. At this extreme end of the
spectrum of model production, generation, and selection, is a theory called algorithmic
probability, which is going to be at the centre of our methods and applications in this
book.

This book is all about establishing a strong bridge between data- and model-based
approaches, between observations and perturbations, and it offers a causal calculus
based on the theory of algorithmic probability as the optimal and ultimate theory
of induction. To this end, we connect different areas of science such as perturbation
analysis, complex networks, information theory, dynamical systems, algorithmic com-
plexity, and even machine learning, where we think our approaches will help better
understand fundamental concepts such as deep learning, and will contribute to refining
tools and making them more powerful in the quest to uncover causes.

1.6.2 Computational Mechanics

Our approach can be viewed as complementing the area of computational mechanics
(traditionally based on, for example, Markov processes and Bayesian inference) with
an inference engine powered by algorithmic probability and an empirical estimation of
the so-called universal distribution (the distribution associated with algorithmic prob-
ability). Similar to program synthesis in inductive inference, albeit mostly of a theoret-
ical nature, there are approaches (such as AIXI) that combine algorithmic probability
with decision theory, replacing the prior with the universal distribution, something
that AID also suggests. In actual deployments, however, many of these approaches
circumvent uncomputability and intractability by relying heavily on popular lossless
compression algorithms such as Lempel-Ziv—Welch (LZW), minimum description
length approaches, Monte Carlo search, and Markov processes, thereby effectively
adopting weaker models of computation. Another set of approaches are based upon
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Levin’s search and other variations, based on a dovetailing algorithm interleaving com-
puter programs one step at a time, from shortest to longest, with each program assigned
a fraction of time proportional to its probability during each iteration.

Some methods used by AID can be linked to resource-bounded algorithmic (Kol-
mogorov—Chaitin) complexity, which imposes an upper bound on program length,
which in turn effectively requires the adoption of a linear finite automaton computa-
tional model that can be continuously improved upon by throwing more computational
resources at it, which we circumvent by allowing improvements while increasing the
running time (though in practice each calculation is restricted to a resource-bounded

calculation).
1.7 Modelling from Observation
1.7.1 Systems as Black or Grey Boxes

The real world always behaves in more complicated ways than do theoretical models,
and often when studying an object we have to treat it as a black box because we cannot
see behind or inside it, whether it is the brain or a computer. Take as an example an
aeroplane, a man-made artefact for every part of which we have accurate blueprints.
We can understand the basics of how it flies but hardly anyone understands in detail the
way in which millions of components work together in an aeroplane such as an Airbus
A380 or a Boeing 747, with their roughly six million parts (see Fig. 1.25). Instead,
manufacturers specialise in different parts and different aspects of their assembly.
Thus even engineers at Boeing and Airbus are compelled to see aeroplanes as black
boxes. And this with something that humans have designed and manufactured. The
situation is even more complicated with things that have evolved naturally and with
which we may have less of a shared history and no involvement at all in their design,
such as biological organisms. And even natural phenomena such as the weather or
fluid dynamics turn out to be extremely difficult to model and predict. This is because
we always have a very partial point of view, we are overwhelmed by the number of

Figure 1.25 Pictures taken by H. Zenil at the main Boeing factory in Everett, WA.

https://doi.org/10.1017/9781108596619.004 Published online by Cambridge University Press


https://doi.org/10.1017/9781108596619.004

1.7 Modelling from Observation 37

interactions involved, we cannot easily isolate them from one another and at all possible
scales. This is why we have to always deal with apparently noisy and incomplete data
and why we need to learn to model complex systems with our best tools.

One way to do so is to try to understand a system by simulating it. In this process of
modelling, the first step is to understand the value and also the limitations of performing
an observation. Let me show you an extremely oversimplified case consisting of an
unknown system behind a black box. What typically happens is that the observer is at
some point of the system that can be identified as its output.

One can also see how the input can actually be an induced input, an experiment, or a
perturbation of the system. It is like throwing a stone at something to see how it reacts.
What one can throw at black-box functions are inputs in a certain sequence.

However, behind a black box there could be a function that may appear to be the
function we identify, but that in fact produces the outputs in a much more convoluted
way, say by adding a random number and subtracting the same random number and
thus behaving like the identify function while not being the simplest identify function,
thus dissembling the actual operating mechanism.

So it is relevant to ask what made us think that the function behind a black box
is actually the most simple version of the identify function, that is, that there was
not instead a Rube Goldberg machine pretending to calculate the identify function
but doing so in some incredibly, risibly, sophisticated way. Indeed we cannot ever be
completely certain that a function is the function that appears to be without actually
opening the black box, or that it is a mathematical function at all. It only appears to be
so in the range given and for the type of perturbations or stones thrown. This is similar
to the black swan problem in statistics, where one can only see the output but not where
the swans are coming from, that is, the generating mechanism, and may be misleading
at thinking that black swans are impossible to see until we do.

It is also worth noting that though we can follow an order in the input sequence,
observations could have been carried out at random without loss of generality as long
as the sample is congruent with the sought confidence level of the function behind.
However, things are not always that straightforward, and as soon as we get into slightly
more complicated cases, it may be more difficult to establish a relationship between
the sequence of perturbations. One can call the sequence of observations a sample of
the behaviour of the function.

Obviously all this becomes much more difficult in the real world because we usu-
ally have no idea of the magnitudes of the possible inputs, nor is there necessarily a
privileged order. But we can see what the input for a biological organism may be. For
example, to eat or drink can be an input, just as to learn or to read may be considered
an input for the mind.

1.7.2 Noise versus Sampling

How informative can a single observation or a collection of observations be when it
comes to producing a reasonable model with some degree of confidence? In other
words, what type and how many observations should we perform to decide whether
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the function behind a black box is the one we have hypothesised? How many input and
output pairs is it sufficient to gather in order to infer an underlying function? Is this a
property of the observer or the observed? We will see that the quantity and quality of
an experiment depends both on the conditions of the experiment and the capabilities
of the observer.

Let us look at this sigmoid function that is usually a representation of how a neuron
works, because there is a short interval, called a threshold, where after it is reached, the
output behaviour of the system radically changes. There are two main factors allowing
or preventing us from gathering enough information about the system to correctly infer
the function. One is how much noise there is in the environment, and the other is how
precise our measurements are. Notice that these two factors may not be independent
and one may condition the other. For example, poor measurement capabilities may
look like noise, and noise may look like inaccuracies of measurement. This is why,
traditionally, tools are calibrated in a controlled experiment to assess how good they
are before being used in more complicated cases.

In Fig. 1.26 we see some large boxes going up and down the sigmoid function
represented by a white line. These boxes represent how off a measurement can be from
the actual function value for an input on the X axis in case of noise or measurement
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Figure 1.26 The problem of measurement from sampling as an observer in the face of noise (at
source or as a result of measuring limitations). Increasing the number of observations (right)
reduces uncertainty (box size) and increases accuracy (median).
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inaccuracies, and what the measurements or observations on the Y axis would look
like. If these boxes are too large, values will start overlapping, preventing us from
making educated guesses. The smaller the error, the better and faster we can guess
at the generating function.

Notice that when the error bars in yellow are too large, the mean indicated by a
small horizontal white line inside the yellow bars will converge to the true value of
the function, illustrating how the larger number of observations and measurements
increases our chances of finding the generating mechanism. Even though individual
measurements indicated by the red dots on the Y axis are highly misleading, this shows
that increasing the number of samples increases the accuracy of the prediction.

This is related to what is known as the ‘law of large numbers’, a principle of prob-
ability according to which the average of the results obtained from a large number of
trials should be close to the expected value and will tend to become closer as more
trials are performed. A trial consists of a repetition of the same input value several
times, so that even if the underlying system is completely deterministic, and perhaps
even if the error bars are fixed, the result may be variant output values, but their average
will converge to the true value. A trial is also often called a replicate, because the idea
is to replicate the same experiment.

Another interesting observation is that the error bars may be of different lengths and
even depend on the place they occupy along the function. In this case the error bars
are very similar and do not depend on the function. The kind of noise they introduce
is then called additive and linear, but more complicated cases exist as well.

The relationship between noise and the number of samples is thus proportional; the
greater the noise the larger the number of samples needed, and the smaller in magnitude
the noise, the fewer the samples needed. We will see how the field of information theory
can help us make all these choices.

What is most interesting in these examples is that no matter how oversimplified,
they illustrate how everything may be studied in a similar fashion. There is always an
input and an output in a system of interest, even in areas such as biology and cognition,
as we will see in the last chapter.

For example, an input can be a drug and the output the development of a disease, an
input can be heating a protein and the output the way in which it folds, an input can be
the accumulation of clouds and the output is whether it rains or not. Notice also that
inputs are usually outputs from other systems, and outputs are usually inputs for other
systems. So every aspect of these examples is related to causality.

In the next section we will see how we may study these systems by introducing
computation into the study of causation.

1.8 Causality as Computation
In the previous section we saw how functions could be concealed behind or inside black

boxes, and how we could infer them by performing experiments such as perturbing
them and then recording the corresponding observations. Functions can also be seen
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as computer programs. As we have said before, the identify function, for example, can
have an infinite number of implementations. For example, the simplest version f(x) = x
will look exactly the same as f(x) = x 4+ a — a from the perspective of an observer
feeding in the input and observing the output, and versions of the same function can be
very complicated. If one only cares about the output, then functions may suffice as the
object of study, but if we care about mechanisms, then other types of time-dependent
equations and computer programs are better representations. Representations that have
atime variable are traditionally the object of study of an area called dynamical systems.
A cellular automaton is a type of discrete dynamical system that we will be using
throughout the book.

An intuitive way to explain what a cellular automaton is is to look at the way they
work, using what we call their space-time diagrams. In a space-time diagram of one of
the simplest instances of a cellular automaton, called an elementary cellular automaton
(ECA) as introduced by Stephen Wolfram, time runs from top to bottom, starting from
an initial tape placed on the top. Cellular automata run on a discrete space that looks
like a Sudoku grid. One may start the system with a black cell and then apply a set of
local rules from top to bottom, row by row. The set of rules is called the rule icon. The
rule icon of a cellular automaton dictates how each cell changes over time. You can
see that the rule that corresponds to the initial black cell surrounded by white cells is
a black cell in the second row, and so on.

This particular example illustrating how a cellular automaton works is slightly mis-
leading because each row should be updated in parallel. In contrast, in this example, the
cells highlighted in red show the local rule that was applied at each step sequentially.

A cellular automaton has the advantage of being a highly visual computer program
whose evolution can be inspected and followed step-by-step in real time. In other words,
it is a sort of transparent computer program that allows us to understand every single
one of its components visually, tracking it down at the lowest scale. It is a determin-
istic system and hence causal, so it will play an important role in our computational
approach to the exploration of causality.

Notice that time can be seen as flowing from top to bottom while space runs
sideways. This is why the diagram is called a space-time diagram, and it provides a
2-dimensional view of the evolution of a 1-dimensional discrete dynamical system.
Notice that one can also start from a less simple initial configuration rather than from
the black cell, for example, a random initial configuration. Yet the rules are applied in
exactly the same fashion. A minor technicality is what happens at the borders of the
system. Each rule is defined every three cells, but at the beginning and end on both
right and left extremes one cannot evaluate the last two cells without a third neighbour.
In these cases, convention dictates that we take the missing cells from the opposite
side, as seen in the example in Fig. 1.27.

Cellular automata can be seen as part of a larger ensemble of means to simulate
aspects of causal reality using what is known as an agent-based approach, given that
individual cells can be seen as agents interacting with other agents according to spe-
cific rules. Agent-based models and cellular automata are bottom-up approaches for
constructing models of causal phenomena. Cellular automata can be studied as black,
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Figure 1.27 Illustration of the application of local rules in the evolution of a cellular
automaton. Cells at the boundary take cells on the opposite extreme to continue applying rules.
This is called a cylinder configuration. Adapted from http://demonstrations.wolfram.com/
CellularAutomataEvaluation/. Based on code by Paul-Jean Letourneau.

grey, and transparent boxes for the purpose of testing old and designing new tools.
Traditionally, cellular automata are completely transparent boxes, as already noted, as
their evolution is very visual, but as we have also seen, this is not always the case in
the real world.

So if you are an ideal observer you would probably witness the whole space-time
diagram running, and if sufficient observations were possible the rule icon could be
cracked, that is, the computer code and generating mechanism for a particular cellular
automaton. Thus a cellular automaton is an ideal simplification on which ideas related
to causality can be studied and tested by, for example, concealing the cellular automa-
ton’s evolution to see what an observer looking at the last output can infer about it (see
Fig. 1.28).

We can perform some sort of organised attack on this particular cellular automa-
ton’s black box to see if we can crack the code. The strategy consists in giving it an
ordered set of initial conditions based on a binary enumeration and then seeing what
cellular automaton it may be by looking at the output, just as we did with mathematical
functions.

It looks as if for any input, as marked in red in the example, the output is always
blank, so the rule icon must be something that takes any input and then writes a white
cell if this is an elementary cellular automaton (Fig. 1.29).

This rule is called Rule 0 because the output is all white cells and, taken as if they
were zeros in binary, they would represent the zero in decimal. However, not all rules
are so simple. Figure 1.30 demonstrates the so-called ECA rule 30, also in binary,
according to Wolfram’s enumeration scheme for ECA. And its evolution, depicted here
from 1 to 70 steps, looks quite random, and has even been used as a random number
generator in the past. Trying to crack the code by only observing the last row at each
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time
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Observer

Figure 1.28 A typical example in the real world is an observer looking at the output of a
system, with such a system typically being a black box about which little, if anything, can be
known or extracted first hand, because either the process that is the output is already complete
or it is the result of multi-scale top-down and bottom-up causation to which we have no easy
access. We have to find the best tools to infer what the black box may be doing just by looking
at the output for different natural or induced inputs.

Figure 1.29 All local rules write a white cell for any input.

Figure 1.30 Evolution diagram of the ECA rule 30. The icon on top is the rule determining
how each cell will be coloured according to the previous three cells evolving from top to
bottom and starting from a single black cell.

time is much more difficult than in the previous examples, and one has to perform
the observations in the right place to avoid being misled, given that the rule actually
presents some regularities in certain places, such as on the left hand side.
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Simplicity bias Simplicity bias

Figure 1.31 Simplicity bias: faced with the challenge of guessing what is behind the circle, the
mind will tend to choose the shape that completes the picture in such a way as to minimise
surprise, uncertainty, entropy, and algorithmic complexity. Most likely, you’d think that what is
behind the black box (left figure) is the complete circle and you would react with surprise if
what the black box conceals is a more complicated shape like the one on the right.

A simulation is, by definition, a series of causally connected events, a deterministic
evolving system that we call a dynamical system. We will see in the following chapters
how we can model and simulate evolving systems, and not only crack their generating
codes from partial observations but also reconstruct these systems from disordered
observations, and then even reprogram them to perform different computations and
behave in different ways.

1.9 Inference and Complexity

In this section, we will briefly explain how causality and inferring functions and com-
puter programs are related to complexity. Imagine you see an object with some part of
it blocked by another object, in this case a black square (see Fig. 1.31). Typically, if
you ask people what this object could be, they will complete the picture and suspect
it to be a full circle. In some sense it seems that our minds are hardwired to complete
a picture using the simplest possible shape. We seem deeply biased towards simple
forms. If behind the black square there is something else, we would certainly be a little
surprised.

Before getting into the technical details of entropy, as we will do later in the book,
remember that we had said that entropy as defined by Shannon is traditionally taken as
a measure of surprise. Now, something like classical information theory may be able
to describe but not explain this bias towards simple forms by establishing that we tend
to favour configurations that surprise us less, that is, that have low entropy. But why is
this so? We have suggested that such hardwiring for simple things comes from living
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in a world that is not random, our minds having thus evolved with a high degree of
algorithmic structure. We will discuss this in more detail, but this example is meant
to show how inference is related to complexity, or rather to simplicity as opposed to
randomness, and even to some form of subjectivity that may be cognitive or perhaps
even more fundamental. And we will see that the type of randomness we are talking
about is not statistical in nature but algorithmic.

Perhaps a useful way to explain how something is complex as opposed to simple
is to evoke the way we classify certain human diseases, especially since in the last
chapter we will be applying all these ideas, concepts, and the tools based on them to
molecular biology and genetics, fields that are deeply relevant to human disease and
syndromes. Most diseases are complex, with scientists dealing with challenges related
to the observer, the quality and quantity of measurements, apparent noise, and highly
interactive systems with multiple and intertwined causes.

Some diseases, such as multiple sclerosis, Alzheimer’s, Parkinson’s, and most can-
cers are very complex, in that they can be produced by multiple factors, not just one.
They depend on many variables, both genetic and environmental, and are highly unpre-
dictable. In contrast, simple diseases have single or easily identifiable and isolable
causes. They may arise from punctual genetic mutations, as is the case with a certain
type of breast cancer. The outcome of simple diseases is much easier to predict in
that they have well-defined effects. Examples of simple diseases and conditions under
this specific definition include cystic fibrosis, Down syndrome, and Huntington’s dis-
ease. Table 9.1 illustrates what a complex disease looks like as opposed to a simple
disease.

How may a classification of this type, contrasting simple and complex diseases,
help us to, for example, treat these diseases and conditions? A basic implication of this
classification is that one-for-all drugs can only work well for simple diseases, because
having multiple causes and factors, complex diseases will appear for different reasons
in different people. Hence the current pharmaceutical approach to and business model
in medicine is inadequate, and a new paradigm is necessary. That paradigm is known
as personalised medicine, and the idea is that one should be able to manufacture a
specific drug for a specific person. So what scientists aim for, or should aim for, is an
understanding of causes, so as to have a better chance of producing new drugs to direct
the way in which a disease develops instead of merely controlling its effects.

This type of simple versus random behaviour can also be modelled mathematically
with a view to studying ways of better understanding it, even if it will often be over-
simplified. We will explore this issue in further detail later, but for the present we can
again resort to cellular automata as an example. If you examine the response of the
elementary cellular automaton with rule number 10 (see Fig. 1.32), you will find that
no matter what the input is, the system separates the input signals into clear stripes that
do not interact with each other, and always produces the same qualitative behaviour.
So in a very simplified way it is modelling an aspect of a simple disease. In all four
cases, the same rule is applied and the same behaviour obtained for very different initial
conditions.
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Figure 1.32 Behaviour of the ECA rule 10 for different initial conditions.

Figure 1.33 Behaviour of the ECA rule 22 for different initial conditions.

But if you take the behaviour of more complicated rules, such as rule 22 depicted
in Fig. 1.33, you will find that even small changes in the initial conditions or small
perturbations along the way will have a significant impact on the final outcome. This
behaviour is more similar, for example, to the way in which cancer tumours evolve,
often growing and spreading in unpredictable ways. In all four cases, the same rule, rule
22, was applied, but for different initial conditions. The result is highly unpredictable.

One of the topics that this book will cover is how to characterise these behavioural
differences, especially when the rule is unknown but we want to understand the system
from a hacker’s perspective, that is, when we wish to know the underlying generating
mechanism where we have no access to a source code — in artificial examples like this
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one, but also in real-world systems such as biological organisms like cells. The goal
will be not only to attempt to crack the code behind natural phenomena but to try to
manipulate and reprogram the way in which these systems evolve and behave, and to
that end we will go back and forth between artificial and natural systems in applications
to the biological and cognitive sciences.

1.10 The Future of Causality

In all fairness, dealing with causality is extremely difficult, and we used to do well with
tools such as traditional statistics and classical probability theory. A major development
in causality has been information theory, which is in some sense a clever extension of
traditional statistics, one that has sometimes been dangerous because it may give the
impression of dealing with causality in different ways than traditional statistics and
probability theory, while in fact it does not. The concept of entropy was developed
in the context of statistical mechanics in the early twentieth century, as an attempt
to understand the average behaviour of small objects such as particles, atoms and
molecules. In the late 1940s, Claude Shannon formulated a version of entropy similar
to the one adopted in statistical mechanics, a branch of quantum physics, intended to
help evaluate the capacity of communication channels. Shannon was working at the
time at Bell Labs, a company concerned with communication lines and a precursor
of today’s AT&T. But it was Andrey Kolmogorov, standing on the shoulders of such
giants as Richard von Mises and Alan Turing, who soon found out that probability
theory was very limited in dealing with fundamental aspects of randomness and hence
causality.

Yet, we have not made much use of what we know about mathematical randomness,
as opposed to statistical randomness, either in data science or science in general, as
we tackle the challenge of causality. To characterise randomness is key in the area of
causation because it is exactly what one needs to rule out when using observations and
models to come up with a candidate mechanism to explain the data at hand. One does
not want to attribute chance where it does not obtain, and vice versa.

The founders of the theory of algorithmic complexity, namely Andrey Kolmogorov,
Gregory Chaitin, Ray Solomonoff, and Leonid Levin, came up with a mathematical
solution to the challenges of randomness, causality discovery, and inference.

Indeed, Solomonoft and Levin showed that the concept of algorithmic probability
was the ultimate solution to the problem of causal inference, suggesting that intelli-
gence was likely just computation, in a fundamental sense. The two concepts, algorith-
mic complexity and algorithmic probability, are faces of the same coin, deeply related
to each other. However, while some applied scientists may have heard of algorithmic
randomness, and a smaller number about algorithmic probability, very few actually use
them in addressing the challenge of causation.

The advantages of algorithmic complexity and algorithmic probability in data sci-
ence have been largely underused if not ignored, because unlike other, simpler, mea-
sures such as those derived from statistics, including Shannon entropy, measures of
algorithmic complexity are much more difficult to estimate. One thing to bear in mind

https://doi.org/10.1017/9781108596619.004 Published online by Cambridge University Press


https://doi.org/10.1017/9781108596619.004

1.12 Practice Questions 47

is that there will always be some statistics involved, because the only way to attain full
certainty about causation is not only to witness a process of interest firsthand but also to
isolate the system and have access to all the relevant processes at all scales, something
that is difficult if not necessarily impossible in the real world.

In this book we will introduce what we think is an exciting — hopefully for you too —
new approach to tackling the problem of causality based on algorithmic complexity
by way of algorithmic probability. We will call this area Algorithmic Information
Dynamics or Algorithmic Dynamics for short.

It is pertinent to return to the claim about algorithmic probability made by Mar-
vin Minsky, a founding father of the field of artificial intelligence, just a few months
before he passed away, and quoted above. Minsky recognised that the way forward was
through AID and the work of Solomonoff and Chaitin.

Both Minsky and Solomonoft attended the Dartmouth College conference/work-
shop, the conference sometimes seen in the US as the inception of the new field of Al
Clearly, algorithmic probability is not just another pet topic in complexity science but
a fundamental pillar of science, as we will see throughout this book.

1.11 Conclusion

In this textbook we offer an approach to causal discovery that is model driven and
based on the theory of algorithmic probability in order to help discover and produce
candidate generative models for observed data. We have made some progress in apply-
ing these new tools to data to deal with causation, and they themselves build on the
progress made throughout history, from logic to statistics, probability, dynamical sys-
tems, and computation, including perturbation analysis, but they displace traditional
statistics and the need for estimations of probability distributions from their central
position.

We think that AID may be part of a shift away from the dominance that statistics and
even equations have long exerted over science, and towards computation and machine
learning, but a different kind of machine learning, rooted in algorithmic approaches
rather than traditional statistics, as is the case with machine learning today.

We will see how AID can help predict and even reconstruct the phase space and
space-time behaviour of complex non-linear dynamical systems with limited informa-
tion. But first, in the next chapters we will cover many more topics needed to understand
AID, now that we have offered a brief overview that highlights the significance and
some of the many aspects and challenges of causality.

1.12 Practice Questions

1. The study of how things and events happen or come into being and are causally
connected with each other as opposed to occurring by chance is called:
(a) Non-linearity
(b) Causality
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(c) Probability
(d) Entropy
2. Scientists perform experiments mainly to:
(a) Justify the costs of lab equipment
(b) Discover causal knowledge
(c) Find correlations
3. The interaction or evolution of non-trivial systems may often seem:
(a) Trivial and easy
(b) Complex and noisy
(¢) Quantum mechanical
4. Determinism implies that future events are easily predictable.
(a) True
(b) False
5. A mechanistic model means that a model:
(a) Can be followed from cause to effect, like an algorithm, step by step
(b) Cannot incorporate noise and is never complex
(c) Is always the right explanation
(d) Cannot run on a computer
6. A Rube Goldberg machine illustrates that:
(a) Causality is always easy to identify no matter how laughable
(b) Non-linearity is complex and interesting
(c) Computation is universal and ubiquitous
(d) Trivial outcomes can be produced by needlessly sophisticated but causally
connected tasks
7. Both the geocentric and heliocentric models of the solar system are mechanistic
models.
(a) True
(b) False
8. The geocentric model has a lot of predictive power even if considered wrong.
(a) True
(b) False
9. Occam’s razor is also known as:
(a) The law of big numbers
(b) The law of logic
(c) The law of parsimony
10. Occam’s razor states that when presented with competing models one should
favour:
(a) The one that satisfactorily explains the observed phenomena with fewest
assumptions
(b) The one that satisfactorily explains the observed phenomena with more and
more complex assumptions
11. Occam’s razor is a criterion for:
(a) Simplicity
(b) Complexity
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12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Occam’s razor generally rules out Goldberg machine-like explanations for a given

outcome.

(a) True

(b) False

If P = True and Q = False, P AND Q is:

(a) True

(b) False

If P = True and Q = False, P OR Q is:

(a) True

(b) False

The concept of algorithmic (Kolmogorov) complexity is colloquially related to

Occam’s razor.

(a) True

(b) False

In science, Occam’s razor is used as:

(a) The ultimate test for truth

(b) A substitute for the experimental validation of theoretical models

(c) A guiding principle for the production of scientific models

Causal inference draws conclusions based on:

(a) Chains of effects

(b) The detection of noise

(c) Differential equations

(d) The use of computers

Classical probability and traditional statistics usually mean the study of science:

(a) Through the use of universal computation

(b) Through assumptions of probability distributions

(c) Through analysis of possible generating mechanistic models

A fundamental challenge in the study of causality is:

(a) The difficulty of describing data probabilistically

(b) The increasing entropy of the universe

(c) Disentangling causes from effects and determining mechanistic models

A uniform prior distribution assumes that:

(a) Some events are more likely than others

(b) Rare events have probability equal to zero, no matter how many events are
possible

(c) All events are equally likely

Laplace’s ‘principle of insufficient reason’ states that if there are n indistinguish-

able causes for an effect, then:

(a) Each possible cause has probability equal to n

(b) Each possible cause has probability equal to 1

(c) Each possible cause has probability equal to 0

(d) Each possible cause has probability equal to 1/n

Shannon’s entropy is a measure of:

(a) Causality between observed variables
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23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

(b) Lack of knowledge about the underlying probability distribution

(c) Cost of building a universal computer

Correlation implies causation.

(a) True

(b) False

Which of the following is one of the latest practices in probabilistic causal

discovery?

(a) Applying the Wiener filter

(b) Comparing time series to test correlation

(c) Analysis of the response to perturbations and counterfactuals

(d) Estimation of fractal dimensions

One way to test a causal relation between two time series is to:

(a) Perform a perturbation on one and see if it has an effect on the other

(b) Reorder the data

(c) Merge the time series

(d) Calculate the Spearman correlation coefficient

If we encounter a case where perturbations do not lead to a change in the effects,

it is evidence of:

(a) Strong causal relationship between the events

(b) Lack of a causal relationship between the events

In a directed acyclic graph that represents causal relationships:

(a) Nodes are events and events are linked with each other if there’s a direct cause
and effect between them

(b) Nodes are causes and causes are linked with each other if there’s an event
between them

In a causal directed acyclic graph there may be no loops because:

(a) It would become chaotic

(b) It would make an effect redundant

(c) It would make a cause into the cause of itself

Computer simulations in the context of causality are typically used to:

(a) Find likely mechanisms for natural or artificial processes

(b) Classify data

The Antikythera mechanism is an example ofa _____ model used to predict celestial

events.

(a) Mechanistic

(b) Statistical

The study of dynamical systems is an example of a:

(a) Statistics-driven approach

(b) Model-driven approach

Conventional machine learning (regression, support vector machines, etc.) are

examples of a:

(a) Statistics-driven approach

(b) Model-driven approach
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33.

34.

35.

36.

37.

38.

39.

40.

41.

We often have to treat an object of study like a ‘black box’ because:

(a) The real world is complicated and we rarely or never witness phenomena
unfolding in real time at all scales

(b) Concealing the underlying mechanism of a system allows us to use tools like
statistics

A ‘black box’:

(a) Exposes its underlying mechanisms

(b) Conceals its underlying operating mechanism

‘The average of the results obtained from a large number of trials should be close

to the expected value, and will tend to become closer as more trials are performed’

is an enunciation of:

(a) The law of parsimony

(b) The law of large numbers

(c) Bayes’s theorem

(d) The 2nd law of thermodynamics

When sampling, an increased amount of noise means that to provide a reliable

estimate we need a _____ number of samples.

(a) Small

(b) Large

A cellular automaton is a _____ dynamical system.

(a) Continuous

(b) Discrete

Agent-based models and cellular automata are _____ approaches for constructing
models of causal phenomena.

(a) Top-down

(b) Bottom-up

During the execution of a cellular automaton, each of the rows in its space-time
diagram is updated:

(a) Sequentially, from left to right

(b) Sequentially, from right to left

(c) In parallel

In a typical space-time evolution of an elementary cellular automaton, time
flows:

(a) From top to bottom

(b) From bottom to top

(c) From left to right

(d) From right to left

The space-time diagram of an elementary cellular automaton shows a _____ view
of the evolution of a _____ system.

(a) One dimensional, two dimensional

(b) Two dimensional, one dimensional

(¢) Three dimensional, two dimensional

(d) Three dimensional, n-dimensional
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42.

43.

44.

45.

46.

47.

48.

49.

50.

Shannon’s entropy is typically interpreted as a measure of:

(a) Change over time

(b) Meaning

(c) Surprise

(d) Complexity

What is one plausible explanation for why humans prefer simpler structures?

(a) Human emotions block our ability to generate complex models of the world

(b) We have adapted to environments that are not random

(c) Neuron synapses fire less rapidly than thoughts

Diseases with well-defined causes and predictable effects are, in general, cases of

(a) Simple diseases

(b) More complex diseases

If a cellular automaton produces the same qualitative behaviour no matter what

the input is, the cellular automaton’s rule is:

(a) Simple

(b) Complex

If scientists want to develop personalised medicine, they should:

(a) Focus on changing the ‘source code’ that causes diseases in the first place

(b) Treat the conditions that these diseases cause by using generalised drugs

(c) Study massive amounts of social data

The concept of entropy was first motivated by:

(a) Developing mechanistic tools to understand the motion of celestial bodies

(b) Computational methods to understand the behaviour of large social systems

(¢c) The study and development of tools to understand the behaviour of small
particles

Algorithmic probability is the optimal solution to:

(a) Neural networks

(b) Causal inference and characterising randomness

(c) Statistics

Currently, data science does not usually use algorithmic complexity/probability

because:

(a) Itis very difficult to calculate

(b) Statistics already gives us an understanding of causality

(c) Information theory has been unsuccessful

Algorithmic probability can be used practically because:

(a) It is statistical in nature

(b) TItis possible to make approximations of what it is able to predict

(c) Itis widely used already

1.13 Discussion Questions

The purpose of the discussion points below is to facilitate your understanding of the
material in the chapter by interrogating the concepts discussed in it. In particular, what
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are the limits of the concepts? Are there any hidden presuppositions in our reasoning
when we think about causality, for example?

1. Bertrand Russell made the argument in a classic essay (1911) that causality was a
relic of a bygone age: ‘The law of causality, I believe, like much that passes muster
among philosophers, is a relic of a bygone age, surviving, like the monarchy, only
because it is erroneously supposed to do no harm.” What did he mean? Why did he
make this statement? Do you think it is true or false?

2. In physics, at the most fundamental level, there are essentially fluctuating quantum
fields. Here the idea or notion of causation appears to dissolve into nothingness.
Do you agree with this description, and if not why not? Discuss its pros and cons.
If this characterisation of the state of affairs has some validity, then why is it that
we devote scientific effort to understanding causality in the specialised sciences?
Might not our continuing to do so reflect a poor understanding of the world?

3. Godel found closed, time-like solutions to Einstein’s equations. Explain what he
found. Discuss the implications such solutions, which allow time-travel into the
past, have or do not have for the notion of causation and the scientific study of
causality.

4. Discuss and enumerate sufficient and necessary assumptions about the world that
would, in concert, imply that there is no causation in the world, and that the scien-
tific study of causality is fundamentally flawed. Could this be a possibility? If not,
why not?

5. Formulate some additional discussion questions in the spirit of the above that would,
in effect, open new avenues for investigation beyond our current way of thinking and
analysing causality.
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