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Abstract

We propose a simple and efficient scheme for ranking all teams in a tournament where
matches can be played simultaneously. We show that the distribution of the number of
rounds of the proposed scheme can be derived using lattice path counting techniques used
in ballot problems. We also discuss our method from the viewpoint of parallel sorting
algorithms.
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1. Introduction

Consider a tournament-style matching of teams or players in sports such as football or tennis.
The winner of the final match is naturally considered to be the strongest. Usually the loser of
the final match is considered to be the second strongest. However, this might not be true,
considering the possibility that the true second-strongest team might have been defeated by the
strongest team at an earlier stage of the tournament. In this case, the true second-strongest team
could not proceed further. In fact, any team defeated by the strongest team at some stage may
be the second-strongest team. In order to determine the true second-strongest team, we have
to arrange further matches between the teams defeated by the strongest team. If we want to
determine the third-strongest team, the problem becomes more complicated. In this paper we
propose a simple and efficient scheme for determining ranks of all teams in a tournament.

The scenario above describes a single-elimination, or knockout, tournament, where a team
exits from the tournament once it is defeated by another team. The problem of a strong team
being eliminated too early can be alleviated by double-elimination tournaments [6], [17], where
a team exits from the tournament after two losses. However, double elimination does not directly
address the problem of ranking.

The initial motivation for this work was the above simple question of how to determine the
true ranking of teams or players in a tournament. However, the authors found that this problem
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dates back to Lewis Carroll [4] and that it has close connections with lattice path counting in
ballot problems, with the extreme value distribution, with partially ordered sets, and with the
parallel sorting algorithms. The authors believe that, in addition to proposing a new scheme
and deriving its properties, the present paper has merit in bringing together these rather separate
fields in a problem of historical interest.

In many sports games, matches can be played simultaneously. We call each set of simultane-
ous matches a round. We use the number of rounds as a measure of the efficiency of a ranking
scheme; other research has instead been on evaluating the number of matches in tournaments
(see, for example, [5, p. 82]). We assume some probabilistic models to describe the result
of each game and investigate the distribution of the number of rounds to determine the full
ranking. It is combinatorially very difficult to obtain the optimal ranking scheme in the sense
of minimizing the expected number of rounds. Although our scheme is not optimal, we will
check numerically that the expected number of rounds in our scheme is close to optimal for a
small number of teams.

We adopt the following notation and assumptions in this paper. ‘Match’ and ‘game’ are used
synonymously (in context).

1. The set of teams is denoted by T = {t1, . . . , tN }, where N is the number of teams.
For example, T = {Yankees, Blue Jays, . . . }. The ranking function is defined to be an
injection r : T → {1, . . . , N} such that r(ti) < r(tj ) if and only if ti is (considered to
be) stronger than tj . The strongest team, t∗, satisfies r(t∗) = 1. Similarly, for a subset
S ⊂ T , the relative rank of ti ∈ S in S is denoted by rS(ti), 1 ≤ rS(ti) ≤ card S.

2. Each match is played between two teams. The result of each game is either win or lose:
we assume that there are no ties. Each team plays at most one game in a round and each
game between two teams is played at most once. We denote the match between ti and tj
by [ti vs tj ], or simply by [i vs j ], and the set of matches by

G = {[ti vs tj ] : 1 ≤ j < i ≤ N}.
Furthermore, let

wij =
{

1 if ti wins against tj ,

−1 if tj wins against ti .

Thus, wij = −wji .

3. Let Gk ⊂ G denote the set of matches belonging to the kth round. We do not impose any
upper bound on the size of Gk , and �N/2� matches can be played simultaneously (where
�·� is the floor function). This corresponds to the situation where there is no restriction
on the number of playing fields.

4. Gk can depend on the results of
⋃k−1

i=1 Gi , the past rounds.

5. If team ti wins against tj in a match, the ranking of ti must be higher than tj . In other
words, wij = 1 ⇒ r(ti) < r(tj ).

6. Two teams ti and tj should not play a match if their relative strength has already been
determined by results of past rounds, i.e. if there exist teams tl1 , . . . , tlm such that wil1 =
wl1l2 = · · · = wlmj = 1 (or −1) in past rounds.

The last three of these assumptions are special characteristics of our problem, which differ
from those of the problem of parallel sorting algorithms. Since the outcome of a match may be
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Figure 1: Isolated and connected diamonds (left) and line-segments (right).

random, a ranking scheme can lead to loops or contradictions. For example, if wij = wkl = 1
in past rounds, we should avoid simultaneous matches [i vs l] and [j vs k] in the current round,
because if wil = wkj = −1 then we have the contradiction

r(ti) < r(tj ) < r(tk) < r(tl) < r(ti).

Therefore, in designing a ranking scheme we have to consider not only the result of the past
rounds but also all possible results of the future rounds. Our goal is to find a noncontradictory
game scheduling scheme which requires only a small number of rounds to determine the full
ranking.

Before proposing our ranking scheme, we consider the following subproblem.
The parallel merge problem. Suppose that there are two sets of teams, A = {a1, . . . , an} and

B = {b1, . . . , bm}, with n ≤ m, and assume that the relative ranks within each set have been
already determined to be rA(ai) = i, i = 1, . . . , n, and rB(bi) = i, i = 1, . . . , m. Determine
the ranks of the teams in the union A ∪ B.

We propose equivalent-rank matching (ERM) as a solution to this problem. For simplicity,
we first assume that the sizes of the sets A and B are equal, i.e. n = m.

• Step 1. In the first round, ai plays bi simultaneously for each i = 1, . . . , n. As a result, a
partial order is introduced on A ∪ B. The partial order can be conveniently displayed by
a diagram where we put a stronger team immediately above the teams next in the partial
order. This diagram is called the Hasse diagram representing the partial order (see the
next section for the precise definition of the Hasse diagram). As a result of the first round,
the Hasse diagram becomes some combination of (isolated or connected) diamonds and
line-segments (see Figure 1). Connected diamonds correspond to the winning streaks of
teams from A or teams from B. The rankings of the parts of line-segments are already
determined at this stage. Thus, if the Hasse diagram becomes a single line, the full
ranking has been determined.

• Step 2. In the next round, only the parts of connected diamonds have to be considered.
We match the teams corresponding to the horizontal nodes of each diamond in the Hasse
diagram. Figure 2 shows an example of this process. In Figure 2, ‘W’indicates the winner
of the match between horizontal nodes. It is easy to see that the result of this round is
also represented by a Hasse diagram consisting of line-segments and/or diamonds. The
diamonds correspond to further winning streaks from the same set of teams as in the
previous round.
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Figure 2: The process of step 2 of ERM.

• Step 3. If the Hasse diagram becomes a single line, the full ranking has been determined.
Otherwise, go back to step 2.

This method terminates after at most n rounds, because the first round creates at most n − 1
diamonds and the number of diamonds decreases in every round.

So far we have treated the case n = m for simplicity. If n < m then we add m − n dummy
teams, an+1, . . . , am, which are defined to be weaker than bm. We then apply the above merging
scheme as for the case n = m.

With ERM, we can determine the full ranking of T recursively, as follows. We call this
method parallel merge sort by equivalent-rank matching (PMS).

• Step 1. Randomly divide T into two sets of teams such that the difference of their sizes
is at most 1. Repeat these divisions until each set consists of just one team. This process
is represented as a binary tree in which each leaf corresponds to a team (see the left-hand
part of Figure 3). We call this binary tree the merging tree.

• Step 2. Merge the sets of the teams in the reverse order of step 1. Use ERM for each
merging (see the right-hand part of Figure 3). Sets at the same horizontal level of the
merging tree are merged in parallel and each merging requires a random number of
rounds. We call the set of rounds needed to merge sets at the same horizontal level a
stage. For example, the rounds at the bottom of the binary tree constitute the first stage
and the rounds of the final merging of two sets constitute the last stage.

If we use PMS, it is easy to visualize and grasp the schedule and progress of the games. This
is one of this method’s benefits.

In this paper, we investigate the distribution of the number of rounds for merging using
ERM. We assume two probabilistic models, the sure-winner model and the totally random
model, defined in Section 2.2. Consider the problem of merging two groups of n teams. Let
E

Q
n,n and EP

n,n be the expected numbers of rounds using ERM in the sure-winner model and the
totally random case, respectively. As one of our main results, in Sections 3 and 4 the asymptotic
evaluation of E

Q
n,n and EP

n,n will be presented: we find that

lim
n→∞ EQ

n,n/
√

n = √
π log 2 (Theorem 3.3(b))
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Figure 3: Step 1 of PMS (left) and step 2 of PMS (right), for N = 9.

and
lim

n→∞ EP
n,n/

√
log n = √

2/ log 2 (Theorem 4.3).

The rest of the paper is organized as follows. In Section 2, basic notions of partially ordered
sets and their Hasse diagrams are stated and a class of scheduling schemes including PMS is
defined. In Section 3, the sure-winner probabilistic model is investigated. In Section 4, the
totally random probabilistic model is investigated, with each match being a fair coin tossing.
These two models are simple probabilistic models and the distribution of the number of rounds
can be evaluated using the lattice path counting techniques used in ballot problems. We prove
that there exists a stochastic order between these two models (Theorem 4.4). In Section 5, we
discuss our scheme in view of the existing literature on parallel sorting algorithms. We also
evaluate by simulation the distribution of the number of rounds in the case of a one-parameter
Bradley–Terry model connecting the sure-winner model and the totally random model.
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2. Preliminaries

In this section, we prepare some basic tools for investigating the behavior of PMS. First, we
review basic notions of partially ordered sets and their Hasse diagrams. In a later part of this
section, we propose a class of schemes for merging two sets of teams called rectangle merge
schemes.

2.1. Partially ordered set and Hasse diagrams

Here we quote basic notions of partially ordered sets from Chapter 3 of [16]. A partially
ordered set P is a set together with a binary relation ‘≤’ satisfying the following three axioms:
reflexivity (x ≤ x for all x ∈ P ), antisymmetry (x ≤ y, y ≤ x ⇒ x = y) and transitivity
(x ≤ y, y ≤ z ⇒ x ≤ z). The notation x < y means that x ≤ y and x �= y. We say that two
elements x and y of P are comparable if x ≤ y or y ≤ x; otherwise, x and y are said to be
incomparable. If every pair of elements of P is comparable, P is called a totally ordered set.
If x, y ∈ P then we say that y covers x if and only if x < y and there is no element z ∈ P

satisfying x < z < y. The Hasse diagram of a finite partially ordered set P is the graph whose
vertices are the elements of P , whose edges are the cover relations, and in which y is drawn
above x if x < y.

In our case, P = T and a partial order is induced by matches between the teams. Note that
in the Hasse diagram of the teams, we draw stronger teams higher. Since a stronger team has
a smaller rank, the order in the above definition is conversely related to the ranks. Note that
the teams ti and tj can be comparable, i.e. have known relative strength, even if they have not
played each other in a match.

If team ti covers tj then it follows that ti has defeated tj in a match, but the converse is
not necessarily true. Suppose that in past rounds both ti and tj have defeated tk and that both
cover tk before the current round. If the match [i vs j ] is played in the current round and
if wij = 1, then ti no longer covers tk .

As the rounds progress, the partial order becomes finer and finer until the full ranking is
determined and T becomes a totally ordered set.

The Hasse diagram is an effective way to display the game process. However, the Hasse
diagrams appearing in most of the game scheduling schemes become much more complicated
than those appearing in PMS. If PMS is used, all Hasse diagrams during the game consist of
line-segments and diamonds only.

2.2. Probabilistic models

In the next two sections, we investigate the following two probabilistic models:

• The sure-winner model. Here the ‘true’ ranking is determined before the tournament. If
team ti is truly stronger than tj , then ti wins against tj with probability 1. The randomness
comes from the random assignment of N teams to the leaves of the merging tree. All
permutations of the teams are equally likely.

• The totally random model. The result of each match is independently and identically
sampled from a Bernoulli distribution with success probability 1

2 .

In the sure-winner model, the final ranking ‘determined’ by the results of the games is of
course equal to the true ranking. In the totally random model, however, the final ranking is
determined only by the random result of the matches. The Bradley–Terry model, which is a
model intermediate between the sure-winner model and the totally random model, seems to be
more realistic than these two models. However, theoretical investigation of the Bradley–Terry
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model in our case seems to be difficult. We study the Bradley–Terry model by simulation in
Section 5.

2.3. Rectangle merge scheme for the parallel merge problem

In this subsection, we consider a parallel merge problem of teams A = {a1, . . . , an} and
B = {b1, . . . , bm}. We assume that these two sets are already ordered, as follows: rA(ai) = i,

i = 1, . . . , n, and rB(bi) = i, i = 1, . . . , m. Let In,m = {(i, j) : 1 ≤ i ≤ n, 1 ≤ j ≤ m}
be the index set of pairs consisting of a team in A and a team in B. We construct an n × m

matrix X = (xij ) whose element xij represents the round of the match between ai and bj . For
example, if x12 = 2 then the match between a1 and b2 is scheduled for the second round. Note
that the match between ai and bj might or might not be played; we use xij to represent the
round in the case that the match between ai and bj has to be played. One of our strategies
is to determine all elements of X before the matches. We call a game scheduling scheme of
this class a static rectangle scheme. We have to impose some restriction on X to cause no
contradictions. If we select all matches [i vs j ] in round k such that xij = k (by definition)
and ai and bj are incomparable, then any set of results of round k must be noncontradictory. A
matrix X satisfying this requirement is called an adequate scheduling matrix.

The conditions for the adequacy of X are different in the sure-winner and totally random
models. If X is adequate in the totally random model, then it is adequate in the sure-winner
model. However, the converse does not hold. The necessary and sufficient conditions for
adequacy in the two models are as follows.

X is an adequate scheduling matrix in the sure-winner model



for all (i1, j), (i2, j) ∈ In,m such that i1 < i2 and xi1j = xi2j ,

there exists an i such that i1 < i < i2 and xij < xi1j ,

and (2.1)

for all (i, j1), (i, j2) ∈ In,m such that j1 < j2 and xij1 = xij2 ,

there exists a j such that j1 < j < j2 and xij < xij1 .

X is an adequate scheduling matrix in the totally random model



for all (i1, j1), (i2, j2) ∈ In,m such that i1 ≤ i2, j2 ≤ j1, (i1, j1) �= (i2, j2), and xi1j1 = xi2j2 ,

there exists a pair (i, j) ∈ In,m such that i1 ≤ i ≤ i2, j2 ≤ j ≤ j1, and xij < xi1j1 .

(2.2)

Proofs of (2.1) and (2.2) are given in the preprint version [11] of this paper, which is available
from the authors. The bitonic merge discussed in Section 5.1 satisfies (2.1) but not (2.2).

Static rectangle schemes determine all elements of X before the matches occur. A more
general scheduling method is to determine the matches of the kth round depending on the
result of the past rounds. We call methods of this class dynamic rectangle schemes. Every
noncontradictory merging scheme can be specified as a dynamic rectangle scheme satisfying
the above conditions in each round. However, a dynamic rectangle scheme is not represented as
a single matrix, while the static rectangle scheme is. Therefore, it is very difficult to understand
the process of games visually using dynamic rectangle schemes.

https://doi.org/10.1239/aap/1158685003 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1158685003


Parallel matching for ranking all teams in a tournament 811

We define X̆ = (x̆ij ), where x̆ij = xj,m−i+1, i.e.

X̆ =

⎡
⎢⎢⎢⎣

x1m x2m · · · xnm

...
...

. . .
...

x12 x22 · · · xn2
x11 x21 · · · xn1

⎤
⎥⎥⎥⎦ .

We use this matrix for notational consistency with lattice path counting techniques.
We consider a class of scheduling methods whose matrices X̆ have the same values for the

elements in each diagonal line of 45 degrees. We arrange the diagonal lines such that between
any two lines whose values are the same there is at least one line in which the elements have a
smaller value, for example ⎡

⎢⎢⎢⎢⎣
5 2 4 3 1 4
2 4 3 1 4 2
4 3 1 4 2 3
3 1 4 2 3 4
1 4 2 3 4 5

⎤
⎥⎥⎥⎥⎦ .

It is evident that methods of this class satisfy conditions (2.1) and (2.2). They are called
45 degrees methods.

Furthermore, the matrices X̆ when using ERM are of the form⎡
⎢⎢⎢⎢⎣

5 4 3 2 1 2
4 3 2 1 2 3
3 2 1 2 3 4
2 1 2 3 4 5
1 2 3 4 5 6

⎤
⎥⎥⎥⎥⎦ . (2.3)

Thus, the ERM scheme is a 45 degree method and satisfies conditions (2.1) and (2.2).

2.4. Notation for merging trees and stages

Finally, we set up notation for the merging tree and its stages. Let T be a merging tree.
Let J denote the number of stages of T ; then J + 1 is the depth of the rooted tree T . At the j th
stage, 1 ≤ j ≤ J , 2kj sets of teams Aji, i = 1, . . . , 2kj , are merged into kj sets in parallel.
Let Yjl, l = 1, . . . , kj , denote the number of rounds needed to merge the sets. Then the total
number of rounds, Yj , of the j th stage is Yj = max(Yj1, . . . , Yjkj

). The total number of rounds
is

Y = Y1 + · · · + YJ . (2.4)

Note that, in the above definition of Yj , all teams wait until all kj mergings are finished at
the j th stage. We call this synchronous tree merging. In terms of reducing the total number
of rounds, synchronous tree merging is clearly not optimal. For example, as soon as Aj1
and Aj2 are merged and Aj3 and Aj4 are merged at the j th stage, we could instead begin
merging Aj1 ∪ Aj2 and Aj3 ∪ Aj4 at the (j + 1)th stage. We call this scheme asynchronous
tree merging. In the asynchronous case, the stages lose simultaneity and it becomes harder
to grasp the progress of the games. Furthermore, the total number of rounds is only defined
recursively. For example, with N = 8 teams the total number of rounds for the asynchronous
case is written as

Y = Y31 + max(Y21 + max(Y11, Y12), Y22 + max(Y13, Y14)).

In this paper we adopt synchronous tree merging, for simplicity.
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3. Sure-winner model

In this section, we study the distribution of the number of rounds in the sure-winner
probabilistic model. First we establish the basic independence of the numbers of rounds for
different mergings, in Theorem 3.1. Then, in Theorem 3.2, we derive recursion formulae for
evaluating the distribution function of the number of rounds in ERM when merging two sets of
teams.

Let Yj1, . . . , Yjkj
, j = 1, . . . , J, be as defined in Section 2.4. Consider any merging scheme

of two sets of teams, A and B. We call the merging scheme local if the resulting ranking of
A ∪ B only depends on the outcomes of matches between teams of A and teams of B. We then
have the following basic independence of the numbers of rounds in the sure-winner probabilistic
model.

Theorem 3.1. In the sure-winner model, for any local merging scheme of two sets of teams,
Yjl, l = 1, . . . , kj , j = 1, . . . , J , are mutually independently distributed.

Proof. We argue recursively from the last stage. At the last stage we merge two sets of
teams of A and B of sizes n and m, n + m = N . Because the assignment of the teams at the
leaves of the binary tree is random, the sets of ranks of teams of A are equally likely and each
set has the probability 1/

(
N
n

)
. Given the set of ranks of A, the merging process for A depends

only on the relative ranks of teams within A. Therefore, the (conditional) joint distribution of
the rounds for merging A is the same as in the original problem with N replaced by n, and the
joint distribution does not depend on the ranks of teams of A within T = A ∪ B. The same
thing holds for B. Therefore, by induction the numbers of rounds are mutually independent.

By this independence, the distribution function of Yj = max(Yj1, . . . , Yjkj
) is evaluated as

P(Yj ≤ y) =
kj∏
l=1

P(Yjl ≤ y).

Furthermore, Y1, . . . , YJ are independent. Therefore, the distribution function of Y = Y1 +
· · · + YJ can be evaluated if the distribution of Yjl is known.

Now we consider the distribution of the number of rounds Yjl in a parallel merge problem.
First, we give a necessary and sufficient condition for identification of the ranking from the
viewpoint of rectangle schemes. We use the notation T , A, B, ti , ai , and bj established in the
previous sections. Here T = A ∪ B and the size of T is n + m. Consider an n × m square
lattice whose nodes are denoted by (i, j), i = 0, 1, . . . , n, j = 0, 1, . . . , m. We consider a path
which starts from the origin and at the ith step translates to the right by the vector e1 = (1, 0)

if r−1(i) ∈ A, i.e. if the ith strongest team in the true ranking belongs to A, and translates
upward by the vector e2 = (0, 1) if r−1(i) ∈ B. Thus, each true ranking order corresponds to
a path of length n + m from the origin to (m, n) along the edges of the square lattice. If we
compare the square lattice and the matrix X̆, each square is regarded as a match. It is evident
that the ranking is determined uniquely if and only if the matches at every ‘inner corner’ of the
corresponding path have been played. Here the inner corner is defined to be the lower-right
square when the path turns to the right (

�
) and the upper-left square when the path turns to

the left ( �). For example, the path denoted by the thick line-segments in Figure 4 is identified
by the matches α ↔ x12, β ↔ x43, and γ ↔ x55. By comparing Figure 4 and the matrix X̆

in (2.3), we see that x12 = x43 = 2 and x55 = 1. Therefore, this path is identified in the second
round.
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Figure 4: A path corresponding to a ‘true’ ranking order in the sure-winner model.
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(m + k − 2,m)

Figure 5: All paths must pass through (m + k − 2, m). (In this example, n = 6, m = 4, and k = 2.)

Let Y (n, m) denote the number of rounds for the n × m merge problem and let

Qn,m(k) = P(Y (n, m) ≤ k | sure-winner model)

denote the distribution function of Y (n, m) in the sure-winner model. For n = 0 or m = 0,
Qn,m is formally defined as Qn,m(k) = 1 for all k ≥ 0. The following theorem presents
recurrence formulae for Qn,m(k).

Theorem 3.2. For all n, m ≥ 1,

(
n + m

n

)
Qn,m(k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(
2m + k − 2

m

)
Qm+k−2,m(k) if n ≥ m + k,(

2n + k − 2

n

)
Qn,n+k−2(k) if m ≥ n + k,(

n + m − 1

n

)
Qn,m−1(k) +

(
n + m − 1

m

)
Qn−1,m(k) otherwise.

Proof. We first prove the theorem for n ≥ m + k. Figure 5 is an example of a square lattice
in this case (with n = 6, m = 4, and k = 2). The squares with the diagonal (�) correspond
to the matches which may be played up to the kth round. Because n ≥ m + k in this example,
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the upper-right square of the lattice (corresponding to xnm) does not have a diagonal. The
uppermost and rightmost square which has a diagonal is the one corresponding to xm+k−1,m.
Thus, all paths from the origin to (n, m) pass through the point (m + k − 2, m). Moreover, all
paths from the origin to (m + k − 2, m) can be extended to (n, m). The number of such paths
is

(2m+k−2
m

)
Qm+k−2,m(k). Therefore,(

n + m

n

)
Qn,m(k) =

(
2m + k − 2

m

)
Qm+k−2,m(k) if n ≥ m + k.

The equation for m ≥ n + k follows by symmetry. In all other cases, the square corresponding
to xnm has a diagonal. In this situation, all paths from the origin to (n, m − 1) or (n − 1, m)

can be extended to (n, m). The number of such paths is(
n + m

n

)
Qn,m(k) =

(
n + m − 1

n

)
Qn,m−1(k) +

(
n + m − 1

m

)
Qn−1,m(k).

Thus, we obtain Theorem 3.2.

To understand the distribution Qn,m(k), it is convenient to consider an easier problem in
which paths can pass through all edges of squares with a diagonal. This problem is directly
related to lattice path counting for the two-sample Kolmogorov–Smirnov statistic. Let Ỹ (n, m)

denote the number of rounds in this problem. This corresponds to the largest (horizontal or
vertical) distance between the 45 degree line through the origin and the path. The following
inequality holds between Y (n, m) and Ỹ (n, m):

Ỹ (n, m) ≤ Y (n, m) ≤ Ỹ (n, m) + 1. (3.1)

Let Q̃n,m(k) denote the distribution function of Ỹ (n, m) and let E
Q̃
n,m = E[Ỹ (n, m)] denote the

expectation. The following results on the two-sample Kolmogorov–Smirnov statistic are well
known (see, e.g. [10], [7], [8, pp. 342–343], and [14, pp. 101–108]).

Lemma 3.1. We have

Q̃n,m(k) =
(

n + m

n

)−1 ∞∑
j=−∞

(−1)j
(

n + m

n + j (k + 1)

)
,

EQ̃
n,m =

(
n + m

n

)−1 ∞∑
k=0

∑
j �=0

(−1)j+1
(

n + m

n + j (k + 1)

)
.

If m = n or m = n + 1 then, for z > 0,

lim
n→∞ Q̃n,m(

√
nz) = 1 − 2

∞∑
j=1

(−1)j−1 exp(−j2z2).

From these results we can prove the following results.

Lemma 3.2. (a) For any odd natural number J1 and even natural number J2,

(
n + m

n

)−1 J2∑
j=1

(−1)j+1αj ≤ EQ̃
n,m ≤

(
n + m

n

)−1 J1∑
j=1

(−1)j+1αj ,
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where

αj = j−1
j−1∑
l=0

ω−ln
j (1 + ωl

j )
n+m −

(
n + m

n

)

and ωj is a primitive j th root of unity. In particular,(
n + m

n

)−1

2n+m−1 ≤ EQ̃
n,m ≤

(
n + m

n

)−1

2n+m − 1.

(b) If m = n or m = n + 1 then

lim
n→∞ EQ̃

n,m/
√

n = √
π log 2.

Proof. A proof of (a) is presented in the preprint [11] of this paper. Here we prove only (b).
The asymptotic expectation under Q̃ is evaluated as

lim
n→∞

E
Q̃
n,n√
n

= lim
n→∞

∞∑
k=0

1 − Q̃n,n(k)√
n

= 2
∞∑

j=1

(−1)j−1
∫ ∞

0
exp(−j2z2) dz

= √
π

∞∑
j=1

(−1)j−1j−1

= √
π log 2.

Here the interchanges of integrals and limits can be easily justified by dominated convergence
and Fubini’s theorem. The result is the same for m = n + 1.

Recall that EQ
n,m = E[Y (n, m)] denotes the expectation of Y (n, m) in the sure-winner model.

By (3.1), inequalities for E
Q
n,m, the asymptotic distribution of the number of rounds for ERM,

and the asymptotic expectations E
Q
n,n and E

Q
n,n+1 are evaluated as follows.

Theorem 3.3. (a) We have(
n + m

n

)−1

2n+m−1 ≤ EQ
n,m ≤

(
n + m

n

)−1

2n+m.

(b) If m = n or m = n + 1 then

lim
n→∞ Qn,m(

√
nz) = 1 − 2

∞∑
j=1

(−1)j−1 exp(−j2z2), z > 0,

lim
n→∞ EQ

n,m/
√

n = √
π log 2.

4. Totally random model

In this section, we evaluate the number of rounds in the totally random model with ERM.
The result of each match is independently and identically sampled from a Bernoulli distribution
with success probability 1

2 .
First, as in the sure-winner model, we state the following basic independence of the numbers

of rounds in the totally random model.
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B

Figure 6: The games played before until a path is identified. (‘+’ indicates that A wins and ‘−’ indicates
that B wins.)

Theorem 4.1. In the totally random model, for any local merging scheme of two sets of teams,
Yjl, l = 1, . . . , kj , j = 1, . . . , J , are mutually independently distributed.

Proof. In the totally random model, the result of each match is sampled independently from
a Bernoulli distribution. Therefore, the result of the theorem is evident.

Now we concentrate on square lattices, as in the previous section. In the sure-winner model,
a uniform probability is assigned to each path. However, in the totally random case, the
probabilities are different. If k matches are necessary to identify the path, then the probability
assigned to the path is 2−k , because the other matches are not played under ERM. In Figure 6,
nine games are needed to identify the path denoted by the thick line-segments. According
to (2.3), in that example k = 3.

Let Pn,m(k) denote the distribution function of the number of rounds when using ERM in
the totally random model:

Pn,m(k) = P(Y (n, m) ≤ k | totally random model).

The following theorem presents recurrence formulae for Pn,m(k).

Theorem 4.2. For all n, m ≥ 1,

Pn,m(k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pm+k−1,m(k) − 2−kPm+k−1,m−1(k)

if m + k ≤ n,

Pn−1,m(k) − 2−n+m−1Pn−1,m−1(k) + 2−n+m−1Pn,m−1(k)

if m < n < m + k,

2−1Pn−1,m(k) + 2−1Pn,m−1(k)

if n = m,

Pn,m−1(k) − 2n−m−1Pn−1,m−1(k) + 2n−m−1Pn−1,m(k)

if n < m < n + k,

Pn,n+k−1(k) − 2−kPn−1,n+k−1(k)

if n + k ≤ m.

(4.1)

(4.2)

(4.3)
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Figure 7: Paths through (m + k − 1, m). (In this example, n = 7, m = 4, and k = 2.)

Proof. For n = m, the equation follows from the fact that the match [an vs bn] is played in the
first round. Because Pn,m(k) = Pm,n(k) by symmetry, we have only to prove the case m < n.
As in the sure-winner model, if n ≥ m + k then all paths corresponding to the ranking orders
identified up to the kth round must pass through the point (m + k − 2, m). We compute the
probability of these paths by subtracting the probability of paths through (m + k − 1, m − 1)

and (m + k − 1, m) from the probability of paths through (m + k − 1, m) (see Figure 7). The
probability of the former paths is 2−kPm+k−1,m−1(k). Here, 2−k is the probability that bm loses
to all of am, am+1, . . . , am+k−1. Thus,

Pn,m(k) = Pm+k−1,m(k) − 2−kPm+k−1,m−1(k). (4.4)

If m < n < m + k then all paths corresponding to the ranking orders identified up to the kth
round must pass through point (n − 1, m) or point (n, m − 1) (see Figure 8). By an argument
similar to that leading to (4.4), the probability of the paths through (n − 1, m) is given by
Pn−1,m(k) − 2−(n−m+1)Pn−1,m−1(k). On the other hand, the probability of the paths through
(n, m − 1) is 2−(m−n+1)Pn−1,m(k). Here, 2−(n−m+1) is the probability that bm loses to all of
am, am+1, . . . , an. Thus,

Pn,m(k) = Pn−1,m(k) − 2−(n−m+1)Pn−1,m−1(k) + 2−(n−m+1)Pn,m−1(k),

as required.

The following lemma gives some properties of Pn,m(k). We use them later in proving the
theorems in which Pn,m(k) and its expected value are evaluated.

Lemma 4.1. (a) We have

Pn,n(k) = Pn,n−1(k) = Pn−1,n(k). (4.5)
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Figure 8: All paths must pass through (n − 1, m) or (n, m − 1). (In this example, n = 6, m = 4 and
k = 3.)

(b) If m < n ≤ m + k then
Pn,m(k) ≤ Pn−1,m(k). (4.6)

The inequality is strict if and only if n ≥ k + 1.

(c) If m < n < m + k then
Pn,m(k) ≥ Pn,m−1(k).

The inequality is strict if and only if n ≥ k + 1.

(d) If m ≤ n then
Pn,m(k) ≥ 2−1Pm,m(k). (4.7)

Proof. Part (a) is an immediate consequence of (4.3) and the symmetry Pn,n−1(k) =
Pn−1,n(k).

Next we prove parts (b) and (c). If m < n ≤ k then Pn,m(k) = Pn−1,m(k) = Pn,m−1(k) = 1.
Therefore, we have only to prove the n ≥ k + 1 case. If m = n − k then

Pn,m(k) − Pn−1,m(k) = −2−kPn−1,m−1(k) < 0

by (4.1). Assume that Pn,m(k) < Pn−1,m(k) for a pair (m, n) such that m + 1 < n ≤ m + k;
then

Pn,m+1(k) − Pn−1,m+1(k) = 2−n+m(Pn,m(k) − Pn−1,m(k)) < 0,

by (4.2). Induction on m proves part (b). If m < n < m + k then

Pn,m(k) = Pm,m(k) +
n−m∑
j=1

(Pm+j,m(k) − Pm+j−1,m(k))

(4.2)= Pm,m(k) +
n−m∑
j=1

2−(j+1)(Pm+j,m−1(k) − Pm+j−1,m−1(k))

(a),(b)≥ Pm,m−1(k) +
n−m∑
j=1

(Pm+j,m−1(k) − Pm+j−1,m−1(k))

= Pn,m−1(k).

Thus, part (c) is proved.
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A proof of part (d) is as follows. From part (b) and (4.1), if n < m + k < n′ then Pn,m(k) ≥
Pm+k,m(k) = Pn′,m(k). Therefore, it is enough to prove the n = m + k case:

Pm+k,m(k)
(4.1),(4.2)= Pm,m(k) +

k−1∑
j=1

2−(j+1)(Pm+j,m−1(k) − Pm+j−1,m−1(k))

− 2−kPm+k−1,m−1(k)

≥ Pm,m(k) −
k−1∑
j=1

2−(j+1)Pm+j−1,m−1(k) − 2−kPm+k−1,m−1(k)

(b)≥ Pm,m(k) − Pm,m−1(k)

(k−1∑
j=1

2−(j+1) + 2−k

)

(a)= 2−1Pm,m(k).

Thus, part (d) is proved.

Note that, from (4.5) and (4.6), we have Pn,n(k) ≤ Pn−1,n−1(k), i.e. Pn,n(k) is decreasing
in n.

Recall that EP
n,m denotes the expectation of Y (n, m) in the totally random model. The

following theorem gives the order of EP
n,m.

Theorem 4.3. If m = n or m = n + 1 then

lim
n→∞

EP
n,m

(log n)1/2 =
√

2

log 2
. (4.8)

Proof. Fix an arbitrarily small δ > 0. At the end of the proof we will let δ ↓ 0.
We first consider an upper bound of EP

n,m for m = n or m = n+1. Let WM
n = (wM

ij )i,j=1,...,n

be defined such that wM
ij = 1 if ai wins against bj , wM

ij = −1 if bj wins against ai , and wM
ij = 0

if the match is not played. Let

W̆M
n = (w̆M

ij ), w̆M
ij = wM

j,m−i+1,

be as defined in Section 2.3. At least k + 1 rounds are necessary to identify a ranking if and
only if W̆M

n contains at least one (k + 1) × (k + 1) submatrix of the form

⎡
⎢⎢⎢⎢⎢⎣

0 0 · · · 0 1
0 0 · · · 1 1
...

...
. . .

...
...

0 1 · · · 1 1
1 1 · · · 1 ±1

⎤
⎥⎥⎥⎥⎥⎦ or

⎡
⎢⎢⎢⎢⎢⎣

±1 −1 · · · −1 −1
−1 −1 · · · −1 0
...

...
. . .

...
...

−1 −1 · · · 0 0
−1 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎦ .

Thus, by Bonferroni’s inequality,

1 − Pn,m(k) ≤ (n − k)2−(k+1)(k+2)/2+2 ≤ 4n2−k2/2. (4.9)
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Therefore,

EP
n,m = 1 +

m−1∑
k=1

(1 − Pn,m(k))

≤ 1 +
�2(log2 n)1/2�∑

k=1

(1 − Pn,m(k)) +
m−1∑

k=�2(log2 n)1/2�+1

(n − k)2−(k+1)(k+2)/2+2

≤ 1 +
�2(log2 n)1/2�∑

k=1

(1 − Pn,m(k)) + 4n22−2 log2 n

=
�2(log2 n)1/2�∑

k=1

(1 − Pn,m(k)) + 5.

Now we divide the sum on the right-hand side into two parts: schematically,

�2(log2 n)1/2�∑
k=1

=
�(2(1+δ) log2 n)1/2�∑

k=1

+
�2(log2 n)1/2�∑

k=�(2(1+δ) log2 n)1/2�+1

. (4.10)

By (4.9), for k ≥ (2(1 + δ) log2 n)1/2 we have

1 − Pn,m(k) ≤ 4n × n−(1+δ) = 4n−δ.

Therefore,
�2(log2 n)1/2�∑

k=�(2(1+δ) log2 n)1/2�+1

(1 − Pn,m(k)) ≤ 8(log2 n)1/2n−δ.

In the first summation on the right-hand side of (4.10), we use only the fact that 1−Pn,m(k) ≤ 1.
Combining these bounds yields

EP
n,m ≤ 5 + (2(1 + δ) log2 n)1/2 + 8(log2 n)1/2n−δ.

Therefore,

lim sup
n→∞

EP
n,m

(log n)1/2 ≤
√

2(1 + δ)

log 2
. (4.11)

We now give a lower bound of EP
n,m. First, we have

Pn,n(k) = Pn,n−1(k)

(4.1),(4.2)≤ Pn−1,n−1(k) − 2−2(Pn−1,n−2(k) − Pn,n−2(k))

≤ Pn−1,n−1(k) − 2−2−3(Pn−1,n−3(k) − Pn,n−3(k))

≤ · · ·
≤ Pn−1,n−1(k) − 2−k(k+1)/2+1(Pn−1,n−k(k) − Pn,n−k(k))

(4.1)= Pn−1,n−1(k) − 2−(k+1)(k+2)/2+2Pn−1,n−k−1(k)

(4.7)≤ Pn−k−1,n−k−1(k) − 2−(k+1)(k+2)/2+1Pn−k−1,n−k−1(k)

= (1 − 2−(k+1)(k+2)/2+1)Pn−k−1,n−k−1(k).
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From Pk,k(k) = 1, we then have

Pn,n(k) ≤ (1 − 2−(k+1)(k+2)/2+1)�(n−k)/(k+1)� ≤ (1 − 2−(k+2)2/2)n/(k+2)−2.

Since Pn,n(k) is increasing in k, for k ≤ (2(1 − δ) log2 n)1/2 − 2 we obtain

Pn,n(k) ≤ (1 − n−(1−δ))n/(2(1−δ) log2 n)1/2−2

= ((1 − n−(1−δ))n
1−δ

)n
δ/(2(1−δ) log2 n)1/2−2

→ 0 as n → ∞.

Therefore, there exists an N > 0 such that, for all n ≥ N ,

EP
n,m ≥ EP

n,n

≥ 1 +
n∑

k=1

(1 − Pn,n(k))

≥ 1 +
�(2(1−δ) log2 n)1/2−2�∑

k=1

(1 − Pn,n(k))

> 1 + (1 − δ)((2(1 − δ) log2 n)1/2 − 3).

Therefore,

lim inf
n→∞

EP
n,m

(log n)1/2 ≥ (1 − δ)

√
2(1 − δ)

log 2
. (4.12)

Letting δ ↓ 0 in (4.11) and (4.12) proves (4.8).

In Section 3, we derived the asymptotic distribution of Qn,m. We now argue that the
asymptotic distribution of Pn,m does not exist.

Remark 4.1. There exists no sequence {cn} or distribution function F(z) such that

Pn,n((z − cn)(log n)1/2) → F(z) as n → ∞.

This fact is derived from the asymptotic theory of extreme values. Let n be large and
consider matching [ai vs bi], i = 1, 2, . . . , in sequence. As the first round of ERM progresses,
the Hasse diagram grows and consists of blocks of connected diamonds and line-segments.
The number of rounds for each block of connected diamonds is independently and identically
distributed. By the strong law of large numbers, the asymptotics in n and the asymptotics in the
number of blocks are essentially the same. We denote the distribution of the number of rounds
in each block by P(k). Then Pn,n(k) corresponds to the distribution of the maximum value of
independent, identically distributed samples from P(k). Because

1 − P(l) ≤
∞∑

k=0

2−(l+k)+1(k + 1)(1 − P(l − 1)),

there exists a c > 0 such that

1 − P(l + 1) ≤ 2−lc(1 − P(l))
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Figure 9: Expectation and standard deviation of the number of rounds when using PMS.

for all sufficiently large l. From Theorem 2.4.5 of [9] or Theorem 1.7.13 of [12], the asymptotic
distribution of Pn,n does not exist.

From Theorems 3.3 and 4.3, the asymptotic order of EP
n,m is smaller than that of E

Q
n,m when

m = n or m = n + 1. Next we prove that EP
n,m is smaller than E

Q
n,m for all n, m ≥ 1. Actually

we prove a stronger result, on stochastic order in the two models we have considered.

Theorem 4.4. The number of rounds Y (n, m) is stochastically larger in the sure-winner model
than it is in the totally random model, i.e.

Pn,m(k) ≥ Qn,m(k) for all n, m ≥ 1 and k ≥ 1.

The inequality is strict if and only if max(n, m) ≥ k + 1.

The proof is presented in the preprint [11] of this paper. The next result follows from
Theorem 4.4.

Corollary 4.1. We have
EP

m,n ≤ EQ
m,n.

The inequality is strict if and only if max(m, n) ≥ 2.

The values of Qn,n(k) and Pn,n(k) for some small n are presented in Tables 5 and 6 and
Figure 12 in [11].

Since stochastic order is preserved under convolution and under taking the maximum of
independent random variables, we have the following corollary on the stochastic order of the
total number of rounds, Y (see (2.4)), in our two models.

Corollary 4.2. Let Y be the total number of rounds required to determine the ranking of N

teams. Then

P(Y ≤ k | totally random model) ≥ P(Y ≤ k | sure-winner model) for all k ≥ 1.

The inequality is strict for all N ≥ 3 and for all k in the support of Y .

Figure 9 presents the expected value and the standard deviation of the total number of rounds
when using PMS, for N = 2, . . . , 40 teams. Figure 10 shows the distribution of the number of
rounds for N = 16 and N = 64.

https://doi.org/10.1239/aap/1158685003 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1158685003


Parallel matching for ranking all teams in a tournament 823

Total number of rounds

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10 12 14 16 0 10 20 30 40 50 60
Total number of rounds

Figure 10: Distribution of the number of rounds in the totally random model (solid) and the sure-winner
model (dashed) when using PMS, for N = 16 (left) and N = 64 (right).

5. Discussion

5.1. Parallel sorting

There is an extensive literature on parallel sorting algorithms [15], [13]. The computing
model EREW P-RAM (exclusive-read, exclusive-write parallel random-access machine), which
allows no concurrent reads and no concurrent writes, is the closest to our setting. However,
there are several differences between the parallel sorting problem using EREW P-RAM and
our parallel matching problem. In the parallel sorting problem, only the sure-winner stochastic
model is assumed, i.e. a ‘true’ ranking is given initially and kept fixed during the whole
algorithm. No contradiction of ranking occurs. Thus, a class of algorithms (scheduling
methods) wider than that of the parallel matching problem is admissible. Furthermore, the
parallel sorting algorithms compare already comparable teams. Although this seems to be a
waste of calculation cost (or an unnecessary increase in the number of necessary rounds), if we
consider the cost of the worst-ordered case (or the worst ‘true’ ranking case), the waste does not
usually affect the order of the cost. Actually, in most papers on parallel sorting algorithms the
number of rounds is evaluated in the worst case. This is one of the biggest differences between
those papers and the present paper, in which we evaluate the expectation of the number of
rounds.

In spite of these differences, some results on the parallel sorting problem are useful for the
parallel matching problem. Odd–even merge is one of the standard parallel merge algorithms
[2]. If we omit matches between comparable teams, odd–even merge corresponds to a rectangle
method which has the matrix X with

xij = min{k > 0 : n + 1 − i − j ≡ 0 mod 2�log2 n�−k+1};
an example of such a matrix is⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 3 4 2 4 3 4 1
3 4 2 4 3 4 1 4
4 2 4 3 4 1 4 3
2 4 3 4 1 4 3 4
4 3 4 1 4 3 4 2
3 4 1 4 3 4 2 4
4 1 4 3 4 2 4 3
1 4 3 4 2 4 3 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (5.1)
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Table 1: The expected number of rounds using optimum scheduling and PMS.

Number of teams Optimum scheduling PMS

2 1.00 1.00
3 2.67 2.67
4 2.67 2.67
5 4.00 4.77

with n = m = 8. It is evident that this algorithm is a 45 degree method and that the scheduling
matrix is adequate. The order of the calculation cost of the worst case of this algorithm is easily
proved to be O(log n). Thus, the expected number of rounds in the sure-winner model is at
most O(log n). This means that the order of expectation, O(

√
n), of ERM in the sure-winner

model is not optimal. Another standard parallel merge algorithm is the bitonic merge [2], whose
scheduling matrix is, for example, (5.1) with its rows in reverse order. In particular, the bitonic
merge matches teams in the reverse order: [a1 vs bn], [a2 vs bn−1], . . . , [an vs b1] in the first
round. This is clearly contradictory in the totally random model.

Even if we use the odd–even merge or bitonic merge, the whole sorting has costs of
O((log n)2) in the worst case. There are several optimal parallel sorting algorithms, particularly
that of [1], which have O(log n) costs. However, all of them are contradictory in the totally
random case.

5.2. Some optimality of PMS for small-size problems

In this subsection, we present some results of the sure-winner model using PMS. When the
number of teams is small, we can count all permutations of ‘true’ rankings and find the optimal
algorithm in the sense of the minimum expected number of rounds. For example, the optimal
algorithm for N = 5 is presented in Appendix D of [11]. The results for N = 2, 3, 4, 5 are
given in Table 1. This shows that PMS is optimal if N ≤ 4. Although the order of the expected
number of rounds for n × n PMS is not optimal, PMS is close to optimal for small N . For
larger N , it seems combinatorially formidable to find the optimal algorithm in the sure-winner
model.

5.3. Bradley–Terry model

In the general Bradley–Terry model [3], a positive parameter of strength πi is assigned to
each team ti . The probability that team ti beats team tj is calculated as pij = πi/(πi + πj ).
One of the most remarkable properties of the model is that it satisfies pijpjkpki = pjipikpkj .

In other words, there is no three-cornered deadlock. It is evident that, on the one hand, if
πi = πj for all i and j , then the Bradley–Terry model corresponds to the totally random model.
On the other hand, if πi/πj → ∞ for all j = i + 1, then the asymptotic model corresponds
to the sure-winner model. Therefore, the two probabilistic models investigated in the previous
sections are two extremes of the Bradley–Terry model.

In this sense, the Bradley–Terry model is much more general than the two probabilistic
models and more realistic in describing the actual games. However, it is very difficult to
evaluate the number of rounds of the general Bradley–Terry model because we have to consider
the ranking of each team within the whole tournament even in the recursive subproblems. If
we adopt the sure-winner or totally random model, only the ranking in each subset is needed.

We did some simulation studies of PMS using the Bradley–Terry model. In Figure 11, we
present the expected number of rounds in the following simple one-parameter Bradley–Terry
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Figure 11: Expected number of rounds, EBT[Y ], using PMS in the Bradley–Terry model, for N = 32.

model: πi/(πi + πi+1) = p, i = 1, . . . , N −1, 1
2 ≤ p ≤ 1. Figure 11 shows that the expected

number increases monotonically in p.

5.4. Concluding remarks and future work

In this paper, we have presented a new game scheduling scheme, namely parallel merge sort-
ing with equivalent-rank matching. Ranking using this scheme does not cause any contradiction
between any possible results of simultaneous matches. Furthermore, the Hasse diagram of the
partial order using this scheme is simple and easy to understand. Two probabilistic models,
the sure-winner model and the totally random model, were investigated. For each model, the
recurrence formula of the distribution function of the number of rounds for merging was given
and the order of the expected number of rounds evaluated.

In the sure-winner model, a parallel sorting algorithm for parallel computers gives an
expected number of rounds of smaller order than does the proposed scheme. Optimality in
the sense of the expected number of rounds needs more research. Our investigation of the
optimal ranking scheme for N = 5 suggests that it is combinatorially very difficult to obtain
the optimal ranking scheme for N ≥ 6.

In the totally random model, almost nothing is known about this optimality.
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