
10 GADTs

Generalized Algebraic Data Types, or GADTs for short, are an extension of the variants

we saw inChapter 7 (Variants).GADTs aremore expressive than regular variants,which

helps you create types that more precisely match the shape of the program you want to

write. That can help you write code that's safer, more concise, and more e�cient.

At the same time, GADTs are an advanced feature of OCaml, and their power comes

at a distinct cost. GADTs are harder to use and less intuitive than ordinary variants,

and it can sometimes be a bit of a puzzle to �gure out how to use them e�ectively. All

of which is to say that you should only use a GADT when it makes a big qualitative

improvement to your design.

That said, for the right use-case, GADTs can be really transformative, and this

chapter will walk through several examples that demonstrate the range of use-cases

that GADTs support.

At their heart, GADTs provide two extra features above and beyond ordinary vari-

ants:

• They let the compiler learn more type information when you descend into a case of

a pattern match.

• They make it easy to use existential types, which let you work with data of a speci�c

but unknown type.

It's a little hard to understand these features withoutworking through some examples,

so we'll do that next.

10.1 A Little Language

One classic use-case for GADTs is for writing typed expression languages, similar

to the boolean expression language described in Chapter 7.3 (Variants and Recursive

Data Structures). In this section, we'll create a slightly richer language that lets us

mix arithmetic and boolean expressions. This means that we have to deal with the

possibility of ill-typed expressions, e.g., an expression that adds a bool and an int.

Let's �rst try to do this with an ordinary variant. We'll declare two types here:value,

which represents a primitive value in the language (i.e., an int or a bool), and expr,

which represents the full set of possible expressions.
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open Base

type value =
| Int of int
| Bool of bool

type expr =
| Value of value
| Eq of expr * expr
| Plus of expr * expr
| If of expr * expr * expr

We can write a recursive evaluator for this type in a pretty straight-ahead style. First,

we'll declare an exception that can be thrown when we hit an ill-typed expression, e.g.,

when encountering an expression that tries to add a bool and an int.

exception Ill_typed

With that in hand, we can write the evaluator itself.

# let rec eval expr =
match expr with
| Value v -> v
| If (c, t, e) ->
(match eval c with
| Bool b -> if b then eval t else eval e
| Int _ -> raise Ill_typed)

| Eq (x, y) ->
(match eval x, eval y with
| Bool _, _ | _, Bool _ -> raise Ill_typed
| Int f1, Int f2 -> Bool (f1 = f2))

| Plus (x, y) ->
(match eval x, eval y with
| Bool _, _ | _, Bool _ -> raise Ill_typed
| Int f1, Int f2 -> Int (f1 + f2));;

val eval : expr -> value = <fun>

This implementation is a bit ugly because it has a lot of dynamic checks to detect

type errors. Indeed, it's entirely possible to create an ill-typed expression which will

trip these checks.

# let i x = Value (Int x)
and b x = Value (Bool x)
and (+:) x y = Plus (x,y);;

val i : int -> expr = <fun>

val b : bool -> expr = <fun>

val ( +: ) : expr -> expr -> expr = <fun>

# eval (i 3 +: b false);;
Exception: Ill_typed.

This possibility of ill-typed expressions doesn't just complicate the implementation:

it's also a problem for users, since it's all too easy to create ill-typed expressions by

mistake.
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10.1.1 Making the Language Type-Safe

Let's consider what a type-safe version of this API might look like in the absence of

GADTs. To even express the type constraints, we'll need expressions to have a type

parameter to distinguish integer expressions from boolean expressions. Given such a

parameter, the signature for such a language might look like this.

module type Typesafe_lang_sig = sig
type 'a t

(** functions for constructing expressions *)

val int : int -> int t
val bool : bool -> bool t
val if_ : bool t -> 'a t -> 'a t -> 'a t
val eq : 'a t -> 'a t -> bool t
val plus : int t -> int t -> int t

(** Evaluation functions *)

val int_eval : int t -> int
val bool_eval : bool t -> bool

end

The functions int_eval and bool_eval deserve some explanation. Youmight expect

there to be a single evaluation function, with this signature.

val eval : 'a t -> 'a

But as we'll see, we're not going to be able to implement that, at least, not without

using GADTs. So for now, we're stuck with two di�erent evaluators, one for each type

of expression.

Now let's write an implementation that matches this signature.

module Typesafe_lang : Typesafe_lang_sig = struct
type 'a t = expr

let int x = Value (Int x)
let bool x = Value (Bool x)
let if_ c t e = If (c, t, e)
let eq x y = Eq (x, y)
let plus x y = Plus (x, y)

let int_eval expr =
match eval expr with
| Int x -> x
| Bool _ -> raise Ill_typed

let bool_eval expr =
match eval expr with
| Bool x -> x
| Int _ -> raise Ill_typed

end

As you can see, the ill-typed expression we had trouble with before can't be con-

structed, because it's rejected by OCaml's type-system.
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# let expr = Typesafe_lang.(plus (int 3) (bool false));;
Line 1, characters 40-52:

Error: This expression has type bool t but an expression was expected

of type

int t

Type bool is not compatible with type int

So, what happened here? How did we add the type-safety we wanted? The funda-

mental trick is to add what's called a phantom type. In this de�nition:

type 'a t = expr

the type parameter 'a is the phantom type, since it doesn't show up in the body of the

de�nition of t.

Because the type parameter is unused, it's free to take on any value. That means

we can constrain the use of that type parameter arbitrarily in the signature, which is a

freedom we use to add the type-safety rules that we wanted.

This all amounts to an improvement in terms of the API, but the implementation is

if anything worse. We still have the same evaluator with all of its dynamic checking

for type errors. But we've had to write yet more wrapper code to make this work.

Also, the phantom-type discipline is quite error prone. You might have missed the

fact that the type on the eq function above is wrong!

# Typesafe_lang.eq;;
- : 'a Typesafe_lang.t -> 'a Typesafe_lang.t -> bool Typesafe_lang.t =

<fun>

It looks like it's polymorphic over the type of expressions, but the evaluator only

supports checking equality on integers. As a result, we can still construct an ill-typed

expression, phantom-types notwithstanding.

# let expr = Typesafe_lang.(eq (bool true) (bool false));;
val expr : bool Typesafe_lang.t = <abstr>

# Typesafe_lang.bool_eval expr;;
Exception: Ill_typed.

This highlights why we still need the dynamic checks in the implementation: the

types within the implementation don't necessarily rule out ill-typed expressions. The

same fact explains why we needed two di�erent eval functions: the implementation

of eval doesn't have any type-level guarantee of when it's handling a bool expression

versus an int expression, so it can't safely give results where the type of the result varies

based on the result of the expression.

10.1.2 Trying to Do Better with Ordinary Variants

To see why we need GADTs, let's see how far we can get without them. In particular,

let's see what happens when we try to encode the typing rules we want for our DSL

directly into the de�nition of the expression type. We'll do that by putting an ordinary

type parameter on our expr and value types, in order to represent the type of an

expression or value.
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type 'a value =
| Int of 'a
| Bool of 'a

type 'a expr =
| Value of 'a value
| Eq of 'a expr * 'a expr
| Plus of 'a expr * 'a expr
| If of bool expr * 'a expr * 'a expr

This looks promising at �rst, but it doesn't quite do what we want. Let's experiment a

little.

# let i x = Value (Int x)
and b x = Value (Bool x)
and (+:) x y = Plus (x,y);;

val i : 'a -> 'a expr = <fun>

val b : 'a -> 'a expr = <fun>

val ( +: ) : 'a expr -> 'a expr -> 'a expr = <fun>

# i 3;;
- : int expr = Value (Int 3)

# b false;;
- : bool expr = Value (Bool false)

# i 3 +: i 4;;
- : int expr = Plus (Value (Int 3), Value (Int 4))

So far so good. But if you think about it for a minute, you'll realize this doesn't

actually do what we want. For one thing, the type of the outer expression is always just

equal to the type of the inner expression, which means that some things that should

type-check don't.

# If (Eq (i 3, i 4), i 0, i 1);;
Line 1, characters 9-12:

Error: This expression has type int expr

but an expression was expected of type bool expr

Type int is not compatible with type bool

Also, some things that shouldn't typecheck do.

# b 3;;
- : int expr = Value (Bool 3)

The problem here is that the way we want to use the type parameter isn't supported

by ordinary variants. In particular, we want the type parameter to be populated in

di�erent ways in the di�erent tags, and to depend in non-trivial ways on the types of

the data associated with each tag. That's where GADTs can help.

10.1.3 GADTs to the Rescue

Now we're ready to write our �rst GADT. Here's a new version of our value and expr

types that correctly encode our desired typing rules.

type _ value =
| Int : int -> int value
| Bool : bool -> bool value
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type _ expr =
| Value : 'a value -> 'a expr
| Eq : int expr * int expr -> bool expr
| Plus : int expr * int expr -> int expr
| If : bool expr * 'a expr * 'a expr -> 'a expr

The syntax here requires some decoding. The colon to the right of each tag is what

tells you that this is a GADT. To the right of the colon, you'll see what looks like

an ordinary, single-argument function type, and you can almost think of it that way;

speci�cally, as the type signature for that particular tag, viewed as a type constructor.

The left-hand side of the arrow states the types of the arguments to the constructor, and

the right-hand side determines the type of the constructed value.

In the de�nition of each tag in aGADT, the right-hand side of the arrow is an instance

of the type of the overall GADT, with independent choices for the type parameter in

each case. Importantly, the type parameter can depend both on the tag and on the type

of the arguments. Eq is an example where the type parameter is determined entirely

by the tag: it always corresponds to a bool expr. If is an example where the type

parameter depends on the arguments to the tag, in particular the type parameter of the

If is the type parameter of the then and else clauses.

Let's try some examples.

# let i x = Value (Int x)
and b x = Value (Bool x)
and (+:) x y = Plus (x,y);;

val i : int -> int expr = <fun>

val b : bool -> bool expr = <fun>

val ( +: ) : int expr -> int expr -> int expr = <fun>

# i 3;;
- : int expr = Value (Int 3)

# b 3;;
Line 1, characters 3-4:

Error: This expression has type int but an expression was expected of

type

bool

# i 3 +: i 6;;
- : int expr = Plus (Value (Int 3), Value (Int 6))

# i 3 +: b false;;
Line 1, characters 8-15:

Error: This expression has type bool expr

but an expression was expected of type int expr

Type bool is not compatible with type int

What we see here is that the type-safety rules we previously enforced with signature-

level restrictions on phantom types are now directly encoded in the de�nition of the

expression type.

These type-safety rules apply not just when constructing an expression, but also

when deconstructing one, which means we can write a simpler and more concise

evaluator that doesn't need any type-safety checks.

# let eval_value : type a. a value -> a = function
| Int x -> x
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| Bool x -> x;;
val eval_value : 'a value -> 'a = <fun>

# let rec eval : type a. a expr -> a = function
| Value v -> eval_value v
| If (c, t, e) -> if eval c then eval t else eval e
| Eq (x, y) -> eval x = eval y
| Plus (x, y) -> eval x + eval y;;

val eval : 'a expr -> 'a = <fun>

Note that we now have a single polymorphic eval function, as opposed to the two

type-speci�c evaluators we needed when using phantom types.

10.1.4 GADTs, Locally Abstract Types, and Polymorphic Recursion

The above example lets us see one of the downsides of GADTs, which is that code using

them needs extra type annotations. Look at what happens if we write the de�nition of

value without the annotation.

# let eval_value = function
| Int x -> x
| Bool x -> x;;

Line 3, characters 7-13:

Error: This pattern matches values of type bool value

but a pattern was expected which matches values of type int

value

Type bool is not compatible with type int

The issue here is that OCaml by default isn't willing to instantiate ordinary type

variables in di�erent ways in the body of the same function, which is what is required

here. We can �x that by adding a locally abstract type, which doesn't have that

restriction.

# let eval_value (type a) (v : a value) : a =
match v with
| Int x -> x
| Bool x -> x;;

val eval_value : 'a value -> 'a = <fun>

This isn't the same annotation we wrote earlier, and indeed, if we try this approach

with eval, we'll see that it doesn't work.

# let rec eval (type a) (e : a expr) : a =
match e with
| Value v -> eval_value v
| If (c, t, e) -> if eval c then eval t else eval e
| Eq (x, y) -> eval x = eval y
| Plus (x, y) -> eval x + eval y;;

Line 4, characters 43-44:

Error: This expression has type a expr but an expression was expected

of type

bool expr

The type constructor a would escape its scope

This is a pretty unhelpful error message, but the basic problem is that eval is recursive,

and inference of GADTs doesn't play well with recursive calls.
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More speci�cally, the issue is that the type-checker is trying to merge the locally

abstract type a into the type of the recursive function eval, and merging it into the

outer scope within which eval is de�ned is the way in which a is escaping its scope.

We can �x this by explicitly marking eval as polymorphic, which OCaml has a

handy type annotation for.

# let rec eval : 'a. 'a expr -> 'a =
fun (type a) (x : a expr) ->
match x with
| Value v -> eval_value v
| If (c, t, e) -> if eval c then eval t else eval e
| Eq (x, y) -> eval x = eval y
| Plus (x, y) -> eval x + eval y;;

val eval : 'a expr -> 'a = <fun>

This works because by marking eval as polymorphic, the type of eval isn't specialized

to a, and so a doesn't escape its scope.

It's also helpful here because eval itself is an example of polymorphic recursion,

which is to say that eval needs to call itself at multiple di�erent types. This comes

up, for example, with If, since the If itself must be of type bool, but the type of the

then and else clauses could be of type int. This means that when evaluating If, we'll

dispatch eval at a di�erent type than it was called on.

As such, eval needs to see itself as polymorphic. This kind of polymorphism

is basically impossible to infer automatically, which is a second reason we need to

annotate eval's polymorphism explicitly.

The above syntax is a bit verbose, so OCaml has syntactic sugar to combine the

polymorphism annotation and the creation of the locally abstract types:

# let rec eval : type a. a expr -> a = function
| Value v -> eval_value v
| If (c, t, e) -> if eval c then eval t else eval e
| Eq (x, y) -> eval x = eval y
| Plus (x, y) -> eval x + eval y;;

val eval : 'a expr -> 'a = <fun>

This type of annotation is the right one to pickwhen youwrite any recursive function

that makes use of GADTs.

10.2 When Are GADTs Useful?

The typed language we showed above is a perfectly reasonable example, but GADTs

are useful for a lot more than designing little languages. In this section, we'll try to

give you a broader sampling of the kinds of things you can do with GADTs.

10.2.1 Varying Your Return Type

Sometimes, you want to write a single function that can e�ectively have di�erent types

in di�erent circumstances. In some sense, this is totally ordinary. After all, OCaml's

https://doi.org/10.1017/9781009129220.012 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.012


174 GADTs

polymorphism means that values can take on di�erent types in di�erent contexts.

List.find is a �ne example. The signature indicates that the type of the result varies

with the type of the input list.

# List.find;;
- : 'a list -> f:('a -> bool) -> 'a option = <fun>

And of course you can use List.find to produce values of di�erent types.

# List.find ~f:(fun x -> x > 3) [1;3;5;2];;
- : int option = Some 5

# List.find ~f:(Char.is_uppercase) ['a';'B';'C'];;
- : char option = Some B

But this approach is limited to simple dependencies between types that correspond

to how data �ows through your code. Sometimes you want types to vary in a more

�exible way.

To make this concrete, let's say we wanted to create a version of find that is

con�gurable in terms of how it handles the case of not �nding an item. There are three

di�erent behaviors you might want:

• Throw an exception.

• Return None.

• Return a default value.

Let's try to write a function that exhibits these behaviors without using GADTs.

First, we'll create a variant type that represents the three possible behaviors.

module If_not_found = struct
type 'a t =
| Raise
| Return_none
| Default_to of 'a

end

Now we can write flexible_find, which takes an If_not_found.t as a parameter

and varies its behavior accordingly.

# let rec flexible_find list ~f (if_not_found : _ If_not_found.t) =
match list with
| hd :: tl ->
if f hd then Some hd else flexible_find ~f tl if_not_found

| [] ->
(match if_not_found with
| Raise -> failwith "Element not found"
| Return_none -> None
| Default_to x -> Some x);;

val flexible_find :

'a list -> f:('a -> bool) -> 'a If_not_found.t -> 'a option = <fun>

Here are some examples of the above function in action:

# flexible_find ~f:(fun x -> x > 10) [1;2;5] Return_none;;
- : int option = None

# flexible_find ~f:(fun x -> x > 10) [1;2;5] (Default_to 10);;
- : int option = Some 10
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# flexible_find ~f:(fun x -> x > 10) [1;2;5] Raise;;
Exception: (Failure "Element not found")

# flexible_find ~f:(fun x -> x > 10) [1;2;20] Raise;;
- : int option = Some 20

This mostly does what we want, but the problem is that flexible_find always

returns an option, even when it's passed Raise or Default_to, which guarantees that

the None case is never used.

To eliminate the unnecessary option in the Raise and Default_to cases, we're going

to turn If_not_found.t into a GADT. In particular, we'll mint it as a GADT with two

type parameters: one for the type of the list element, and one for the return type of the

function.

module If_not_found = struct
type (_, _) t =
| Raise : ('a, 'a) t
| Return_none : ('a, 'a option) t
| Default_to : 'a -> ('a, 'a) t

end

As you can see, Raise and Default_to both have the same element type and return

type, but Return_none provides an optional return value.

Here's a de�nition of flexible_find that takes advantage of this GADT.

# let rec flexible_find
: type a b. f:(a -> bool) -> a list -> (a, b) If_not_found.t -> b =
fun ~f list if_not_found ->
match list with
| [] ->
(match if_not_found with
| Raise -> failwith "No matching item found"
| Return_none -> None
| Default_to x -> x)

| hd :: tl ->
if f hd
then (
match if_not_found with
| Raise -> hd
| Return_none -> Some hd
| Default_to _ -> hd)

else flexible_find ~f tl if_not_found;;
val flexible_find :

f:('a -> bool) -> 'a list -> ('a, 'b) If_not_found.t -> 'b = <fun>

As you can see from the signature of flexible_find, the return value now depends

on the type of If_not_found.t, which means it can depend on the particular variant of

If_not_found.t that's in use. As a result, flexible_find only returns an option when

it needs to.

# flexible_find ~f:(fun x -> x > 10) [1;2;5] Return_none;;
- : int option = Base.Option.None

# flexible_find ~f:(fun x -> x > 10) [1;2;5] (Default_to 10);;
- : int = 10

# flexible_find ~f:(fun x -> x > 10) [1;2;5] Raise;;
Exception: (Failure "No matching item found")
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# flexible_find ~f:(fun x -> x > 10) [1;2;20] Raise;;
- : int = 20

10.2.2 Capturing the Unknown

Code that works with unknown types is routine in OCaml, and comes up in the simplest

of examples:

# let tuple x y = (x,y);;
val tuple : 'a -> 'b -> 'a * 'b = <fun>

The type variables 'a and 'b indicate that there are two unknown types here, and

these type variables are universally quanti�ed. Which is to say, the type of tuple is:

for all types a and b, a -> b -> a * b.

And indeed, we can restrict the type of tuple to any 'a and 'b we want.

# (tuple : int -> float -> int * float);;
- : int -> float -> int * float = <fun>

# (tuple : string -> string * string -> string * (string * string));;
- : string -> string * string -> string * (string * string) = <fun>

Sometimes, however, we want type variables that are existentially quanti�ed, mean-

ing that instead of being compatible with all types, the type represents a particular but

unknown type.

GADTs provide one natural way of encoding such type variables. Here's a simple

example.

type stringable =
Stringable : { value: 'a; to_string: 'a -> string } -> stringable

This type packs together a value of some arbitrary type, along with a function for

converting values of that type to strings.

We can tell that 'a is existentially quanti�ed because it shows up on the left-hand

side of the arrow but not on the right, so the 'a that shows up internally doesn't appear

in a type parameter for stringable itself. Essentially, the existentially quanti�ed type

is bound within the de�nition of stringable.

The following function can print an arbitrary stringable:

# let print_stringable (Stringable s) =
Stdio.print_endline (s.to_string s.value);;

val print_stringable : stringable -> unit = <fun>

We can use print_stringable on a collection of stringables of di�erent underlying

types.

# let stringables =
(let s value to_string = Stringable { to_string; value } in
[ s 100 Int.to_string
; s 12.3 Float.to_string
; s "foo" Fn.id
]);;

val stringables : stringable list =

[Stringable {value = <poly>; to_string = <fun>};
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Stringable {value = <poly>; to_string = <fun>};

Stringable {value = <poly>; to_string = <fun>}]

# List.iter ~f:print_stringable stringables;;
100

12.3

foo

- : unit = ()

The thing that lets this all work is that the type of the underlying object is existentially

bound within the type stringable. As such, the type of the underlying values can't

escape the scope of stringable, and any function that tries to return such a value won't

type-check.

# let get_value (Stringable s) = s.value;;
Line 1, characters 32-39:

Error: This expression has type $Stringable_'a
but an expression was expected of type 'a
The type constructor $Stringable_'a would escape its scope

It's worth spending a moment to decode this error message, and the meaning of the

type variable $Stringable_'a in particular. You can think of this variable as having

three parts:

• The $ marks the variable as an existential.

• Stringable is the name of the GADT tag that this variable came from.

• 'a is the name of the type variable from inside that tag.

10.2.3 Abstracting Computational Machines

A common idiom in OCaml is to combine small components into larger computational

machines, using a collection of component-combining functions, or combinators.

GADTs can be helpful for writing such combinators. To see how, let's consider an

example: pipelines. Here, a pipeline is a sequence of steps where each step consumes

the output of the previous step, potentially does some side e�ects, and returns a value

to be passed to the next step. This is analogous to a shell pipeline, and is useful for all

sorts of system automation tasks.

But, can't we write pipelines already? After all, OCaml comes with a perfectly

serviceable pipeline operator:

# open Core;;
# let sum_file_sizes () =

Sys.ls_dir "."
|> List.filter ~f:Sys.is_file_exn
|> List.map ~f:(fun file_name -> (Unix.lstat file_name).st_size)
|> List.sum (module Int) ~f:Int64.to_int_exn;;

val sum_file_sizes : unit -> int = <fun>

This works well enough, but the advantage of a custom pipeline type is that it lets you

build extra services beyond basic execution of the pipeline, e.g.:

• Pro�ling, so that when you run a pipeline, you get a report of how long each step of

the pipeline took.
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• Control over execution, like allowing users to pause the pipeline mid-execution, and

restart it later.

• Custom error handling, so, for example, you could build a pipeline that kept track of

where it failed, and o�ered the possibility of restarting it.

The type signature of such a pipeline type might look something like this:

module type Pipeline = sig
type ('input,'output) t

val ( @> ) : ('a -> 'b) -> ('b,'c) t -> ('a,'c) t
val empty : ('a,'a) t

end

Here, the type ('a,'b) t represents a pipeline that consumes values of type 'a and

emits values of type 'b. The operator @> lets you add a step to a pipeline by providing a

function to prepend on to an existing pipeline, and empty gives you an empty pipeline,

which can be used to seed the pipeline.

The following shows how we could use this API for building a pipeline like our

earlier example using |>. Here, we're using a functor, which we'll see in more detail

in Chapter 11 (Functors), as a way to write code using the pipeline API before we've

implemented it.

# module Example_pipeline (Pipeline : Pipeline) = struct
open Pipeline
let sum_file_sizes =
(fun () -> Sys.ls_dir ".")
@> List.filter ~f:Sys.is_file_exn
@> List.map ~f:(fun file_name -> (Unix.lstat file_name).st_size)
@> List.sum (module Int) ~f:Int64.to_int_exn
@> empty

end;;
module Example_pipeline :

functor (Pipeline : Pipeline) ->

sig val sum_file_sizes : (unit, int) Pipeline.t end

If all wewant is a pipeline capable of a no-frills execution, we can de�ne our pipeline

itself as a simple function, the @> operator as function composition. Then executing

the pipeline is just function application.

module Basic_pipeline : sig
include Pipeline
val exec : ('a,'b) t -> 'a -> 'b

end= struct
type ('input, 'output) t = 'input -> 'output

let empty = Fn.id

let ( @> ) f t input =
t (f input)

let exec t input = t input
end

But this way of implementing a pipeline doesn't give us any of the extra services we
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discussed. All we're really doing is step-by-step building up the same kind of function

that we could have gotten using the |> operator.

We could get a more powerful pipeline by simply enhancing the pipeline type, pro-

viding it with extra runtime structures to track pro�les, or handle exceptions, or provide

whatever else is needed for the particular use-case. But this approach is awkward, since

it requires us to pre-commit to whatever services we're going to support, and to embed

all of them in our pipeline representation.

GADTs provide a simpler approach. Instead of concretely building a machine for

executing a pipeline, we can use GADTs to abstractly represent the pipeline we want,

and then build the functionality we want on top of that representation.

Here's what such a representation might look like.

type (_, _) pipeline =
| Step : ('a -> 'b) * ('b, 'c) pipeline -> ('a, 'c) pipeline
| Empty : ('a, 'a) pipeline

The tags here represent the two building blocks of a pipeline: Step corresponds to

the @> operator, and Empty corresponds to the empty pipeline, as you can see below.

# let ( @> ) f pipeline = Step (f,pipeline);;
val ( @> ) : ('a -> 'b) -> ('b, 'c) pipeline -> ('a, 'c) pipeline = <fun>

# let empty = Empty;;
val empty : ('a, 'a) pipeline = Empty

With that in hand, we can do a no-frills pipeline execution easily enough.

# let rec exec : type a b. (a, b) pipeline -> a -> b =
fun pipeline input ->
match pipeline with
| Empty -> input
| Step (f, tail) -> exec tail (f input);;

val exec : ('a, 'b) pipeline -> 'a -> 'b = <fun>

But we can also do more interesting things. For example, here's a function that

executes a pipeline and produces a pro�le showing how long each step of a pipeline

took.

# let exec_with_profile pipeline input =
let rec loop

: type a b.
(a, b) pipeline -> a -> Time_ns.Span.t list -> b *

Time_ns.Span.t list
=
fun pipeline input rev_profile ->
match pipeline with
| Empty -> input, rev_profile
| Step (f, tail) ->
let start = Time_ns.now () in
let output = f input in
let elapsed = Time_ns.diff (Time_ns.now ()) start in
loop tail output (elapsed :: rev_profile)

in
let output, rev_profile = loop pipeline input [] in
output, List.rev rev_profile;;
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val exec_with_profile : ('a, 'b) pipeline -> 'a -> 'b * Time_ns.Span.t

list =

<fun>

The more abstract GADT approach for creating a little combinator library like this

has several advantages over having combinators that build a more concrete computa-

tional machine:

• The core types are simpler, since they are typically built out of GADT tags that are

just re�ections of the types of the base combinators.

• The design is more modular, since your core types don't need to contemplate every

possible use you want to make of them.

• The code tends to be more e�cient, since the more concrete approach typically

involves allocating closures to wrap up the necessary functionality, and closures

are more heavyweight than GADT tags.

10.2.4 Narrowing the Possibilities

Another use-case for GADTs is to narrow the set of possible states for a given data-type

in di�erent circumstances.

One context where this can be useful is when managing complex application state,

where the available data changes over time. Let's consider a simple example, where

we're writing code to handle a logon request from a user, and we want to check if the

user in question is authorized to logon.

We'll assume that the user logging in is authenticated as a particular name, but that

in order to authenticate, we need to do two things: to translate that user-name into a

numeric user-id, and to fetch permissions for the service in question; once we have

both, we can check if the user-id is permitted to log on.

Without GADTs, we might model the state of a single logon request as follows.

type logon_request =
{ user_name : User_name.t
; user_id : User_id.t option
; permissions : Permissions.t option
}

Here, User_name.t represents a textual name, User_id.t represents an integer identi-

�er associated with a user, and a Permissions.t lets you determine which User_id.t's

are authorized to log in.

Here's how we might write a function for testing whether a given request is autho-

rized.

# let authorized request =
match request.user_id, request.permissions with
| None, _ | _, None ->
Error "Can't check authorization: data incomplete"

| Some user_id, Some permissions ->
Ok (Permissions.check permissions user_id);;

val authorized : logon_request -> (bool, string) result = <fun>
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The intent is to only call this function once the data is complete, i.e., when the user_id

and permissions �elds have been �lled in, which is why it errors out if the data is

incomplete.

The code above works just �ne for a simple case like this. But in a real system, your

code can get more complicated in multiple ways, e.g.,

• more �elds to manage, including more optional �elds,

• more operations that depend on these optional �elds,

• multiple requests to be handled in parallel, each of which might be in a di�erent

state of completion.

As this kind of complexity creeps in, it can be useful to be able to track the state of a

given request at the type level, and to use that to narrow the set of states a given request

can be in, thereby removing some extra case analysis and error handling, which can

reduce the complexity of the code and remove opportunities for mistakes.

One way of doing this is to mint di�erent types to represent di�erent states of the

request, e.g., one type for an incomplete request where various �elds are optional, and

a di�erent type where all of the data is mandatory.

While this works, it can be awkward and verbose. With GADTs, we can track the

state of the request in a type parameter, and have that parameter be used to narrow the

set of available cases, without duplicating the type.

A Completion-Sensitive Option Type

We'll start by creating an option type that is sensitive to whether our request is in a

complete or incomplete state. To do that, we'll mint types to represent the states of

being complete and incomplete.

type incomplete = Incomplete
type complete = Complete

The de�nition of the types doesn't really matter, since we're never instantiating these

types, just using them as markers of di�erent states. All that matters is that the types

are distinct.

Now we can mint a completeness-sensitive option type. Note the two type variables:

the �rst indicates the type of the contents of the option, and the second indicates

whether this is being used in an incomplete state.

type (_, _) coption =
| Absent : (_, incomplete) coption
| Present : 'a -> ('a, _) coption

We use Absent and Present rather than Some or None to make the code less confusing

when both option and coption are used together.

You might notice that we haven't used complete here explicitly. Instead, what we've

done is to ensure that only an incomplete coption can be Absent. Accordingly, a

coption that's complete (and therefore not incomplete) can only be Present.

This is easier to understand with some examples. Consider the following function

for getting the value out of a coption, returning a default value if Absent is found.
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# let get ~default o =
match o with
| Present x -> x
| Absent -> default;;

val get : default:'a -> ('a, incomplete) coption -> 'a = <fun>

Note that the incomplete type was inferred here. If we annotate the coption as

complete, the code no longer compiles.

# let get ~default (o : (_,complete) coption) =
match o with
| Absent -> default
| Present x -> x;;

Line 3, characters 7-13:

Error: This pattern matches values of type ('a, incomplete) coption

but a pattern was expected which matches values of type

('a, complete) coption

Type incomplete is not compatible with type complete

We can make this compile by deleting the Absent branch (and the now useless

default argument).

# let get (o : (_,complete) coption) =
match o with
| Present x -> x;;

val get : ('a, complete) coption -> 'a = <fun>

We could write this more simply as:

# let get (Present x : (_,complete) coption) = x;;
val get : ('a, complete) coption -> 'a = <fun>

As we can see, when the coption is known to be complete, the pattern matching is

narrowed to just the Present case.

A Completion-Sensitive Request Type

We can use coption to de�ne a completion-sensitive version of logon_request.

type 'c logon_request =
{ user_name : User_name.t
; user_id : (User_id.t, 'c) coption
; permissions : (Permissions.t, 'c) coption
}

There's a single type parameter for the logon_request that marks whether it's

complete, at which point, both the user_id and permissions �elds will be complete

as well.

As before, it's easy to �ll in the user_id and permissions �elds.

# let set_user_id request x = { request with user_id = Present x };;
val set_user_id : 'a logon_request -> User_id.t -> 'a logon_request =

<fun>

# let set_permissions request x = { request with permissions =
Present x };;

val set_permissions : 'a logon_request -> Permissions.t -> 'a
logon_request =

<fun>
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Note that �lling in the �elds doesn't automatically mark a request as complete. To

do that, we need to explicitly test for completeness, and then construct a version of the

record with just the completed �elds �lled in.

# let check_completeness request =
match request.user_id, request.permissions with
| Absent, _ | _, Absent -> None
| (Present _ as user_id), (Present _ as permissions) ->
Some { request with user_id; permissions };;

val check_completeness : incomplete logon_request -> 'a logon_request

option =

<fun>

The result is polymorphic, meaning it can return a logon request of any kind, which

includes the possibility of returning a complete request. In practice, the function type

is easier to understand if we constrain the return value to explicitly return a complete

request.

# let check_completeness request : complete logon_request option =
match request.user_id, request.permissions with
| Absent, _ | _, Absent -> None
| (Present _ as user_id), (Present _ as permissions) ->
Some { request with user_id; permissions };;

val check_completeness :

incomplete logon_request -> complete logon_request option = <fun>

Finally, we can write an authorization checker that works unconditionally on a

complete login request.

# let authorized (request : complete logon_request) =
let { user_id = Present user_id; permissions = Present
permissions; _ } = request in
Permissions.check permissions user_id;;

val authorized : complete logon_request -> bool = <fun>

After all that work, the result may seem a bit underwhelming, and indeed, most

of the time, this kind of narrowing isn't worth the complexity of setting it up. But

for a su�ciently complex state machine, cutting down on the possibilities that your

code needs to contemplate can make a big di�erence to the comprehensibility and

correctness of the result.

Type Distinctness and Abstraction

In the example in this section, we used two types, complete and incomplete to mark

di�erent states, and we de�ned those types so as to be in some sense obviously di�erent.

type incomplete = Incomplete
type complete = Complete

This isn't strictly necessary. Here's another way of de�ning these types that makes

them less obviously distinct.

type incomplete = Z
type complete = Z
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OCaml's variant types are nominal, so complete and incomplete are distinct types,

despite having variants of the same name, as you can see when we try to put instances

of each type in the same list.

# let i = (Z : incomplete) and c = (Z : complete);;
val i : incomplete = Z

val c : complete = Z

# [i; c];;
Line 1, characters 5-6:

Error: This expression has type complete

but an expression was expected of type incomplete

As a result, we can narrow a pattern match using these types as indices, much as we

did earlier. First, we set up the coption type:

type ('a, _) coption =
| Absent : (_, incomplete) coption
| Present : 'a -> ('a, _) coption

Then, we write a function that requires the coption to be complete, and accordingly,

need only contemplate the Present case.

# let assume_complete (coption : (_,complete) coption) =
match coption with
| Present x -> x;;

val assume_complete : ('a, complete) coption -> 'a = <fun>

An easy-to-miss issue here is that the waywe expose these types through an interface

can cause OCaml to lose track of the distinctness of the types in question. Consider

this version, where we entirely hide the de�nition of complete and incomplete.

module M : sig
type incomplete
type complete

end = struct
type incomplete = Z
type complete = Z

end
include M

type ('a, _) coption =
| Absent : (_, incomplete) coption
| Present : 'a -> ('a, _) coption

Now, the assume_complete function we wrote is no longer found to be exhaustive.

# let assume_complete (coption : (_,complete) coption) =
match coption with
| Present x -> x;;

Lines 2-3, characters 5-21:

Warning 8 [partial-match]: this pattern-matching is not exhaustive.

Here is an example of a case that is not matched:

Absent

val assume_complete : ('a, complete) coption -> 'a = <fun>

That's because by leaving the types abstract, we've entirely hidden the underlying

types, leaving the type system with no evidence that the types are distinct.

Let's see what happens if we expose the implementation of these types.
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module M : sig
type incomplete = Z
type complete = Z

end = struct
type incomplete = Z
type complete = Z

end
include M

type ('a, _) coption =
| Absent : (_, incomplete) coption
| Present : 'a -> ('a, _) coption

But the result is still not exhaustive!

# let assume_complete (coption : (_,complete) coption) =
match coption with
| Present x -> x;;

Lines 2-3, characters 5-21:

Warning 8 [partial-match]: this pattern-matching is not exhaustive.

Here is an example of a case that is not matched:

Absent

val assume_complete : ('a, complete) coption -> 'a = <fun>

In order to be exhaustive, we need the types that are exposed to be de�nitively

di�erent, which would be the case if we de�ned them as variants with di�erently

named tags, as we did originally.

The reason for this is that types that appear to be di�erent in an interface may turn

out to be the same in the implementation, as we can see below.

module M : sig
type incomplete = Z
type complete = Z

end = struct
type incomplete = Z
type complete = incomplete = Z

end

All of which is to say: when creating types to act as abstract markers for the type

parameter of a GADT, you should choose de�nitions that make the distinctness of

those types clear, and you should expose those de�nitions in your mlis.

Narrowing Without GADTs

Thus far, we've only seen narrowing in the context of GADTs, but OCaml can eliminate

impossible cases from ordinary variants too. As with GADTs, to eliminate a case you

need to demonstrate that the case in question is impossible at the type level.

One way to do this is via an uninhabited type, which is a type that has no associated

values. You can declare such a value by creating a variant with no tags.

type nothing = |

This turns out to be useful enough that Base has a standard uninhabited type, Nothing.t.

So, how does an uninhabited type help?Well, consider the Result.t type, discussed
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in as described in Chapter 8.1.1 (Encoding Errors with Result). Normally, to match a

Result.t, you need to handle both the Ok and Error cases.

# open Stdio;;
# let print_result (x : (int,string) Result.t) =

match x with
| Ok x -> printf "%d\n" x
| Error x -> printf "ERROR: %s\n" x;;

val print_result : (int, string) result -> unit = <fun>

But if the Error case contains an uninhabitable type, well, that case can never be

instantiated, and OCaml will tell you as much.

# let print_result (x : (int, Nothing.t) Result.t) =
match x with
| Ok x -> printf "%d\n" x
| Error _ -> printf "ERROR\n";;

Line 4, characters 7-14:

Warning 56 [unreachable-case]: this match case is unreachable.

Consider replacing it with a refutation case '<pat> -> .'
val print_result : (int, Nothing.t) result -> unit = <fun>

We can follow the advice above, and add a so-called refutation case.

# let print_result (x : (int, Nothing.t) Result.t) =
match x with
| Ok x -> printf "%d\n" x
| Error _ -> .;;

val print_result : (int, Nothing.t) result -> unit = <fun>

The period in the �nal case tells the compiler that we believe this case can never

be reached, and OCaml will verify that it's true. In some simple cases, however, the

compiler can automatically add the refutation case for you, so you don't need to write

it out explicitly.

# let print_result (x : (int, Nothing.t) Result.t) =
match x with
| Ok x -> printf "%d\n" x;;

val print_result : (int, Nothing.t) result -> unit = <fun>

Narrowing with uninhabitable types can be useful when using a highly con�gurable

library that supports multiple di�erent modes of use, not all of which are necessarily

needed for a given application. One example of this comes from Async's RPC (remote

procedure-call) library. Async RPCs support a particular �avor of interaction called

a State_rpc. Such an RPC is parameterized by four types, for four di�erent kinds of

data:

• query, for the initial client request,
• state, for the initial snapshot returned by the server,
• update, for the sequence of updates to that snapshot, and
• error, for an error to terminate the stream.

Now, imagine you want to use a State_rpc in a context where you don't need to

terminate the streamwith a custom error. We could just instantiate the State_rpc using

the type unit for the error type.
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open Core
open Async
let rpc =
Rpc.State_rpc.create
~name:"int-map"
~version:1
~bin_query:[%bin_type_class: unit]
~bin_state:[%bin_type_class: int Map.M(String).t]
~bin_update:[%bin_type_class: int Map.M(String).t]
~bin_error:[%bin_type_class: unit]
()

But with this approach, you still have to handle the error case when writing code to

dispatch the RPC.

# let dispatch conn =
match%bind Rpc.State_rpc.dispatch rpc conn () >>| ok_exn with
| Ok (initial_state, updates, _) -> handle_state_changes
initial_state updates
| Error () -> failwith "this is not supposed to happen";;

val dispatch : Rpc.Connection.t -> unit Deferred.t = <fun>

An alternative approach is to use an uninhabited type for the error:

let rpc =
Rpc.State_rpc.create
~name:"foo"
~version:1
~bin_query:[%bin_type_class: unit]
~bin_state:[%bin_type_class: int Map.M(String).t]
~bin_update:[%bin_type_class: int Map.M(String).t]
~bin_error:[%bin_type_class: Nothing.t]
()

Now, we've essentially banned the use of the error type, and as a result, our dispatch

function needs only deal with the Ok case.

# let dispatch conn =
match%bind Rpc.State_rpc.dispatch rpc conn () >>| ok_exn with
| Ok (initial_state, updates, _) -> handle_state_changes
initial_state updates;;

val dispatch : Rpc.Connection.t -> unit Deferred.t = <fun>

What's nice about this example is that it shows that narrowing can be applied to

code that isn't designed with narrowing in mind.

10.3 Limitations of GADTs

Hopefully, we've demonstrated the utility of GADTs, while at the same time showing

some of the attendant complexities. In this �nal section, we're going to highlight some

remaining di�culties with using GADTs that you may run into, as well as how to work

around them.
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10.3.1 Or-Patterns

GADTs don't work well with or-patterns. Consider the following type that represents

various ways we might use for obtaining some piece of data.

open Core
module Source_kind = struct
type _ t =
| Filename : string t
| Host_and_port : Host_and_port.t t
| Raw_data : string t

end

We can write a function that takes a Source_kind.t and the corresponding source,

and prints it out.

# let source_to_sexp (type a) (kind : a Source_kind.t) (source : a) =
match kind with
| Filename -> String.sexp_of_t source
| Host_and_port -> Host_and_port.sexp_of_t source
| Raw_data -> String.sexp_of_t source;;

val source_to_sexp : 'a Source_kind.t -> 'a -> Sexp.t = <fun>

But, observing that the right-hand side of Raw_data and Filename are the same, you

might try to merge those cases together with an or-pattern. Unfortunately, that doesn't

work.

# let source_to_sexp (type a) (kind : a Source_kind.t) (source : a) =
match kind with
| Filename | Raw_data -> String.sexp_of_t source
| Host_and_port -> Host_and_port.sexp_of_t source;;

Line 3, characters 47-53:

Error: This expression has type a but an expression was expected of

type

string

Or-patterns do sometimes work, but only when you don't make use of the type

information that is discovered during the patternmatch. Here's an example of a function

that uses or-patterns successfully.

# let requires_io (type a) (kind : a Source_kind.t) =
match kind with
| Filename | Host_and_port -> true
| Raw_data -> false;;

val requires_io : 'a Source_kind.t -> bool = <fun>

In any case, the lack of or-patterns is annoying, but it's not a big deal, since you

can reduce the code duplication by pulling out most of the content of the duplicated

right-hand sides into functions that can be called in each of the duplicated cases.

10.3.2 Deriving Serializers

As will be discussed in more detail in Chapter 21 (Data Serialization with S-

Expressions), s-expressions are a convenient data format for representing structured

data. Rather than write the serializers and deserializers by hand, we typically use
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ppx_sexp_value, which is a syntax extension which auto-generates these functions for

a given type, based on that type's de�nition.

Here's an example:

# type position = { x: float; y: float } [@@deriving sexp];;
type position = { x : float; y : float; }

val position_of_sexp : Sexp.t -> position = <fun>

val sexp_of_position : position -> Sexp.t = <fun>

# sexp_of_position { x = 3.5; y = -2. };;
- : Sexp.t = ((x 3.5) (y -2))

# position_of_sexp (Sexp.of_string "((x 72) (y 1.2))");;
- : position = {x = 72.; y = 1.2}

While [@@deriving sexp] works with most types, it doesn't always work with

GADTs.

# type _ number_kind =
| Int : int number_kind
| Float : float number_kind

[@@deriving sexp];;
Lines 1-4, characters 1-20:

Error: This expression has type int number_kind

but an expression was expected of type a__001_ number_kind

Type int is not compatible with type a__001_

The error message is pretty awful, but if you stop and think about it, it's not too

surprising that we ran into trouble here.What should the type of number_kind_of_sexp

be anyway?When parsing "Int", the returned type would have to be int number_kind,

and when parsing "Float", the type would have to be float number_kind. That kind

of dependency between the value of an argument and the type of the returned value is

just not expressible in OCaml's type system.

This argument doesn't stop us from serializing, and indeed, [@@deriving sexp_of],

which only creates the serializer, works just �ne.

# type _ number_kind =
| Int : int number_kind
| Float : float number_kind
[@@deriving sexp_of];;

type _ number_kind = Int : int number_kind | Float : float number_kind

val sexp_of_number_kind :

('a__001_ -> Sexp.t) -> 'a__001_ number_kind -> Sexp.t = <fun>

# sexp_of_number_kind Int.sexp_of_t Int;;
- : Sexp.t = Int

It is possible to build a deserializer for number_kind, but it's tricky. First, we'll need

a type that packs up a number_kind while hiding its type parameter. This is going to

be the value we return from our parser.

type packed_number_kind = P : _ number_kind -> packed_number_kind

Next, we'll need to create a non-GADT version of our type, for which we'll derive a

deserializer.

type simple_number_kind = Int | Float [@@deriving of_sexp]
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Then, we write a function for converting from our non-GADT type to the packed

variety.

# let simple_number_kind_to_packed_number_kind kind :
packed_number_kind
=
match kind with
| Int -> P Int
| Float -> P Float;;

val simple_number_kind_to_packed_number_kind :

simple_number_kind -> packed_number_kind = <fun>

Finally, we combine our generated sexp-converter with our conversion type to

produce the full deserialization function.

# let number_kind_of_sexp sexp =
simple_number_kind_of_sexp sexp
|> simple_number_kind_to_packed_number_kind;;

val number_kind_of_sexp : Sexp.t -> packed_number_kind = <fun>

And here's that function in action.

# List.map ~f:number_kind_of_sexp
[ Sexp.of_string "Float"; Sexp.of_string "Int" ];;

- : packed_number_kind list = [P Float; P Int]

While all of this is doable, it's de�nitely awkward, and requires some unpleasant

code duplication.
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