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THE DYNAMICS OF TEMPERATE GLACIERS FROM THE
DETAILED VIEWPOINT

By L. LuBouTry
(Laboratoire de Glaciologie du C.N.R.S., 2, rue Trés-Cloitres, Grenoble, France)

ABsTRACT. The stresses and strains in a limited region of a temperate glacier are approximated by poly-
nomials. In this case it seems that we can replace Glen’s law by the more convenient law y = Bor+Biri+
+B:7%. We initially consider a plane problem with a flat glacier surface. In a simple example the theoretical
possibility of very important deviations from the classical relation 7, = pgz sin « is demonstrated. The
calculation is then extended to the more general case when the surface of the glacier is no longer a plane
(the contours remaining always parallel) and where the width of the glacier varies.

Starting from a precise survey of the surface and measurements of surface velocity, one can then obtain
velocities and stresses at depth, and extrapolate the bedrock profile into regions inaccessible by seismic
sounding. A provisional calculation has been made for the ice fall between the Glacier du Géant and the
Glacier du Tacul (Mont-Blanc massif). In the lower part, the existence of a gorge near the right bank and
the fact that the various ice streams partially superpose instead of flowing side by side, make the calculations
uncertain,

In this way the law of friction can be determined experimentally. Proceeding down-glacier, the sliding
velocity decreases from about 830 m/year to about 250 m/year, while the normal pressure increases from
about 2.8 to about 18.5 bar. At the same time the friction increases from about 1.1 to about 4.3 bar, approxi-
mately proportional to the pressure, which seems to be in agreement with the author’s theory of friction.

RESUME. Dynamique du glacier tempéré dans une perspective de detail. Les contraintes et déformations dans une
portion limitée d’un glacier tempéré sont approchées par des polynéomes. Pour cela il semble qu’on puisse
remplacer la loi de Glen par la loi = Bor—+ Bi73-+ B:7%, bien préférable. On envisage d’abord le probléme
plan et une surface du glacier plane. Sur un exemple simple, on montre la possibilité théorique d’écarts
trés importants 4 la relation classique v, = pgzsin . Le calcul est ensuite étendu au cas le plus général
ol la surface du glacier n’est plus un plan (les courbes de niveau restant toutelois paralléles) et ot la largeur
du glacier varie.

A partir d’un levé précis de la surface et de mesures de vitesses superficielles, on peut ainsi obtenir vitesses
et contraintes en profondeur, et extrapoler le profil du lit rocheux en des régions inaccessibles a la prospection
sismique. Un calcul provisoire a été fait pour la chute du glacier entre le Glacier du Géant et le Glacier du
Tacul (Massif du Mont-Blanc). Dans la partie basse, 'existence d’un sillon rive droite et le fait que les divers
courants de glace se superposent partiellement au lieu de se juxtaposer y rend les calculs incertains.

La loi de frottement peut étre ainsi atteinte expérimentalement. Selon ces resultats préliminaires,
d’amont en aval, la vitesse de glissement décroitrait de 830 m/an a 250 m/an, tandis que la pression normale
croitrait de 2,8 4 18,5 bar. Simultanément, le frottement croit de 1,1 a 4,3 bar, a peu prés comme la pression.
Ce resultat est beaucoup plus conforme a la loi de frottement proposée par I'auteur qu'a celle de Weertman.,

ZUSAMMENFASSUNG.  Hinzelne Aspekte der Dynamik temperierter Glelscher. Werden die Spannungen und
Deformationen in einem bregrenzten Bereich eines temperierten Gletschers durch Polynome angenihert,
so ldsst sich anscheinend das Glensche Gesetz durch die giinstigere Formel y = Bor - B’ -+ Ba7® ersetzen.
Zuerst wird ein ebenes Problem bei ebener Gletscherfliche betrachtet. An einem einfachen Beispiel wird die
theoretische Méglichkeit betrichtlicher Abweichungen von der klassischen Beziehung r,, = pgzsin
gezeigt. Dann wird die Berechnung auf einen allgemeineren Fall ausgedehnt, bei dem die Gletscheroberfliche
keine Ebene mehr ist (ihre Héhenlinien bleiben jedoch parallel) und die Breite des Gletschers wechselt.

Ausgehend von einer genauen Aufnahme der Oberfliche und von Messungen der Oberflichengesch-
windigkeit lassen sich so Geschwindigkeiten und Spannungen in der Tiefe bestimmen und Untergrundsprofile
in Gebiete extrapolieren, die der seismischen Tiefenmessung nicht zuginglich sind. Eine vorliufige Berech-
nung wurde fiir den Eisbruch zwischen dem Glacier du Géant und dem Glacier du Tacul (Mont Blane-
Massiv) durchgefiihrt. Im unteren Teil werden die Berechnungen durch das Vorhandensein einer Schlucht
am rechten Rand und durch die Tatsache, dass dort die verschiedenen Eisstréome sich teilweise iiberlagern
statt nebeneinander zu fliessen, unsicher.

Das Reibungsgesetz kann auf diese Weise experimentell ermittelt werden. Gletscherabwirts nimmt die
Geschwindigkeit von 830 m auf 250 m pro Jahr ab, wihrend der Normaldruck von 2.8 auf 18.5 bar steigt.
Gleichzeitig nimmt die Reibung von 1.1 auf 4.3 bar zu, ungefihr so wie der Druck, was mit der Reibungs-
theorie des Verfassers iibereinstimmt.

InTRODUCTION

Glacier dynamics could not be approached without making local fluctuations disappear
to a greater or lesser extent by smoothing. In doing this we can suppress fluctuations having a
wavelength less than some few times the glacier thickness. This overall view (Lliboutry, 1968)
allows us to study the mass balance and kinematic waves, but not, for example, an ice fall,
the extreme end of a glacier, or crevasse systems.
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It is this detailed point of view that we shall consider in this paper. We will only eliminate
details with a scale of some ten metres or less. An ice fall seems to a man to be an impassible
chaos of seracs, but these irregularities only concern a relatively thin surface layer. Whether
on the surface we have seracs separated by very wide crevasses or a uniform layer of ice of the
same weight, at a depth of some tens of metres the stresses and strains are the same (by extend-
ing to plasticity St Venant’s principle as used in elasticity).

We shall seek to approximate the stresses and strains in a limited region of a glacier by
polynomials in x, y and z. Then we shall apply the formulae obtained to a specific case where,
for a distance of about a kilometre, velocities, curvature, thickness etc. vary considerably.

Frow Law orF Ice

We shall assume as usual: (a) that only the stress and strain-rate tensors enter, and not
terms introduced by the mechanics of finite deformation; (b) that the relation between these
tensors is linear; (c) that the ice is incompressible and isotropic; (d) it follows from these three
hypotheses (Lliboutry, in press) that at a given point the strain-rate tensor [€] and the stress
deviator tensor [ofj] are proportional (the Lévy-Mises equations):

[ais] = —2n(x,2, 2)[€i1] (1)

(we shall write j; as simply of when i = j, and as 7i; when i # j).

As usual we shall assume that the “viscosity” 7 is a function only of the second invariant
of one or other of the tensors. This invariant can be replaced by the effective shear stress,
which for the plane problem reduces to

7= (o) (2)
One can adopt the general law of Glen (1955)
g = p[r = B~ (3)

but the sector of values proposed for n and B is large.

In laboratory experiments, when transient creep has not been fully eliminated (and this
seems to be the case for Steinemann’s (1958) measurements), one finds that » increases with 7.
For low values of 7, n tends to 1. The values found by Glen before he eliminated transient
creep, and which he represents by the following law (bearing in mind that he uses 0 = 74/3
and ¢ = y/4/3, and taking the metre, the bar and the year as units):

y = 1.687317 (4)

are much better represented by the following law, which allows us to express y and 7 simul-
taneously by polynomials in x, y and z:

v = 0.97+0.47340.17° (5)
as is shown in Table I.

TabLE I. Comparison oF FLow LAws wiTH THE “MINIMUM STRAIN-RATES™ FOUND BY GLEN

Glen’s law Law proposed
7= afy/3 v y = 1.687%"7 y = 097} 047 +0.17°

bar year—' year ' year™
0.525 0.502 0.823 0.571
0.872 1.18 2.60 1.10
1.322 2.22 4.07 2.51
1.878 7.24 12.55 6.66
2.08 11.9 17.1 9.37
3.50 84.6 89.0 73.1

3.58 82.2 96 80.6
4.93 211 262 344

5.01 346% 277 371

5.20 454 311 442

5-31 561 335 489

* Mean of three values.
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Glen modified his laboratory measurements in attempting to eliminate the part played by
transient creep. For polycrystalline temperate ice, he obtained in this way five values which
gave him (in metre-bar-year units) n = 4.2, B = 0.296. However the law adopted for
transient creep is open to question, and further for glacier ice the law is perhaps different.
The results collected together by Meier (1960), who brought together these corrected values
of Glen’s and others obtained on glaciers at low 3 are better represented by the following law
(bearing in mind that Meier uses oo = 4/(2/3) 7 and é, = y/4/6):

y = 0.0367-}0.137%5, (6)
The exponent 4.5 was chosen according to Weertman’s theory, since abandoned. Those

of the results obtained taking account of the longitudinal strain-rate are equally well repre-
sented by the law:

v = 0.0367+40.08073+0.0537° (7)
the coefficients of which have been estimated graphically plotting y/7 and y/7} as functions
of 7.

It thus seems that at the present state of our knowledge we can adopt a flow law
- ’1-: — Bo+Bi13+Bs 14, (8)

This has the very great advantage as compared with Glen’s law then it can lead to analytic
solutions for stresses and strains even if they cancel at the origin. But it must be realized
that the law does differ basically from the law of Equation (3), and that the study of
temperate glaciers will allow us some day to decide between the two. If three pairs of variables
(¥, 7) satisfy Glen’s law with § << n < 5, when one tries to fit Equation (8) one finds B,
negative, as is shown in the Appendix. Such a result is physically absurd.

It is therefore of interest for glaciologists to use Equation (8) as a flow law to analyse their
results. To evaluate Bo, B, and B., it is only necessary to plot p/73 as a function of 7* and as a
function of 1/7%.

GENERAL EQUATIONS FOR THE PLANE PROBLEM WHEN THE SURFACE 18 FLAT

We shall consider compressions positive, which results in some modifications of the classical
formulae.

zA

<0

X<o

Fig. 1. Notation and sign convention for the plane problem.
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Let us consider a small volume of a continuous medium. We consider the normal to the
surface towards the interior, and choose as positive sense for stresses those indicated in Figure 1
(a and b). Let us consider a surface whose normal makes an angle 6 with Ox. The medium
outside exerts on this little volume a stress whose components are (cf. Fig. 1c):

parallel to Ox: X = 04 cos 0+ 74;5sin 8,
parallel to Oz: £ = Tgzc0s -} 0zsin 0, (9)
parallel to n: N = Xcos 0} sinf

= Moyp+0z) +3(oz—0z)cos 20474, sin 240, (10)

parallel to an axis obtained by rotating 4 from n:

T = —Xsin 8+ cos O
== —%(Gxﬁﬂz)sin29+7sz0529- (II)

Fig. 2. Carlesian axes adopted for the plane problem.

When the glacier surface is flat, it is convenient to take the following as cartesian co-
ordinates (Fig. 2): Ox along the line of greatest slope, Oz normal to the surface downwards.
If we put u and w for the components of velocity parallel to Ox and Oz, the fact that the
coordinates are cartesian implies that
ou y ow

. 1f{0u ow
€xz—aa+a-

We shall limit ourselves to begin with to the plane problem (flow lines in vertical planes
parallel to y = constant). Thus:

(12)

éyyzéxy:éyzzo, v =0, (13)
) i cu  tw
€xxt€zz = 5"_8_4-_ = 0. (14)
The equilibrium conditions reduce to:
E’O’z 81';;

A

ox 0z

= pgsina,
5 5 (15)
OT zz gz

F a_z=ngOSOt.

With the axes chosen in this way, o is the (positive) angle that Ox makes with the horizontal,
and for z = o, the boundary conditions are:

éxz = Tgz = O, gz — H. (16)
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APPROXIMATE SOLUTIONS NEAR THE ORIGIN

Near the origin, the components of velocity, « and w, can be approximated by polynomials
in x and z. To satisfy Equations (14) and (16), these velocities must have the form

U = uot-ax+-cz-+ma’ - 2exz+ (m—k) 2>+ 0;,
W= wo—cx—az—ex’—2mxz—ez*+ 03, (17)

O; stands for terms in x and z of third or higher order (not the same in each case). All

the coefficients uo, a, ¢, ..., with the exception of & can be determined from the velocities of
stakes fixed in the glacier surface, their velocity components being
Uy = Ho+ax-+mx*+ 0j,
_ - (18)
wg = wo—cx—ex*— Os.

We see that it is just as important to determine movements perpendicular to the surface
as parallel to it, and that simple measurements between stakes, such as those proposed by
Nye (1959), without observations from fixed stations off the glacier, are insufficient.

According to Equation (12), the strain-rates are

€rr = —€;; — a-tomxtoez+0,,
é;rg == —kz+02- (19)

The second-order terms in the strain-rates can not be determined in practice because one
would have to be able to determine third-order terms in the velocities, and above all because
of the existence of correction terms of which we shall speak later (when the problem is not
plane and the surface curves). We cannot therefore expect in practice to get anything
beyond first-order terms for the stresses. Nothing however stops us from examining the form
which second-order terms should have; the method indicated below allows this.

We can easily show that, to satisfy Equations (15) and the boundary conditions, Equations
(16), if the origin is not a singularity, the development around the origin must have the form

o = H—44—8Mx-| (pgcos a—8E) z—4Fx*—8Gxz —4(FL-K)z*+0;,
o; = H-(pgcosa)z—4lz*+ Oy, (20)
Tzz = (pgsin a+8M)z+8Fxz+4Gz*+0;.
The stress deviator ¢, = —o takes the simple form
o = §(og—0z) = 2(A+2Mx+2Ez 4 Fx*4-2Gxz+-Kz*)+0;. (21)

The Lévy—-Mises equations (1) can be written, if one uses as flow law Equation (8),

€re = —€z = — = }(Boo,+Bi a3+ B o, Tot B0 +2Bro37+Bao, 1)),
27
(22)
—€y = —7? = 3(Bo e+ B "r;z+BI Tzz0,+B. 1,28, -r;z 0.2+ B2 72, 0 1).
It only remains to substitute for €44, €2z, 74z and o from Equations (19) and (20) and
solve.
When only looking for the leading terms, one can proceed much more quickly by writing
the Lévy-Mises equations, whatever the flow law adopted,

at2mx+2ez+4 ... . i S _)_'1
AtoMxLoFEz+ ... pgsin a+8M-4 ... 7 (23)
At the origin itself
A . B (2
4 pgsinat+8M  \7), (24)
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Compared with this state, strain-rates and stresses near the origin have undergone a
perturbation. The ratio of the perturbations is in this case equal to the differential viscosity
dr/dy. It follows that

m e dy
=7 (a;)o- (25)
If one adopts flow law (8), then
(#/7)o = Bot-Bi(24)*+Ba(24)%, (26)
(dy/dT)o = Ba+3Bi(24)*+5B.(24)%.

Starting from measured values of @, one first determines 4 from
a = BOA+4.B[ A.i+16Bz A5 (27)

from which we get (/7)o and (dy/d7)e. Then M and E are deduced from Equation (25).
Finally k£ can be deduced from Equation (24) which can be written

 pgsinay (170
k= 2 (T) n+4‘?n (d'})/d".")o. (28)

If one retains Glen’s law as flow law (Equation (3)), then Equations (26) and (27) have
to be replaced by
(/7)o = B(a|d|)n-+ = B(2|al B n-rm, -
(dy/dr)o = n(7)e. #

In this case the calculation is somewhat faster, but the terminated expansion in 1/n is only
valid if @ > 2mx+2¢z. When a = o it is necessary in order to obtain a terminated expansion,
to take the origin at a certain depth below the surface.

The above approximate formulae allow us to study the stresses from the detailed point of
view, for which Nye’s (1957) classical solution is no longer valid. We recall that this solution
presupposes stresses and strains independent of x (¢ =m = ¢ =0, M = E=0).

Paterson and Savage (1963[a], [b]; Savage and Paterson, 1963) have already introduced
terms in ¢ and e, but not the one in m. The present author (Lliboutry, 1964-65, Tom. 2,
p- 592-94) has already introduced terms in m and ¢, but in a case limited to a Newtonian
viscosity (B: = B: = 0) and for a constant thickness £, which has as consequence thate = o
and m = —c¢/2h. For a Newtonian viscous body and the plane problem, a general solution
has recently been given by Shumskiy (1967) (but this solution is only rigorous for the case of
a flat glacier surface, contrary to what the author seems to believe).

APPLICATION TO THE STUDY OF FRICTION

Let us suppose that the first-order expressions found for the stresses, and those of the second
order for the velocities, constitute valid approximations right down to the rock bed. This
must be the case for a thin layer of ice sliding rapidly. If the thickness 4 of the ice layer is
known at x = 0, one can estimate the slope B of the bedrock, and then calculate the sliding
velocity U and the friction per unit area f with the aid of the following relations (the suffix &
indicates values at depth £):

tan (a—B) = —wpnfup, (30)
U = upcos (a—p)—wpsin (a—p), (31)
f= (a2)n cos 2(a—B) — (o) n sin 2(x—B). (32)

This last equation, already given by Lliboutry (1968), can be deduced from Equation (1 1)
putting 7 = —f and 0 = }m— (x—p). Similarly Equation (10) gives the normal pressure
on the bedrock,

N = }oz+0:)+3(0:—0z) cos 2(x—B) +7zz5in 2(x—B). (33)
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Even if the thickness is uniform (« = ), the friction is not equal, from the detailed point

of view, to pghsina. It is
S = pghsin o+ 8Mh (34)

(a differential equation giving fhas also been given by Shumskiy and others, [¢1964], but as it
presupposes Newtonian viscosity and does not take account of terms introduced by the
curvature of the surface, it is not rigorous, and so of little interest).

STupy OF A SIMPLE EXAMPLE

To illuminate this possibility( f # pgh sin «), we shall now examine a simple example which
is somewhat like the cirque glaciers studied by Lewis and others (Lewis, 1960) if, as we shall
suppose, the ice can be approximated by a Newtonian viscous body (B: — B, — 0). We
recall that for the plane problem and a Newtonian viscous body, a very general solution has
been given by Shumskiy (1967).

Let us suppose that in Equations (17) the 05 terms are zero, and that, with w, D and R
positive constants

a =0, € = 0,
¢ = 2uo D|R?, k = 2uy/R?, (35)
m = —u/R?, Wo = 0,

(we have arbitrarily put e = o and £ = —2m in order to obtain a simple geometrical solution).

We take our origin at the equilibrium line. If the glacier is in a state where the mass balance
b = wo at the surface, J being the altitude,

1 ob
T sina il (36)
Furthermore, Equations (23) and (24) give, when dy/dr = y/r
~ pgsin %
k==p—t4m (37)
whence pesin a = 12uo/Bo R?, (38)

sin o and ¢6/¢{ being determined by the location, it follows that uo/R?* and D are determined
by the location. The expressions for the velocities are then

u zDz & ¥z

w TR ORR
w 2Dx  2xz (39)
w R R

We see that at the centre of the glacier the velocities initially increase with depth. The flow
lines have as equations
D 'z 2 Dy
? —udz—wdy = R e
udz—wdx un[z-i- E RE B R

2y a8 (40)
= to D—uo(D—2) l:l—i—;%;i:l,

@ is a constant which represents the volume flux per unit width passing between the point
under consideration and the equilibrium line x = z = 0. A flow line joins the points (—L, o)
and (L, o) going through the point (o, ) where

L r B »

E-D R ED (41)
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When @ = uo D, the flow line consists of the line parallel to the surface z = D and the
two arcs of the circle 2+ 22 = R, as shown in Figure 3. Other flow lines are also shown
there. One can trace them out point by point by writing Equation (36) in the form

42 = (AR)?,
- (D,Iuo— AZ
==

(42)

2 ; 0 < A<I.

" K

+R

Fig. g. Simple example where f # pgh sin a. The dashed part is without physical significance in the case of a glacier.

Any one of these flow lines could constitute the rock bed provided two conditions are simul-
taneously satisfied:

(a) The law of friction must be satisfied : taking account of Equations (23), (25) and (35),
A=E=F=G=o, M = m|Bo R* = —pgsinaf12. (43)
Equations (16) and (17) for the stresses then become

oz = H-+pgz cos o+ §pgxsin a,
o, = H+-pgzcosa (44)

Tgz — -ls-pgz Sin ot.

At the centre, we have the shear stress on the bed as }pgh sin o, or only one third of the classical
value. 1f it is the straight line z = D and the two arcs of circles that constitute the rock bed,
the friction is everywhere }pgzsin a. This is obvious along the straight line. Along the
circle tan (a—B) = x/z and thus according to Equation (32)

; Z(F—x%) 2x’z !
i pgsmot[ e +z’+x‘] = lpgzsina. (45)

With other flow lines as lower limit of the glacier, the friction no longer tends to zero at its
two extremities for sin 2(x—8) does not cancel out there. This however is not necessarily
absurd, the friction can vary in the opposite sense from the velocity (Lliboutry, 1968). One
can therefore suppose that the roughness and drainage at the bedrock are such that the law
of friction is everywhere satisfied.

On the other hand the flow lines shown dashed in Figure § which describe closed loops
below z — D can have no physical significance, since the frictional force is in the direction
of movement. (In a general way, it does not seem likely that “eddies™ of ice cut off from all
accumulation could exist in hollows of the bedrock, however deep they might be.)
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(b) The stress perpendicular to the bedrock must be a compression, the wall not being able to exercise
a pull on a temperate glacier. The most critical point is the upper limit of the glacier
(¥ = —L, z = 0). As atmospheric pressure can make itself felt between the ice and rock,
it does not enter. oy is always negative, o, is zero, which leads to the condition |8—a| < 45°,
or u > w. Using Equation (39) this can be written

1—L*R* > 2DL/R?, (46)
or L < (R*+D¥"* D, (47)

This condition is not necessary when the glacier is limited at the top not by rock, but by an ice
cap.

GENERAL EQuaTions IN CURVILINEAR COORDINATES

It is rare that the surface of a glacier, even smoothed so as to make all the sinuosities of
wavelength less than the thickness disappear, can be approximated by a plane. Let us con-
sider the much more general case where this is not so, the contours of the surface nevertheless
remaining parallel straight lines.

It is then advantageous, if we wish to obtain approximate analytical solutions, to use
curvilinear coordinates. The x-axis will be a line of greatest slope. The curves ¥ = constant
will be perpendiculars to this line. The abscissa x of a point is the distance measured along the
surface, its ordinate z is the distance from the surface. (It must be assumed that the centre of
curvature of the surface is never found within the glacier.) The conditions at the upper
surface then remain the simple conditions (16).

With these curvilinear axes, Equations (12) and (15) cease to be valid:

(a) The true distance between two points having the same z and abscissae x and x--dx is
not dx but
R—¢
R
where R is the radius of curvature counted positive when the surface is convex. In Equations
(12) and (15), derivatives with respect to x must be multiplied by dx/dx, = R/(R—z).

d.’l‘n =

dx (48)

Fig. 4. (left) Diagram to illusirate the equilibrium equation with curvilinear coordinates.
Fig. 5. (right) Diagram to illustrate the calculation of sirain-rates in curvilinear coordinales.
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(b) To write the equilibrium conditions, we must consider the little parallelopiped of dimen-
sions dx, dy, dz. The two faces separated by dz are tangents to surfaces z = constant (Fig. 4).
The others differ by an angle dxo/(R—2z). The stresses acting on this face are no longer
X and Z given by Equations (9), but N and T given by Equations (10) and (11), with

dxo dx,

0= w—— sin 0 ~ 7 sin* f &~ o, cos ) =~ —1; (49)
de
N=o0oz—27m 35—,
il (50)
dxn

T= Tzz+(0'x—0'z) RT

- . ' or i
Further, on this face the tangential force parallel to Oy is not simply — (frnyr E:y dxu) dy dz.

d 2 ; ;
One must add a force ‘TyzR_zz'dxa dy as can be seen by considering the little triangular

prism of which this face is a side. The equations of equilibrium can now be written

00y N—oay a"1'_1:3,r aTIZ . )
e — — pgsin o,
ax0+ a5 o Y o 22 24
0 0 ¢
Tzy ﬂJr Twz  Tyz o, >(51)
dxo Oy 0z R—z
8Tzz Taz— 1 Oy 0oy
T2 0S
0xo dxo dy ' 0z R RN J
or finally
aa;,; R 2T xz a'T':sy i aTzz = - )
ox R—z R—2z' 3 ' oz = R
or R day Ot T
Ty L ve  Twz o, >(52)
éx R—z @& 0z R—z
Otz R Ox—0z  OTy: 30;7
e B—%" B ' By  Bg PR

e

Analogous correction terms enter into the strains as examination of Figure 5 shows.
Their Equations (12) must be replaced by

_ou R w ., _1[ov dw
R oxR—z R—7 E”‘”‘_E_?E ?y ’
, _op . 1[0 Ow R u -
€yy = a—y’ €y — 2 _EZ ER—Z-FR—Z 3 53
’ ow . 1[ov ow
=g o =almt ) J

The o047 and the €;; having been thus corrected, the Lévy-Mises equations (1) remain valid.
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CALCULATION OF THE DEFORMATIONS AROUND THE ORIGIN IN THE GENERAL CASE

A good photogrammetric survey of the surface allows the determination of the slope a(x),
and thence of the curvature 1/R = dua/dx and even, with rather low precision, the variation
of this curvature d?e/dx?. It is illusive to wish to go further. We shall therefore put

da I s \
= 5 =D+ +04(x), (54)
which implies
2 iraion |
=
l (55)
F—p = (T+T'%)(14T2)+0; = T+ s+ 22+ 0a J

Furthermore, in general, the width of the ice stream varies, and the problem ceases to be
plane. We nevertheless assume the valley to be rectilinear and thus the plane y = o to be a
symmetry plane for the flow (at least to the third-order terms in x, y and z). o being the com-
ponent of velocity in the transverse direction Oy, its expansion is an odd function of y, while for
u and w it is an even function. We shall put

®la

= )(A+A'%)+0; (56)

assuming that terms in yz do not exist. (This amounts to assuming that flow lines starting
from points with the same x and » have an identical projection on the glacier surface at least
to terms of third order.) With this hypothesis, one can determine A and A’ graphically. If
T is the width of an ice stream, its variation along Ox is

1dY
Y dx
We retain for u and w the Equations (17), with supplementary terms in 32. The expansions
of the velocities can then be written

U = Uo+ax—+c z+mx+2e'xz+ (m' —k) 22 —sp2 4 05, }(58)

W= wo—cx—a' z—ex*—am'xz—e" 2 —s5'y2+ 0.

= KA Oylx). (57)

And taking account of Equation (56)
v = o Ay+(aA+uo A') xp+c'Ayz+0;.
Equations (49) then give the strain-rates
€xz = (a—wo [)+-(2m -+ el —wo I'') x4 (26 +al +a'T'—w, T'2) 240,
€yy = o A+ (aA+uo A') x+-c'Az+ 0, (59)
€2z = —a'—am'x—2e"z40,,
2€y; = (¢’ —ctuo )+ (26 —2¢e+al' +uo I') ¥+ (—2k—cD+¢' T 4uo I'2) 2+ 0,
2€py = (—2s+aA4-uo A') y+ 0, (60)
2€y; = (—25' +c'A) y+0..
€z2+€yy+€;z — 0 everywhere, while €;, and €,, disappear for z = o. This determines
all the unknown coefficients except k. In the expressions below the terms in e, ¢ and wo, put
on the extreme right, are usually negligible.

ad=a FuA —wo I,

¢ = —uo I +-¢,

o5 = —uy TA +cA (61)
om’ = aA Huo A" +om+cl'—we I,

2¢" = —all—ue I +2¢,

2¢" = all —uo [ +2¢ +cA—2wo, ™.
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It can be seen that s" can be determined from measurements of the displacement of stakes,
at least in theory. If we have been able to find such a relation determining s', it is because we
have imposed the limitation that lines of greatest slope shall be parallel to Ox.

With Equations (61), the shear strain-rates parallel to the surface are reduced to

Egz = ’kz+02:
éyz - O:.

}(62)

Until now we have only had an estimate due to Nye (1959), made under the assumption
that o = ¢ = ¢ =m = A = 0. The €z is reduced to

ézz=a(1+Tz)—u IVz. (63)
Nye supposes that, when the sliding is rapid (o = un), €z = 0 for z = }h. Thus
am uy h. (64)

He then applies his classical solution to calculate the stresses, although it is not valid except
for a uniform layer of ice. However, the thickness ceases to be uniform as soon as the surface
is curved. The actual calculation of the stresses is more subtle, and involves I'.

CALCULATION OF THE STRESSES IN THE GENERAL CASE

The method used to calculate the stresses for the plane problem and a flat surface can be
extended to cover the general case. We shall confine ourselves to finding the first-order terms.
The symmetry of the flow with respect to the plane y = o, and Equations (59) and (60)
for the strain-rate components to which the stress deviator components are proportional,
show that ¢4, oy, oz, and 74, must be even functions of y, while 74y and 74, must be odd
functions. We shall therefore put a priori, so as also to satisfy the boundary conditions for
=10,
ar = (H—4A4)—8Mx-+ (pg cos a—8E)z+ 0,
oy = (H—24")—4M'x+(pg cos a—4E") 2+ O-,
0 = H+(pgcos atp) z+0s, (65)
Tzz = (pgsinatp') 240, o
Tay = 45+ 0s,

T = O'z.
The equilibrium conditions, Equations (52), give that
—8M+45+p" = o, 66
—4‘AF+|u. = 0. ( )
The Lévy-Mises equations can be written
L. 3€zz " 3€uu _ €z —fy  —€ay (67)
27 —20z+0oy+0o; —20y+0;+0g Taz Ty Tay

(there is no need to add the ratio —é;;/o;, because we have already taken account of the
conservation of volume).
At the origin itself these equations give
()'z g3(a—w, I") quo A 2k as—al—uo A’
_).. T T4A—A oA —2d pgsinat+8M—4S i 28 |
For small deviations starting from this state, it is the differential viscosity which enters.
A variation of x gives

(68)

T

(d_-y ~ g(emtel—wo 1)  g(aAfuo A') (60)
drle = 8M—2M  ~ 4M—M ° ¥

a variation of 2

(d_’}‘/) N 3(GF—H0 r’-{-un ra’\+2€—QW(1 T“) - S(CA— Uo ]‘.‘f\)
dre 8E—2E +2AT — 3E —4Et2AT (70)
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From Equations (68) and (69) we deduce that
QA(‘}:‘,"T)Q == Q(G—EUH F) +uo A,
A'(')'J,t"r)o — ((I—LUQ r)+QU(| A,
4M(dy/dT)e = 2(2m+ecT —wo I') + (@A +uo A'), (71)
2M'(dp/dT)e = (2m+el'—wo [V) +2(aA+uo A'),
28(p/7)o = 25— (a+us A').
To simplify this, we shall define n by the equation
(dy[d7)o = n(p[7)o (72)
even if we are not adopting Glen’s flow law.
M and S being known, we deduce k£ from Equation (68)

PR sin o ('y 2(2m—4cl'—w, ')
- 74 04_ n

= —25+(I +i)(az\—|—uo ALY (73)

=
Finally, from Equation (70) we deduce E and E’. These calculations give
4E(dy/dT)e = ge—2us ' —(2n—2) al'— (n—1) o TA+cA - (2n—4) wo T3,
2F' (dy/dT)e = 2¢e—uo [V — (4n—1) al'— (2n+ 1) uo TA{2¢A - (qn—2) wo "2, ~(74)
(4E+2A4T) (dy/dT)0 = ge—2uo I'"+2al’+-uo TA+-cA —4quwo I,

For the calculation of the friction we need

Tae & 2k2/(9]7)o, ]
Yoz—og) & 24+4Mx+(4E+24TD) 2, (75)
oyt o) ® H—24—4Mx-+(pg cos a—4E+2A4T) z.

To calculate (y/7)o and (dy/d7)s, we start from the general expression for y,

17 = $(€ar? Feéyr+622%) Tz T€ay® et (76)
At the origin the effective strain-rate is
o = 2[(@a—wo I')2+ (uo A)2+(a—wo IMuo A1 (77)
If we adopt the flow law given by Equation (4),
Yo = Bo To+B1 73+ B2 705, (78)

We calculate 7, then yo/70 and
(dy/dr)e = Bo+-3Bx mo+ 5B, 7ot. (79)
If we adopt Glen’s law, we would have directly

(:—i)n _ B(%)(ﬂ—xl/ﬂ (80)

but we have to verify that a > 2mx|2ez.

APPLICATION TO A PArTICULAR CASE

We have applied the above equations to the ice fall of the Mer de Glace (in the wide sense)
between the place called “la Bédiere” and the Glacier du Tacul. We have available a stereo-
plot at 1 : 10 0oo made by the Institut Géographique National from their aerial coverage in
1958, measurements of surface velocity made between 13 April and 20 July 1960 (Lliboutry
and others, 1962) and in the lower part several seismic reflection sites (Vallon, 1961). Figure
6 shows a map of the area.

The first problem is to determine the central ice flow line. This is indicated by the medial
moraines coming from la Noire and Petit Rognon, and by the septum called “la Bédiére”,
which marks the confluence of the Glacier du Géant with the Vallée Blanche, a septum the
trace of which is found again immediately below the seracs and which we shall take as the
western limit of the ice stream. We are also guided by the series of large transverse crevasses
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Fig. 6. Map of the region sludied after the sterea-plot of the Institut Géographique National (aerial pholography in 1953).
Smoothed contour lines. Only the largest crevasses and the cliff of seracs are indicated. The arrows represent the displacement
in 100 d. The ice stream studied is bounded by the dashed lines.

of the Glacier du Géant and by the shape of the contour lines. This ice stream is only recti-
linear for about 800 m. On either side it curves, but, of the six points studied, only the two
most down-glacier (e and F) are off the rectilinear portion.

A more troublesome fact is that, in the lower part, seismic soundings have shown that the
rock bed deepens towards the right margin (east side), the thickness of the glacier (measured
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perpendicular to the slope) there reaches 390 m, whereas it is only some 280 m near the centre,
and doubtless even less at the left margin. This shows itself on the surface by the fact that the
contour lines cease to be perpendicular to the ice flow, and that the maximum velocity is
displaced towards the right margin,

Fig. 7. Longitudinal cross-section. Three longitudinal profiles of the surface separated Srom each other by 100 m have been
included. The curvilinear axes based on the mean profile are shown. (a): Bedrock estimated Sfrom a first analysis of the
velocities (this paper), (b) : Bedrock determined by seismic reflexion (Vallon, 1g961).

Taking account of the whole mass balance of the glacier, the discharge of the central ice
stream must be between 12 and 15 hm?/year. The observed thicknesses (if they are not the
result of erroneous interpretation of the seismograms) lead to a discharge of at least 20 hm3/
year. However, it seems that in this lower part the ice stream coming from the right side of
the Glacier du Géant disappears from the surface; it plunges in the place indicated and the
central ice stream superposes itself partially on top of it.

The conclusion is that the results found for points £ and ¥ will doubtless be only gross
approximations.

Longitudinal profiles along the axis of flow and 100 m to either side of it are shown in
Figure 7. They allow us to trace the mean surface, that is to say the x-axis, and to graduate it.
We can then determine «(x) graphically, and its derivative (I'4-I"x). Inorder that I'" should
not take very high values, some adjustments are made to these curves. In this way a certain
amount of smoothing is done, necessarily somewhat subjectively. (This will be improved in
proper calculations to be carried out later by a procedure which is more automatic and
objective.) The determination of the width of the ice current ¥ and its logarithmic derivative
(A-+A'x) is easier. All these functions of x are plotted in Figure 8.

The determination of u(x), very high in this region, cannot be done to the precision we
would wish for a fundamental reason, which is not entirely dissimilar from Heisenberg’s
uncertainty principle in quantum physics. If one measures the displacement over a very short
time, the location is perfectly determinate, but the velocity is perturbed by seasonal or random
perturbations (related to the opening of crevasses, the toppling of seracs, the collapse of sub-
glacial cavities). If one measures the displacement between two instants more separated in time,
one has a good average velocity with time, but relative to a poorly defined location. Here
again we must seek to make the derivative (a+2mx) as smooth as possible.

As for w(x) and its derivative (—c—2ex), we shall accept that these are practically equal
to the balance, itself not known very precisely because the annual displacement is too large,
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Fig. 8. Determination of various paramelers which appear in the study of the flow.
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and because it is not possible to place stakes in the region with seracs. This is however un-
important as the corresponding terms are negligible in the calculations.

It remains to determine 5. It can be estimated starting from the fact that at the top of the
ice fall the crevasses are straight and at the bottom ogives appear which are markedly arcuate.
The centre has travelled a distance L, the margins a distance L— AL. Assuming that the ratio
of the surface velocities along the axis of the stream and at the edges is independent of x,

s¥Y2luo = L[L. (81)
In this way we find s = 1.72 X 107%0 m~2 (4o in m/year).
The values of the velocity coefficients taking successively as origin each of the six points

A, B, C, ..., F marked on Figure 7, are presented in Table II. Apart from the last, these
points have been chosen in such a way that either ' or I" is zero; this simplifies the calcula-

tions.
Tasre II. InrmiaL NUMERICAL VALUES
Points A B c D E F

x —430 o 155 420 730 1 000 m
tan a 0.28 0.61 0.40 0.055 0.27 0.11
I' » 10# 13 0 27 o o —8.5 e
I % 108 o —5.5 o 33 —11.6 5.8 i
g3 470 420 360 300 270 280 m
Ax 1ot —2:7 — 7.4 —7.8 —4.2 o Z.3 m~’
A X 108 4.6 —1.9 0.8 1.5 1.3 0.7 m=>
o 880 540 400 280 310 215 m year '
ax 1o’ 0 — 106 —75 o -35 —20 year—"
2m X 10/ —70 14 24 34 —28 9 m~" year—"
wo -0.6 —1.8 —2.2 —a.5 —2.6 —2.9 m year—*
¢x 10 0.10 0.31 0.24 0.03 0.09 0.09 year—'
2¢ % 104 0.06 o —0.08 o o o m~" year~'
sx10* 15.1 9.3 6.9 4.8 5.3 2.9 m~" year—'

CALCULATION OF THE VELOCITIES AT DEPTH AND DETERMINATION OF THE Rock BED

The calculation of the effective variables has been carried out using Glen’s law and using
the polynomial proposed in Equation (7). As Table IIT shows, the results are not very
different. We shall here follow the calculations using Equation (7).

Tarre 11I. EFFECTIVE VARIABLES AT THE ORIGIN

A B c D E ¥

a—wol'= a (4] —1.06 —0.75 o —0.35 0.20 year '
uo\ —0.238 —0.400 —0.312 —0.118 o 0.047 yvear—'
Yo 0.476 2.61 1.89 0.236 0.70 0.362 year—*
Glen’s law [ 7o 1.120 1.680 1.555 0.949 1.228 1.049

n=4.2 (y/7)a 0.425 1.553 L.21% 0.250 0.570 0.345
Polynomial (7o 1.345 2.038 1.890 1.105 1.486 1.249

law, . (p/7)o  0.354 1.280 1.000 0.214 0.471 0.290

Equation (7) [ n 377 4.38 4.28 3.40 3.93 3.64

The velocities at depth below the origin, bearing in mind that the terms in ¢ and w, are
negligible, are given by

u & uy—uo 'z—(k—m') 22, 1(82)

w & we—(atue A)z—L(al'—u, ) 22 J
: _,_mfxi_) N L) A .
with k—m' = = (T)OT(H I m+(2+ﬂ‘. (aA+tuo A") —2s. (83)

These coefficients are given in Table IV, and the corresponding profiles in Figure q.
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NN

Fig. g. Velocity profiles at various points of the ice fall, and mos probable level of bedrock.

TapLE IV. DETERMINATION OF THE VELOCITIES AT DEPTH AND OF THE Rock BED

A B c D E ¥
¢ = —ul’ —1.15 o 1.08 o o 0.24 year"
(k—m’) x 10! 70.4 204 168 11.4 56.1 15.0 m~" year "
a’ = a-+io\ —0.24 —1.46 —1.06 —0.12 —0.35 -0.25 year '

e” x 104 = (al'—ul’) x 10* 0 14.8 10.1 —4.5 18.0 — 5.4 m~" year™'
h 34 64.3 2.5 161 220 210 m

¢ 10° 13.7 13.5 19.4 13.2 13.0 12.8 m? year—'
up 833 418 357 250 39 199 m year~'
wn 8.1 86 87 28.4 —12.6 73 m year™"
a—f —33" —11° 38 —13° 427 —6732° ? —20° 21’

The velocity vectors being given in the longitudinal profile (Fig. 7), the line of the rock
bed can be found with sufficient precision if we do not have the difficulties indicated above for
the points £ and ¥. A more exact calculation will be made when the surface velocities have
been measured with more precision (a) in the ice fall by terrestrial photogrammetry from the
region of the Requin hut, (b) near “la Bédiére” with the help of accumulation stakes (square-
sectioned steel tubes, anchored at their bases) whose position could be determined by inter-
section from fixed points. These measurements are now in progress.

Table IV also contains the thicknesses & thus found, and the corresponding values of the
discharge &, of u, w and (x—B). Between two points the variation in discharge must be equal
to the sum of the balance over all surfaces of the ice stream. This allows us, if we suppose one
value of 4 to be perfectly known, to determine the others with precision. In the present case h
at the lower extremity has been measured by seismic reflexion and the values of b in this
region by ablation stakes (Vallon, 1961). The equilibrium line 6 = o can be located by
visual inspection. We note that at the point E, where u, and wj become small, the calculation

of «—B breaks down.
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CALCULATION OF THE STRESSES AND FRICTION
To calculate the stresses, we must calculate at each point

e
T)o
i T . (84)
o Pl

These values are given in Table V, as are those of £ given by Equation (73). 24 is the
value of §(c,—az) at the surface. Against the bedrock, the values of 7., Y oz—o0z) and
}(0;—og) are deduced from Equations (75) with ¥ = 0, z = A. From these the friction f and
the normal pressure A are deduced using Equations (32) and (33).

TaBLe V. CALCULATION OF THE STrESSES AND FricTiON

A B c D E F

kx10? 0.556 3.047 1.843 0.305 0.441 o.201  year ' m~'
24 —0.67 =197 1.81 —0.55 —1.49 —1.22 bar
2AI % 104 —8.7 0 49 0 0 10.4 bar m '
4E x 10t 6.4 10.6 —37.6 —24.7 38.8 —31.2 bar m~'
For z = h:
Trz 1.07 3.06 g.41 4.60 4.11 2.91 bar
$(oz—02) —0.68 1.96 —1.71 —0.95 0.63 —1.66 bar
Y(oz+og)—H 3.47 6.74 9.80 14.95 19.13 20.27 bar

1.06 2.04 2.25 4.28 (4) (1.1) bar
N—H 2.78 3.73 6.71 12.98 (18.5) (17.1) bar
U 834 427 368 252 (40) (210) m year

(The numbers in parentheses are very imprecise.)

Between A and b, the sliding velocity U decreases from 834 to 252 m/year, while the
friction increases from 1.06 to 4.28 bar. For these high-sliding velocities, the friction appears
to be largely proportional to the normal pressure N— H.

These provisional results, imprecise as they are, are manifestly contrary to Weertman’s
theory according to which the friction varies in the same direction as the velocity, the pressure
having no influence. They seem on the other hand to agree with my theory (Lliboutry, 1968,
in press). For the “global” friction, in which the effect of large-scale undulations of the bed-
rock is included, we find a friction that is practically independent of the velocity and largely
proportional to the pressure. But here it is the “detailed friction” which enters, in which one
limits oneself to considering the effect of undulations of wavelength A: (several metres), A
(several decimetres), and A4 (several millimetres). One then finds a friction which varies in
the opposite direction to the velocity, and always in the same direction as the normal pressure.

The roughness r which comes into the theory seems to have to be equal to 0.§ or more,
contrary to what has been assumed up to now. The numerical calculations of my sliding
theory ought to be repeated for large values of the roughness to allow a quantitative com-
parison.

The low value of the friction found at the point F despite a sliding velocity that is still high
and a thickness also still high, probably arises because the ice stream studied has been partially
superposed on another.

C/ONGLUSIONS

"This numerical example has been presented more to indicate the procedure to be adopted
than to arrive at definite results. In order to improve it, it is necessary (a) to take points
separated from each other by a distance approximately equal to the thickness of the glacier
at the point in question, (b) determine the thicknesses both above and below the ice fall by a
good seismic survey.
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One can also study zones which are less rapid, and where the thickness has been able to be
determined directly in other ways. However, it would then be necessary to approximate to
the velocities and stresses by polynomials of higher order.

In this way we may hope to obtain rapidly numerous simultaneous values of £, Nand U,
and to determine experimentally in an irrefutable way the law of friction of temperate glaciers.

MS. received 22 August 1968 and in revised form 22 November 1968

REFERENCES

Glen, J. W. 1955. The creep of polycrystalline ice. Proceedings of the Royal Society, Ser. A, Vol. 228, No. 1175,
P- 519-38.

Lewis, W. V., ed. 1960. Investigations on Norwegian cirque glaciers. London, Royal Geographical Society. (R.G.S.
Research Series, No. 4.)

Lliboutry, L. 1964-65. Trailé de glaciologie. Paris, Masson et Cie. 2 vols.

Lliboutry, L. 1968. General theory of subglacial cavitation and sliding of temperate glaciers. Journal of Glaciology,
Vol. 7, No. 49, p. 21-58.

Lliboutry, L. In press. Glacier theory. (In Ven Te Chow, ed. Advances in hydroscience.)

Lliboutry, L., and others. 1962. Ltude de trois glaciers des Alpes Frangaises, [par] L. Lliboutry, M. Vallon et R. Vivet.
Union Géodésique el Géophysique Internationale. Association Internationale d’Hvdrologie Scientifique. Commission des
Neiges et Glaces. Colloque d’Obergurgl, 10-9—18-9 1962, P. 145-59.

Mci;r, M. F. 1960. Mode of flow of Saskatchewan Glacier, Alberta, Canada. U.S. Geological Survey. Professional

aper 351.
Nye, J. F.351 957. The distribution of stress and velocity in glaciers and ice-sheets. Proceedings of the Royal Society,
Ser. A, Vol. 239, No. 1216, p. 113-33.

Nye, J. F. 1959. A method of determining the strain-rate tensor at the surface of a glacier. Fournal of Glaciology,
Vol. 3, No. 25, p. 409-19.

Paterson, W. S. B., and Savage, J. C. 1963[a]. Geometry and movement of the Athabasca Glacier. Fournal of
Geophysical Research, Vol. 68, No. 15, p. 4513-20.

Paterson, W. S. B., and Savage, J. C. 1963[b]. Measurements on Athabasca Glacier relating to the flow law of
ice. Fournal of Geophysical Research, Vol. 68, No. 15, p. 4537-43.

Savage, ]. C., and Paterson, W. S. B. 1963. Borchole measurements in the Athabasca Glacier. Journal of Geophysical
Research, Vol. 68, No. 15, p. 4521-36.

Shumskiy, P. A. 1967. The distribution of stress, velocity and temperature in glaciers. (In Oura, H., ed. Physics
of snow and ice : international conference on low temperature science. . . . 1966. . . . Proceedings, Vol. 1, Pt. 1. [Sapporo],
Institute of Low Temperature Science, Hokkaido University, p. 371-84.)

Shumskiy, P. A., and others. [¢1964.] Ice and its changes, by P. A. Shumskiy, A. N. Krenke and I. A. Zotikov.
(In Odishaw, H., ed. Research in geophysics. Vol. =. Solid earth and interface phenomena. Cambridge, Mass.,
Massachusetts Institute of Technology Press, p. 425-60.)

Steinemann, S. 1958. Experimentelle Untersuchungen zur Plastizitéit von Eis. Beitrdge zur Geologie der Schweiz.
Geotechnische Serie. Hydrologie, Nr. 10.

Vallon, M. 1961. Epaisseur du glacier du Tacul (Massif du Mont-Blanc). Comples Rendus Hebdomadaires des
Séances de I Académie des Seiences, Tom. 252, No. 12, p. 1815-17.

APPENDIX

INGOMPATIBILITY OF A LAwW 9 = Bor+Bim3 4 Bar5 wiTH GLEN's Law y = B

Let us suppose that a law of Glen’s form, with n between 3 and 5, suitably represents three pairs of values
(a, 1), (b, 72), (¢, 73). If we calculate Bo, B: and B: on the basis of these three points, we would find B, negative,
which is physically absurd.

The proof of this depends on the fact that the determinant

1 a am

lﬁﬁ"‘

1y ym
with 0 <~ @ <~ 8 < y and m > 1 is positive. It can be written as

i

1 o ﬂ"'
o B —a ﬁ”‘—a"'
o y—B ym—pm
In the extreme right-hand side, the quantities in parentheses are all positive. As m > 1, the curve y = x™ s
concave upwards, and

b= = (B—a)(ym—Bm)— (y—B)(Bm—am).

p— 37" . ,Bm —am

y—B = B—ew
It follows that & = o. .
Now let us write down the equations which determine By, By and B.
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Ba" = Boa-+B;a*+ B: a',

Bbn = Bob--B: b+ B. b*,

Ben = Bo b+ Bib3+ Ba b,
From this we deduce that

ple" @ &’ a a" a’ pla a’ a"
Bo = —b" b b7, B = —b b7 b, B: = —|b b bn|,
o ¢} ¢S c ¢t ¢f ¢ o3 gh
a @ a’
where A= b b b = abe(a®—b*)(B*—c*)(c*—a®) > 0
B
. n—3 n—3\y3in—3)
Hence D _Ealf,‘ci: gn 3 (zn—%;:ﬁmf}l !
A 1 ¢gn—3 (':JA i)MJrSl

[ at—! (anfl H{n="1)
By = —abe|1 bn-" (pn-")Htn-n|
- 1 ¢! (cu—l)‘mn %)

B 1 a® (a)in-12
B, = —abe|1 b* (b*)n-1113,
A 1 ¢t (C:)[n“”"’

Since we have assumed 3 < n <5, 2/(n—3) > 1, 4/(n—1) > 1 and (n—1)/2 > 1.
theorem proved above, these three last determinants are positive, and thus
B, < o, B: > o, B, > o.

One can treat in a similar manner the case when n is outside the interval from 3 to 5. A simple heuristic
argument is as follows:

So, by virtue of the

For n = 3, B, = B: = 0. Thus when n passes through the value 3, B, and B. change sign. Thus for 1 < n < g

Bo > o, B: > o, B: < o.
For n = 5, Bo= B: = 0. Thus for n > 5

B, > o, B, <o, B; > o.
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