THE ENDOMORPHISM RING OF THE ADDITIVE GROUP OF A RING

P. SCHULTZ*
(Received 1 March 1971)
Communicated by G. Szekeres

1. Introduction

One of the still unsolved problems posed by Fuchs in his well-known book "Abelian Groups" [2] is Problem 45: characterize the rings R for which $R \cong \mathscr{E}\left(R^{+}\right)$. I present here a partial solution.

In the first part of the paper, several properties of R which are simply due to the existence of an isomorphism onto $\mathscr{E}\left(R^{+}\right)$are deduced, and I am able to characterize R in case it is torsion, completely decomposable, not reduced, finitely generated, or mixed with no elements of infinite p-height for all relevant primes p.

In the second part, the properties of the isomorphism of R onto $\mathscr{E}\left(R^{+}\right)$are considered, and two essentially different approaches are required, depending on whether R is, or is not, commutative. If it is, then R is a relatively uncomplicated ring, and one can hope for a complete characterization, though this paper does not give one. If not, then R must be a complicated ring indeed; for example, the group of units of R contains a copy of every finite group. The best one can hope for in this case is either to exhibit such an R, or to prove its non-existence; once again, I am unable in this paper to do either.

I use the standard notation of abelian group theory, as found for example in Fuchs [2]. Sometimes group theoretic properties are assigned to rings; this means that the additive group of the ring has the property. For example, a ring R is called torsion-free if R^{+}is torsion-free. Some notation which may not be familiar:

If $x \in R$, then $h(x)(p)$ means the p-height of x in R^{+};
$t(R)$ means the torsion subgroup of R^{+};
R_{p} means the p-primary component of R^{+}.

[^0]If S is a set of primes, S-pure means p-pure for all $p \in S$, and
S-divisible means p-divisible for all $p \in S$.
\oplus and \oplus^{*} mean respectively direct sum and direct product, either group or ring theoretic.
$Z, Q, Z_{p}, C(n)$ mean the group or ring (depending on context) of integers, rationals, p-adic integers, and integers modulo n.
c is the cardinality of the continuum.

2. General remarks on rings $\mathbf{R} \cong \mathscr{E}\left(\mathbf{R}^{+}\right)$

Using some well-known invariants of abelian groups, we first characterize the divisible and torsion subgroups of such rings.

Lemma 1. Let $R \cong \mathscr{E}\left(R^{+}\right)$, and suppose $R^{+}=A \oplus D$, where A is reduced and D is divisible. Then either $D=0$, or $D \cong Q$ and A is torsion.

Proof. The rank m of the maximal torsion-free direct summand of D is an invariant of R. Now End (R^{+}), and hence R^{+}has a direct summand isomorphic to End $\left(\oplus_{m} Q\right)$, which is torsion free divisible, and so contained in D. Hence $m=0$ or 1 .

If D contains a direct summand isomorphic to $C\left(p^{\infty}\right)$, then $\operatorname{End}\left(R^{+}\right)$has a direct summand isomorphic to $\operatorname{End}\left(C\left(p^{\infty}\right)\right) \cong Z_{p}$, so R^{+}has a direct summand isomorphic to $\operatorname{Hom}\left(Z_{p}, C\left(p^{\infty}\right)\right)$. Now Z_{p} has a factor group isomorphic to $\oplus_{c} Q$, so $\operatorname{Hom}\left(Z_{p}, C\left(p^{\infty}\right)\right)$ has a subgroup isomorphic to $\operatorname{Hom}\left(\oplus_{c} Q, C\left(p^{\infty}\right)\right.$), which is torsion-free divisible of infinite rank, contradicting the first paragraph. Hence $D \cong 0$ or Q.

Now suppose $D \cong Q$, and let r be the torsion free rank of R^{+}. Then $\operatorname{End}\left(R^{+}\right)$ has a direct summand isomorphic to $\operatorname{Hom}\left(R^{+}, Q\right) \cong \oplus_{r}^{*} Q$, so $r=1$, and hence A is torsion.

Lemma 2. If $R \cong \mathscr{E}\left(R^{+}\right)$, then for each prime $p, R_{p} \cong C\left(p^{k p}\right)$ for some $0 \leqq k_{p}<\infty$.

Proof. If $R_{p} \neq 0$, it is reduced by Lemma 1. The number r_{n} of cyclic summands of R_{p} of order p^{n} is an invariant of R for all positive integers n; let k be minimal such that $r_{k} \neq 0$. Let $B=\oplus_{j \geq k} B_{j}$ be a basic subgroup of R_{p}, where $B_{j} \cong$ $\oplus_{r_{j}} C\left(p^{j}\right)$. Now B_{k} is a bounded pure subgroup, and hence a direct summand of R^{+}, so End $\left(R^{+}\right)$has a direct summand isomorphic to $\operatorname{Hom}\left(B_{k}, R^{+}\right)$. But this is a direct sum of cyclic groups of order $\leqq p^{k}$, so its rank $r \leqq r_{k}$. On the other hand, $\operatorname{Hom}\left(B_{k}, R^{+}\right)$has a subgroup isomorphic to $\operatorname{Hom}\left(B_{k}, B\right) \cong \oplus_{r k}^{*} \oplus_{u} C\left(p^{k}\right)$, where $u=\Sigma_{j \geq k} r_{j}$. This subgroup has rank $2^{r k} u \leqq r \leqq r_{k}$ if r_{k} is infinite, or $r_{k} u \leqq r \leqq r_{k}$ if r_{k} is finite. In either case, $0 \neq r_{k} \leqq u \leqq 1$, so $r_{k}=u=1$. Hence $r_{j}=0$ for all $j>k$ and $R_{p}=B=B_{k} \cong C\left(p^{k}\right)$.

Lemma 3. If $R \cong \mathscr{E}\left(R^{+}\right)$, and $R_{p} \neq 0$, then R_{p} has a unique complement $R_{p}^{\prime}=\{x \in R \mid h(x)(p)=\infty\}$, which is an ideal in R; furthermore $\mathscr{E}\left(R_{p}^{\prime}\right) \cong R_{p}^{\prime}$.

Proof. Let H be any group such that $R^{+}=R_{p} \oplus H$. If $p H \neq H$, then $\operatorname{End}\left(R^{+}\right)$ has a subgroup isomorphic to $\operatorname{Hom}\left(R_{p} \oplus H / p H, R_{p}\right)$. This is a p-group of rank >1, contradicting Lemma 2. Hence $p H=H$, so $H \subset R_{p}^{\prime}$. Conversely, let $x \in R_{p}^{\prime}$, and write $x=x_{1}+x_{2}$, where $x_{1} \in R_{p}, x_{2} \in H$. Since $h(x)(p)=\infty, x_{1}=0$, so $x \in H$.
R_{p}^{\prime} is clearly an ideal, and $\operatorname{Hom}\left(R_{p}, R_{p}^{\prime}\right)=\operatorname{Hom}\left(R_{p}^{\prime}, R_{p}\right)=0$, so $\mathscr{E}\left(R^{+}\right)=$ $\mathscr{E}\left(R_{p}\right) \oplus \mathscr{E}\left(R_{p}^{\prime}\right) \cong R_{p} \oplus R_{p}^{\prime}$, so $R_{p}^{\prime} \cong \mathscr{E}\left(R_{p}^{\prime}\right)$.

Lemma 4. Let $R \cong \mathscr{E}\left(R^{+}\right)$, let S be the set of relevant primes for R, and let $U=\oplus_{p \in S}^{*} R_{p}$. Let $A=\{x \in R \mid h(x)(p)=\infty$ for all $p \in S\}$. Then R is an extension of A by a ring T such that $t(R) \subset T \subset U$, and T is an S-pure subring of U containing the identity.

Proof. For each relevant prime p, we have by Lemma 3 a unique decomposition $R^{+}=R_{p} \oplus R_{p}^{\prime}$, where $R_{p}^{\prime}=\{x \in R \mid h(x)(p)=\infty\}$. Thus each $x \in R$ can be uniquely expressed as $x=x_{p}+x_{p}^{\prime}$, where $x_{p} \in R_{p}, x_{p}^{\prime} \in R_{p}^{\prime}$. Hence the mapping $e: R \rightarrow U$ given by $e(x)(p)=x_{p}$ is a well defined ring homomorphism with kernel A. Let T be the image of e; clearly $e(1)$ is the identity of U, and $\left.e\right|_{t(R)}$ is the identity map, so $t(R) \subset T \subset U$.

If T is not p-pure in U for some $p \in S$, write $T=R_{p} \oplus T^{\prime}$; then T^{\prime} is not p-pure in $\oplus_{q \neq p} R_{q}$, so $p T^{\prime} \neq T^{\prime}$. Hence End $\left(R^{+}\right)$has a subgroup isomorphic to $\operatorname{Hom}\left(R_{p} \oplus T^{\prime} / p T^{\prime}, R_{p}\right)$, which is a p-group of rank >1, a contradiction.

Lemma 5. Let $R \cong \mathscr{E}\left(R^{+}\right)$with R^{+}torsion-free and completely decomposable. Then R is a direct sum of finitely many rank 1 rings of incomparable types.

Proof. Suppose $R^{+}=\oplus_{i \in I} A_{i}$ for some index set I, where each A_{i} is a rank 1 torsion-free group. Then End $\left(R^{+}\right)$contains as a direct summand $\oplus_{i \in I}^{*} \operatorname{End}\left(A_{i}\right)$. Since $\operatorname{End}\left(R^{+}\right)$is completely decomposable and of rank $|I|, I$ is finite, and End $\left(R^{+}\right)=\oplus_{i \in I} \operatorname{End}\left(A_{i}\right)$. Hence for each $i \neq j$, $\operatorname{Hom}\left(A_{i}, A_{j}\right)=0$, so the A_{i} have incomparable types. Since the type of End $\left(A_{i}\right)$ is less than the type of A_{i}, $A_{i} \cong \operatorname{End}\left(A_{i}\right)$ for all i, so A_{i} is a rank 1 ring. Finally since $\operatorname{Hom}\left(A_{i}, A_{j}\right)=0$ if $i \neq j$, each A_{i} is an ideal in R.

The characterizations promised in the Introduction follow from these lemmas:

Theorem 1. If R is torsion, then $R \cong \mathscr{E}\left(R^{+}\right)$if and only if R is cyclic.
Proof. It is well known that $C(n) \cong \mathscr{E}(C(n))$ for all positive integers n.
Conversely, if R is torsion then by Lemma 2,

$$
\underset{p \in S}{\oplus} C\left(p^{k_{p}}\right) \cong R \cong \mathscr{E}\left(R^{+}\right) \cong \underset{p \in S}{\oplus} C\left(p^{k_{p}}\right)
$$

for some set S of primes. Hence S is finite, so R is cyclic.
Theorem 2. If R^{+}is completely decomposable, then $R \cong \mathscr{E}\left(R^{+}\right)$if and only if $R \cong C(n) \oplus A$, where n is a non-negative integer and A is a direct sum of rank 1 rings of incomparable type, and A is divisible by each prime which divides n.

Proof. A modest calculation shows that $\mathscr{E}(C(n) \oplus A) \cong C(n) \oplus A$.
Conversely, let $R^{+}=t(R) \oplus A$, where A is torsion-free and completely decomposable. Then $\operatorname{Hom}(t(R), A)=0$, and by Lemma 4, $\operatorname{Hom}(A, t(R))=0$, so R is the ring direct sum of its ideals $t(R)$ and A. Thus

$$
\mathscr{E}\left(R^{+}\right) \cong \mathscr{E}(t(R)) \oplus \mathscr{E}(A)
$$

so $t(R) \cong \mathscr{E}(t(R)), A \cong \mathscr{E}(A)$. The result now follows from Theorem 1, Lemma 5 , and Lemma 4.

Theorem 3. If R is not reduced, then $R \cong \mathscr{E}\left(R^{+}\right)$if and only if $R \cong Q \oplus C(n)$ for some non-negative integer n.

Proof. Certainly $\mathscr{E}(Q \oplus C(n)) \cong Q \oplus C(n)$.
Conversely, by Lemma $1, R \cong t(R) \oplus Q$ and by Lemma 2 ,

$$
t(R) \cong \underset{p \in S}{\oplus} C\left(p^{k_{P}}\right)
$$

for some set S of primes. Then $\operatorname{End}\left(R^{+}\right)$contains a direct summand $\oplus_{p \in S}^{*} C\left(p^{k_{p}}\right) \oplus Q$; by Lemma 1 again, $\oplus_{p \in S}^{*} C\left(p^{k_{p}}\right)$ is torsion, so S is finite. Hence $t(R) \cong C(n)$ for some n.

Theorem 4. If R^{+}is finitely generated, then $R \cong \mathscr{E}\left(R^{+}\right)$if and only if $R \cong Z$, or $R \cong C(n)$ for some non-negative integer n.

Proof. By Theorem $2, R$ is the direct sum of a cyclic ring and finitely many copies of the integers. But the torsion-free components have incomparable types, so there is at most one. Furthermore, Z is not divisible by any prime, so if R has a non-zero torsion subgroup, then R is torsion.

Theorem 5. If R is a mixed ring, S the set of relevant primes, and R has no element of infinite p-height for all $p \in S$, then $R \cong \mathscr{E}\left(R^{+}\right)$if and only if:
(1) $R_{p} \cong C\left(p^{k p}\right), 0<k_{p}<\infty$ for all $p \in S$
(2) If U is the ring $\oplus_{p \in S}^{*} R_{p}$, then R is a subring with identity of U.
(3) R is S-pure in U.

Proof. Suppose R is a subring of U satisfying (1), (2) and (3). The exact sequence of rings
$0 \rightarrow t(R) \rightarrow R \rightarrow R / t(R) \rightarrow 0$ induces an exact sequence of groups

$$
0 \rightarrow \operatorname{Hom}\left(R^{+} / t(R), R^{+}\right) \rightarrow \operatorname{End}\left(R^{+}\right) \rightarrow \operatorname{Hom}\left(t(R), R^{+}\right) .
$$

Since R is S-pure in $U, R / t(R)$ is S-pure in $U / t(R)$, and hence S-divisible. Since R has no elements of infinite p-height for all $p \in S, \operatorname{Hom}(R / t(R), R)=0$. Hence End $\left(R^{+}\right)$is embedded in $\operatorname{Hom}(t(R), R)$ by the mapping $\left.f \mapsto f\right|_{t(R)}$. But any $f \in \operatorname{Hom}(t(R), R)$ sends $t(R)$ into $t(R)$, and this mapping is a ring homomorphism. Hence $\mathscr{E}\left(R^{+}\right)$is embedded as a subring of $\mathscr{E}(t(R))$. Now it is well know that $\mathscr{E}(t(R))$ is the ring of all multiplications in U, so if $f \in \mathscr{E}\left(R^{+}\right)$, then f is multiplication in R by some $x \in U$; in particular, $x=f(1) \in R$. Thus the mapping $x \mapsto$ multiplication by x is a ring homomorphism of R onto $\mathscr{E}\left(R^{+}\right)$. The kernel is zero, since $1 \in R$.

Conversely, we have by Lemma 4 that $R^{+} \cong T$, an S-pure subring of $U=\oplus_{p \in S}^{*} R_{p}$ containing the identity, and $R_{p} \cong C\left(p^{k p}\right)$ by Lemma 2.

Remarks. If S is any infinite set of primes, and k_{p} a positive integer for each $p \in S$, there are c non-isomorphic subrings of

$$
\underset{p \in S}{\oplus} C\left(p^{k_{p}}\right) / \underset{p \in S}{\oplus} C\left(p^{k_{p}}\right)
$$

each of which is S-divisible. Hence there are c non-isomorphic rings R with fixed torsion subring $\oplus_{p \in S} C\left(p^{k p}\right)$ which satisfy the hypotheses of Theorem 4.

It is well known that if R is a p-pure subring of Z_{p}, or an S-pure subring of $\oplus_{p \in S}^{*} Z_{p}$, where S is any collection of primes, then $R \cong \mathscr{E}\left(R^{+}\right)$.

Other example of rings $R \cong \mathscr{E}\left(R^{+}\right)$can be constructed by noting that if I is any index set, and $R_{i}, i \in I$, a collection of rings such that $R_{i} \cong \mathscr{E}\left(R_{i}^{+}\right)$and such that $\operatorname{Hom}\left(\oplus_{j \neq i}^{*} R_{j}, R_{i}\right)=0$, then

$$
\underset{i \in I}{\oplus^{*}} R_{i} \cong \mathscr{E}\left(\underset{i \in I}{\oplus_{i}^{*}} R_{i}^{+}\right)
$$

Finally, we have a slight improvement on Lemma 4.
Theorem 6. Let R be a mixed ring with relevant prime set S, and let

$$
A=\{x \in R \mid h(x)(p)=\infty \text { for all } p \in S\}
$$

If $R \cong \mathscr{E}\left(R^{+}\right)$, then $R_{p} \cong C\left(p^{k_{p}}\right), 0<k_{p}<\infty$ for all $p \in S$, and R is an extension of A by a ring T such that $T \cong \mathscr{E}\left(T^{+}\right)$and

$$
t(R) \subset T \subset \underset{p \in S}{\oplus}{ }_{p}^{*} R_{p}
$$

The extension splits if $A \cong \mathscr{E}\left(A^{+}\right)$.
Proof. By Lemma 4, it suffices to prove that $T \cong \mathscr{E}\left(T^{+}\right)$and the remark about splitting. The first statement follows from Theorem 5. If $A \cong \mathscr{E}\left(A^{+}\right)$, then A has an identity 1_{A}; multiplication by 1_{A} is a retraction of R onto A.

3. The nature of the isomorphism: the commutative case

Let R be any ring with identity 1 . Then the mapping $f \mapsto f(1)_{L}$ is a retraction of $\mathscr{E}\left(R^{+}\right)$onto R_{L}, the ring of left multiplications in R. This mapping is a group homomorphism with kernel $K=\{f: f(1)=0\}$. Hence $\mathscr{E}\left(R^{+}\right)$is a group theoretic direct sum of the ring R_{L} and the left ideal K, so we have the following:

Lemma 6. For a ring R with identity 1 , the following statements are equivalent:
(1) R is commutative and $R \cong \mathscr{E}\left(R^{+}\right)$.
(2) The mapping $x \mapsto x_{L}$, left multiplication by x, is an isomorphism of R onto $\mathscr{E}\left(R^{+}\right)$, with inverse $f \mapsto f(1)$.
(3) Every endomorphism of R^{+}is a left multiplication in R.

Proof. (1) \rightarrow (2) By the preceding remarks, R_{L}, which is isomorphic to R, is a direct summand of $\operatorname{End}\left(R^{+}\right)$. But a group with commutative endomorphism ring cannot have a proper isomorphic direct summand, so $R_{L}=\mathscr{E}\left(R^{+}\right)$, and the ring isomorphism $x \mapsto x_{L}$ maps R onto $\mathscr{E}\left(R^{+}\right)$.
(2) \rightarrow (3) is trivial.
(3) \rightarrow (1) Clearly $\mathscr{E}\left(R^{+}\right)=R_{L} \cong R$. In particular, the right multiplications in R are left multiplications; let x_{R} be a right multiplication, and suppose $x_{R}=y_{L}$. Then $x=x_{R}(1)=y_{L}(1)=y$, so $x_{R}=x_{L}$; hence R is commutative.

Definition.Let us call a ring R which satisfies the conditions of Lemma 6 an E-ring, and the additive group of an E-ring an E-group. This definition of E-group coincides with that in [3], where an E-group was defined by condition (3). In Corollary 4 below, we see that every ring with identity over an E-group is an E-ring.

Corollary 1. Every endomorphic image of an E-group R^{+}is the additive group of a principal ideal of R.

Corollary 2. A group direct summand of an E-ring R is a ring direct summand, and hence R^{+}cannot be decomposed as an infinite direct sum.

Proof. Let $p \in \mathscr{E}\left(R^{+}\right)$be the projection of R^{+}onto the direct summand $e R^{+}$. Then $e=p(1)$, so

$$
e^{2}=p(1)^{2}=\mathrm{e} \cdot p(1)=p(p(1))=p(1)=e
$$

Hence e is an idempotent, so $e R$ is a ring direct summand. Since R has identity 1 , R cannot be an infinite direct sum of ideals.

Corollary 3. If R is any ring with identity, then $\mathscr{E}\left(R^{+}\right)$is commutative if and only if R is an E-ring.

Proof. If $\mathscr{E}\left(R^{+}\right)$is commutative, let $f \in \mathscr{E}\left(R^{+}\right)$. Then for all $x \in R$,

$$
f(x)=f \cdot x_{L}(1)=x_{L} \cdot f(1)=x_{R} \cdot f(1)=f(1) x
$$

so $f=f(1)_{L}$. Condition (3) of Lemma 6 is satisfied.
The converse follows from the definition of E-ring.
Corollary 4. If R is an E-ring, and S any ring with identity over R^{+}, then $R \cong S$.

Proof. Since $\mathscr{E}\left(R^{+}\right)=\mathscr{E}\left(S^{+}\right)$is commutative, S is an E-ring by Corollary 3. Hence $S \cong \mathscr{E}\left(S^{+}\right) \cong R$.

Lemma 7. Let R be a ring with identity 1 , and let F be an isomorphism of R onto $\mathscr{E}\left(R^{+}\right)$. Then for every $* \in M$ ult $\left(R^{+}\right)$, there exists a unique $a \in R$ such that $x * y=F(F(a)(x))(y)$ for all $x, y \in R$.

Proof. There is a chain of well-known group isomorphisms

$$
R^{+} \xrightarrow{\boldsymbol{F}} \operatorname{End}\left(R^{+}\right)^{F^{*}} \operatorname{Hom}\left(R^{+}, \operatorname{End}\left(R^{+}\right)\right) \rightarrow \operatorname{Mult}\left(R^{+}\right),
$$

where for all $a \in R^{+}, a \mapsto F(a) \mapsto f_{a} \mapsto *_{a}$, where $f_{a}(x)(y)=F(F(a)(x))(y)=x *_{a} y$.
Note. The left multiplications in R correspond to elements of Mult (R^{+}) of the form $x * y=F(a x)(y)$ for some $a \in R$, and in particular, the identity map on R^{+}corresponds to the multiplication $x *_{1} y=F(x)(y)$. Clearly 1 is a left identity for $*_{1}$, and we have the following criteria for commutativity of R :

Lemma 8. Let R be a ring with identity 1 , let F be an isomorphism of R onto $\mathscr{E}\left(R^{+}\right)$; let $a \rightarrow *_{a}$ be the mapping defined in Lemma 7. Then the following conditions are equivalent:
(1) R is an E-ring
(2) Every multiplication $*_{a}$ is associative
(3) Every multiplication $*_{a}$ is commutative
(4) $*_{1}$ is associative
(5) $*_{1}$ is commutative
(6) 1 is a right identity for $*_{1}$.

Proof. (1) \mapsto (2) and (3).
Since R is an E-ring, we may replace F, if necessary, by the isomorphism $x \rightarrow x_{L}$. Then every multiplication in R^{+}has the form $x *_{a} y=a x y$, so is necessarily associative and commutative.
(2) \rightarrow (4) and (3) \rightarrow (5) are trivial
(4) \rightarrow (6) For all $x, y, z \in R$,

$$
F(F(x)(y))(z)=\left(x_{1} * y\right) *_{1} z=x *_{1}\left(y *_{1} z\right)=F(x)(F(y)(z))=F(x y)(z)
$$

so $F\left(F(x)(y)=F(x y)\right.$. Hence $x *_{1} y=F(x)(y)=x y$ for all $x, y \in R$ and 1 is a right identity.
(5) \rightarrow (6) For all $x \in R, x *_{1} 1=1 *_{1} x=F(1)(x)=x$.
(6) \rightarrow (1) If $x=x *_{1} 1=F(x)(1)$ for all x, then

$$
K=\{f \in \mathscr{E}(R) \mid f(1)=0\}=0
$$

so by the Remarks preceding Lemma $6, \mathscr{E}\left(R^{+}\right)=R_{L}$ and R is an E-ring.
Corollary 5. If R is an E-ring, there is a 1-1 correspondence between elements a of R, and rings R_{a} over R^{+}. This correspondence maps 1 into R, and units u of R into rings R_{u} with identity u^{-1} such that $R_{u} \cong R$.

Proof. By Lemma 8, every element $*_{a}$ of $\operatorname{Mult}\left(R^{+}\right)$is associative, and so defines a ring R_{a} over R^{+}, whose multiplication is given by $x * y=a x y$; since every ring R^{\prime} over R^{+}gives rise to some multiplication in R^{+}, this correspondence is $1-1$. The original ring $R=R_{1}$, and clearly u^{-1} is an identity for R_{u}. Of course all rings with identity over R^{+}are isomorphic by Corollary 4.

Lemma 9. Any endomorphic image of an E-group is an E-group; every endomorphism of an endomorphic image of an $E-g r o u p R^{+}$can be extended to an endomorphism of R^{+}.

Proof. If R is an E-ring, any endomorphic image of R^{+}has the form $a R^{+}$ for some $a \in R$ by Corollary 1 . Define a multiplication $*$ on $a R^{+}$by $a x * a y=a x y$. Then $*$ induces a commutative ring S over $a R^{+}$with identity a. Let $f \in \mathscr{E}\left(a R^{+}\right)$; then $f \cdot a_{L} \in \mathscr{E}\left(R^{+}\right)$, so for all $a x \in a R$,

$$
f(a x)=\left(f \cdot a_{L}\right)(1) \cdot x=f(a) \cdot x=a y x
$$

where $a y=f(a) \in a R^{+}$. Hence $f(a x)=a y * a x$, so f is multiplication by $a y$ in S. By Lemma 6, S is an E-ring, and $a R^{+}$an E-group.

Let $f \in \mathscr{E}\left(a R^{+}\right)$, say $f(a)=a y$. Then $y_{L} \in \mathscr{E}\left(R^{+}\right)$is an extension of f, for if $a x \in a R$,

$$
f(a x)=a y * a x=a x y
$$

Unfortunately, no such nice property seems to be true in general for rings $R \cong \mathscr{E}\left(R^{+}\right)$. We do know that $\mathscr{E}\left(R^{+}\right)=R_{L} \oplus K$, where $K=\{f \mid f(1)=0\}$. If R is not commutative, then by Lemma $5, K \neq 0$, so R^{+}is isomorphic to a proper direct summand, the inverse image of R_{L}. Clearly, none of the rings described in Theorem 1-5 have this property, so they are all E-rings. In addition, we have the following partial result, corresponding to Theorem 6.

Theorem 7. Let R be a mixed ring with identity with a set S of relevant primes. Let

$$
A=\{x \in R \mid h(x)(p)=\infty \text { for all } p \in S\}
$$

and let $U=\oplus_{p \in S}^{*} R_{p}$. Then R is an E-ring if and only if:
(1) $R_{p} \cong\left(C p^{k p}\right), 0<k_{p}<\infty$ for all $p \in S$
(2) R is an extension of A by an E-ring T such that $t(R) \subset T \subset U$
(3) If $f \in \mathscr{E}\left(R^{+}\right)$, then the restriction of $f-f(1)_{L}$ to A is the zero map.
(4) If $f \in \mathscr{E}\left(R^{+}\right)$, then the unique homomorphism $\bar{f}: T / t(R) \rightarrow A$ induced by $f-f(1)_{L}$ is the zero map.

Proof. Suppose R is an E-ring. Condition (1) follows from Lemma 2. By Theorem $6, R$ is an extension of A by a ring $T \cong \mathscr{E}\left(T^{+}\right)$such that $t(R) \subset T \subset U$. Since T is commutative, it is an E-ring. Conditions (3) and (4) are trivial, since $=f(1)_{L}$.

Now assume that R satisfies conditions (1)-(4), let $f \in \mathscr{E}\left(R^{+}\right)$, and consider the endomorphism $f^{\prime}=f-f(1)_{L}$. Since $\left.f^{\prime}\right|_{R_{p} \in \mathscr{E}}\left(R_{p}\right)$, it is multiplication in R_{p} by $f^{\prime}\left(1_{p}\right)$, where 1_{p}, the p-component of 1 , is the identity of R_{p}. Hence $f^{\prime}\left(1_{p}\right)=0$ for all $p \in S$, so $\left.f^{\prime}\right|_{t(R)}=0$. By condition (3), $\left.f^{\prime}\right|_{A}=0$, so $A \oplus t(R)$ is contained in the kernel of f^{\prime}; thus f^{\prime} induces a unique homorphism \tilde{f} on

$$
R^{+} / A \oplus t(R) \cong T / t(R)
$$

whose image must be a subgroup of A, since $T / t(R)$ is S-divisible. Hence by condition (4) $\vec{f}=0$ so $f=f(1)_{L}$. Thus R is an E-ring.

Remark. Conditions (3) and (4) are of little use in either constructing Erings, or deciding whether a ring is an E-ring. It might be conjectured that they could be replaced by stronger conditions, for example:
(3') A is an E-ring
(4') $\operatorname{Hom}(T, A)=0$.
However, (3^{\prime}) is true if (by Theorem 6) and only if (since $\mathscr{E}\left(R^{+}\right)$is commutative) the extension of Theorem 7 splits, so (3^{\prime}) implies (4^{\prime}). While no non-splitting extension has been constructed, there seems no reason to believe they do not exist. Condition (4') seems more reasonable, and I conjecture that it is a necessary condition for R to be an E-ring.

4. The nature of the isomorphism: the non-commutative case

Let $R \cong \mathscr{E}\left(R^{+}\right)$, with R not commutative. Then we know from the remarks preceding Lemma 6 that:

$$
\mathscr{E}\left(R^{+}\right)=R_{L} \oplus K, \text { where } K=\{f \in \mathscr{E}(R) \mid f(1)=0\} \neq 0
$$

Hence End (R^{+}), and consequently R^{+}, is an ID-group, that is, a group which is isomorphic to a proper direct summand. (It is not difficult to find elements of K : for example, if x is not in the centre of R, then $x_{L}-x_{R} \in K$). Now if R^{+}is an
$I D$-group, there exist monomorphisms $\phi \in \mathscr{E}\left(R^{+}\right)$such that $R^{+}=\phi\left(R^{+}\right) \oplus H$, where $H \neq 0$. Beaumont and Pierce [1] have proved the following structure theorem for $I D$-groups R^{+}:

Let $M=\bigcap_{n<\omega} \phi^{n}\left(R^{+}\right)$, let $P=\oplus_{n<\omega}^{*} H_{n}$, where $H_{n}=\phi^{n}(H) \cong H$, and let $S=\oplus_{n<\omega} H_{n}$. Then R^{+}is an extension of M by a group T such that $S \subset T \subset P$, and $\phi \mid M$ is an automorphism of M.

In our case, let $F: R \rightarrow \mathscr{E}\left(R^{+}\right)$be the isomorphism, and define ϕ by $\phi(x)$ $=F^{-1}\left(x_{L}\right)$ for $x \in R^{+}$. Then $F\left(\phi\left(R^{+}\right)\right)=R_{L}$ so $F(H)=K$ and by Beaumonts and Pierce's result, R^{+}is an extension of $\bigcap_{n<\omega} \varphi^{n}\left(R^{+}\right)$by a subgroup of $\oplus_{\mathrm{N}_{0}}^{*} K$. If R contains a fully invariant E-ring A, then clearly F can be modified so that $F(x)=x_{L}$ for $x \in A$, and in this case, $\left.\phi\right|_{A}$ is the identity, so $A^{+} \subset \bigcap_{n<\omega} \phi^{n}\left(R^{+}\right)$. In general however, little else is known.

Lemma 10. Let $R \cong \mathscr{E}\left(R^{+}\right), R$ not commutative. Then the group U of units of R contains a copy of every finite group.

Proof. It will suffice to show that U contains a copy of $S(n)$, the symmetric group on n symbols for every positive integer n. Now

$$
R^{+}=H \oplus \phi(H) \oplus \cdots_{\oplus} \phi^{n-1}(H) \oplus \phi^{n}\left(R^{+}\right),
$$

where $\phi^{i}(H) \cong H$, so each $x \in R^{+}$can be expressed as

$$
x=\left(x_{1}, \phi\left(x_{2}\right), \cdots, \phi^{n-1}\left(x_{n}\right), y\right),
$$

with $x_{i} \in H$ for $i=1,2, \cdots n$. For $\sigma \in S(n)$, define $f_{\sigma} \in \mathscr{E}\left(R^{+}\right)$by

$$
f_{\sigma}\left(x_{1}, \phi\left(x_{2}\right), \cdots, \phi^{n-1}\left(x_{n}\right), y\right)=\left(x_{\sigma(1)}, \phi\left(x_{\sigma(2)}\right), \cdots, \phi^{n-1}\left(x_{\sigma(n)}\right), y\right) .
$$

f_{σ} is clearly an automorphism of R^{+}, so the set $\left\{f_{\sigma}: \sigma \in S(n)\right\}$ is a group of units of $\mathscr{E}\left(R^{+}\right)$isomorphic to $S(n)$.

References

[1] R. A. Beaumont and R. S. Pierce, 'Isomorphic Direct Summands of Abelian Groups', Math. Annalen 153 (1964), 21-37.
[2] L. Fuchs, Abelian Groups (Hungarian Academy of Science, Budapest, 1958).
[3] P. Schultz, 'Periodic Homomorphism Sequences of Abelian Groups', Arch. Math. 21 (1970), 132-135.

Department of Mathematics
University of Western Australia

[^0]: *Parts of this paper appear in the author's Ph.D. Thesis, University of Washington, 1968, which was written under the direction of Professor R. Beaumont.

