THE ENDOMORPHISM RING OF THE ADDITIVE GROUP OF A RING

P. SCHULTZ*

(Received 1 March 1971) Communicated by G. Szekeres

1. Introduction

One of the still unsolved problems posed by Fuchs in his well-known book "Abelian Groups" [2] is Problem 45: characterize the rings R for which $R \cong \mathscr{E}(R^+)$. I present here a partial solution.

In the first part of the paper, several properties of R which are simply due to the existence of an isomorphism onto $\mathscr{E}(R^+)$ are deduced, and I am able to characterize R in case it is torsion, completely decomposable, not reduced, finitely generated, or mixed with no elements of infinite *p*-height for all relevant primes *p*.

In the second part, the properties of the isomorphism of R onto $\mathscr{E}(R^+)$ are considered, and two essentially different approaches are required, depending on whether R is, or is not, commutative. If it is, then R is a relatively uncomplicated ring, and one can hope for a complete characterization, though this paper does not give one. If not, then R must be a complicated ring indeed; for example, the group of units of R contains a copy of every finite group. The best one can hope for in this case is either to exhibit such an R, or to prove its non-existence; once again, I am unable in this paper to do either.

I use the standard notation of abelian group theory, as found for example in Fuchs [2]. Sometimes group theoretic properties are assigned to rings; this means that the additive group of the ring has the property. For example, a ring Ris called torsion-free if R^+ is torsion-free. Some notation which may not be familiar:

If $x \in R$, then h(x)(p) means the *p*-height of x in R^+ ;

t(R) means the torsion subgroup of R^+ ;

 R_p means the *p*-primary component of R^+ .

^{*}Parts of this paper appear in the author's Ph.D. Thesis, University of Washington, 1968, which was written under the direction of Professor R. Beaumont.

If S is a set of primes, S-pure means p-pure for all $p \in S$, and S-divisible means p-divisible for all $p \in S$.

 \oplus and \oplus^* mean respectively *direct sum* and *direct product*, either group or ring theoretic.

Z, Q, Z_p , C(n) mean the group or ring (depending on context) of integers, rationals, p-adic integers, and integers modulo n.

c is the cardinality of the continuum.

2. General remarks on rings $\mathbf{R} \cong \mathscr{E}(\mathbf{R}^+)$

Using some well-known invariants of abelian groups, we first characterize the divisible and torsion subgroups of such rings.

LEMMA 1. Let $R \cong \mathscr{E}(R^+)$, and suppose $R^+ = A \oplus D$, where A is reduced and D is divisible. Then either D = 0, or $D \cong Q$ and A is torsion.

PROOF. The rank *m* of the maximal torsion-free direct summand of *D* is an invariant of *R*. Now End (R^+) , and hence R^+ has a direct summand isomorphic to End $(\bigoplus_m Q)$, which is torsion free divisible, and so contained in *D*. Hence m = 0 or 1.

If D contains a direct summand isomorphic to $C(p^{\infty})$, then $End(R^+)$ has a direct summand isomorphic to $End(C(p^{\infty})) \cong Z_p$, so R^+ has a direct summand isomorphic to $Hom(Z_p, C(p^{\infty}))$. Now Z_p has a factor group isomorphic to $\bigoplus_c Q$, so $Hom(Z_p, C(p^{\infty}))$ has a subgroup isomorphic to $Hom(\bigoplus_c Q, C(p^{\infty}))$, which is torsion-free divisible of infinite rank, contradicting the first paragraph. Hence $D \cong 0$ or Q.

Now suppose $D \cong Q$, and let r be the torsion free rank of R^+ . Then $\text{End}(R^+)$ has a direct summand isomorphic to $\text{Hom}(R^+, Q) \cong \bigoplus_r^* Q$, so r = 1, and hence A is torsion.

LEMMA 2. If $R \cong \mathscr{E}(R^+)$, then for each prime $p, R_p \cong C(p^{kp})$ for some $0 \leq k_p < \infty$.

PROOF. If $R_p \neq 0$, it is reduced by Lemma 1. The number r_n of cyclic summands of R_p of order p^n is an invariant of R for all positive integers n; let k be minimal such that $r_k \neq 0$. Let $B = \bigoplus_{j \geq k} B_j$ be a basic subgroup of R_p , where $B_j \cong \bigoplus_{r_j} C(p^j)$. Now B_k is a bounded pure subgroup, and hence a direct summand of R^+ , so End (R^+) has a direct summand isomorphic to Hom (B_k, R^+) . But this is a direct sum of cyclic groups of order $\leq p^k$, so its rank $r \leq r_k$. On the other hand, Hom (B_k, R^+) has a subgroup isomorphic to Hom $(B_k, B) \cong \bigoplus_{r_k}^* \bigoplus_u C(p^k)$, where $u = \sum_{j \geq k} r_j$. This subgroup has rank $2^{r_k} u \leq r \leq r_k$ if r_k is infinite, or $r_k u \leq r \leq r_k$ if r_k is finite. In either case, $0 \neq r_k \leq u \leq 1$, so $r_k = u = 1$. Hence $r_j = 0$ for all j > k and $R_p = B = B_k \cong C(p^k)$. LEMMA 3. If $R \cong \mathscr{E}(R^+)$, and $R_p \neq 0$, then R_p has a unique complement $R'_p = \{x \in R \mid h(x)(p) = \infty\}$, which is an ideal in R; furthermore $\mathscr{E}(R'_p) \cong R'_p$.

PROOF. Let *H* be any group such that $R^+ = R_p \oplus H$. If $pH \neq H$, then End (R^+) has a subgroup isomorphic to Hom $(R_p \oplus H/pH, R_p)$. This is a *p*-group of rank > 1, contradicting Lemma 2. Hence pH = H, so $H \subset R'_p$. Conversely, let $x \in R'_p$, and write $x = x_1 + x_2$, where $x_1 \in R_p$, $x_2 \in H$. Since $h(x)(p) = \infty$, $x_1 = 0$, so $x \in H$.

 R'_p is clearly an ideal, and $\operatorname{Hom}(R_p, R'_p) = \operatorname{Hom}(R'_p, R_p) = 0$, so $\mathscr{E}(R^+) = \mathscr{E}(R_p) \oplus \mathscr{E}(R'_p) \cong R_p \oplus R'_p$, so $R'_p \cong \mathscr{E}(R'_p)$.

LEMMA 4. Let $R \cong \mathscr{E}(R^+)$, let S be the set of relevant primes for R, and let $U = \bigoplus_{p \in S}^* R_p$. Let $A = \{x \in R \mid h(x)(p) = \infty \text{ for all } p \in S\}$. Then R is an extension of A by a ring T such that $t(R) \subset T \subset U$, and T is an S-pure subring of U containing the identity.

PROOF. For each relevant prime p, we have by Lemma 3 a unique decomposition $R^+ = R_p \oplus R'_p$, where $R'_p = \{x \in R \mid h(x)(p) = \infty\}$. Thus each $x \in R$ can be uniquely expressed as $x = x_p + x'_p$, where $x_p \in R_p$, $x'_p \in R'_p$. Hence the mapping $e: R \to U$ given by $e(x)(p) = x_p$ is a well defined ring homomorphism with kernel A. Let T be the image of e; clearly e(1) is the identity of U, and $e|_{t(R)}$ is the identity map, so $t(R) \subset T \subset U$.

If T is not p-pure in U for some $p \in S$, write $T = R_p \oplus T'$; then T' is not p-pure in $\bigoplus_{q \neq p} R_q$, so $pT' \neq T'$. Hence $\operatorname{End}(R^+)$ has a subgroup isomorphic to $\operatorname{Hom}(R_p \oplus T'/pT', R_p)$, which is a p-group of rank > 1, a contradiction.

LEMMA 5. Let $R \cong \mathscr{E}(R^+)$ with R^+ torsion-free and completely decomposable. Then R is a direct sum of finitely many rank 1 rings of incomparable types.

PROOF. Suppose $R^+ = \bigoplus_{i \in I} A_i$ for some index set *I*, where each A_i is a rank 1 torsion-free group. Then $\operatorname{End}(R^+)$ contains as a direct summand $\bigoplus_{i \in I}^* \operatorname{End}(A_i)$. Since $\operatorname{End}(R^+)$ is completely decomposable and of rank |I|, *I* is finite, and $\operatorname{End}(R^+) = \bigoplus_{i \in I} \operatorname{End}(A_i)$. Hence for each $i \neq j$, $\operatorname{Hom}(A_i, A_j) = 0$, so the A_i have incomparable types. Since the type of $\operatorname{End}(A_i)$ is less than the type of A_i , $A_i \cong \operatorname{End}(A_i)$ for all *i*, so A_i is a rank 1 ring. Finally since $\operatorname{Hom}(A_i, A_j) = 0$ if $i \neq j$, each A_i is an ideal in *R*.

The characterizations promised in the Introduction follow from these lemmas:

THEOREM 1. If R is torsion, then $R \cong \mathscr{E}(R^+)$ if and only if R is cyclic.

PROOF. It is well known that $C(n) \cong \mathscr{E}(C(n))$ for all positive integers n. Conversely, if R is torsion then by Lemma 2,

$$\bigoplus_{p \in S} C(p^{k_p}) \cong R \cong \mathscr{E}(R^+) \cong \bigoplus_{p \in S} C(p^{k_p})$$

for some set S of primes. Hence S is finite, so R is cyclic.

THEOREM 2. If R^+ is completely decomposable, then $R \cong \mathscr{E}(R^+)$ if and only if $R \cong C(n) \oplus A$, where n is a non-negative integer and A is a direct sum of rank 1 rings of incomparable type, and A is divisible by each prime which divides n.

PROOF. A modest calculation shows that $\mathscr{E}(C(n) \oplus A) \cong C(n) \oplus A$.

Conversely, let $R^+ = t(R) \oplus A$, where A is torsion-free and completely decomposable. Then Hom(t(R), A) = 0, and by Lemma 4, Hom(A, t(R)) = 0, so R is the ring direct sum of its ideals t(R) and A. Thus

$$\mathscr{E}(R^+) \cong \mathscr{E}(t(R)) \oplus \mathscr{E}(A),$$

so $t(R) \cong \mathscr{E}(t(R))$, $A \cong \mathscr{E}(A)$. The result now follows from Theorem 1, Lemma 5, and Lemma 4.

THEOREM 3. If R is not reduced, then $R \cong \mathscr{E}(R^+)$ if and only if $R \cong Q \oplus C(n)$ for some non-negative integer n.

PROOF. Certainly $\mathscr{E}(Q \oplus C(n)) \cong Q \oplus C(n)$.

Conversely, by Lemma 1, $R \cong t(R) \oplus Q$ and by Lemma 2,

$$t(R)\cong \bigoplus_{p\in S} C(p^{k_p})$$

for some set S of primes. Then $\operatorname{End}(R^+)$ contains a direct summand $\bigoplus_{p \in S}^* C(p^{k_p}) \oplus Q$; by Lemma 1 again, $\bigoplus_{p \in S}^* C(p^{k_p})$ is torsion, so S is finite. Hence $t(R) \cong C(n)$ for some n.

THEOREM 4. If R^+ is finitely generated, then $R \cong \mathscr{E}(R^+)$ if and only if $R \cong Z$, or $R \cong C(n)$ for some non-negative integer n.

PROOF. By Theorem 2, R is the direct sum of a cyclic ring and finitely many copies of the integers. But the torsion-free components have incomparable types, so there is at most one. Furthermore, Z is not divisible by any prime, so if R has a non-zero torsion subgroup, then R is torsion.

THEOREM 5. If R is a mixed ring, S the set of relevant primes, and R has no element of infinite p-height for all $p \in S$, then $R \cong \mathscr{E}(R^+)$ if and only if:

(1) $R_p \cong C(p^{k_p}), 0 < k_p < \infty$ for all $p \in S$

(2) If U is the ring $\bigoplus_{p \in S}^{*} R_p$, then R is a subring with identity of U.

(3) R is S-pure in U.

PROOF. Suppose R is a subring of U satisfying (1), (2) and (3). The exact sequence of rings

 $0 \rightarrow t(R) \rightarrow R \rightarrow R/t(R) \rightarrow 0$ induces an exact sequence of groups

$$0 \to \operatorname{Hom}(R^+/t(R), R^+) \to \operatorname{End}(R^+) \to \operatorname{Hom}(t(R), R^+).$$

Since R is S-pure in U, R/t(R) is S-pure in U/t(R), and hence S-divisible. Since R has no elements of infinite p-height for all $p \in S$, $\operatorname{Hom}(R/t(R), R) = 0$. Hence $\operatorname{End}(R^+)$ is embedded in $\operatorname{Hom}(t(R), R)$ by the mapping $f \mapsto f|_{t(R)}$. But any $f \in \operatorname{Hom}(t(R), R)$ sends t(R) into t(R), and this mapping is a ring homomorphism. Hence $\mathscr{E}(R^+)$ is embedded as a subring of $\mathscr{E}(t(R))$. Now it is well know that $\mathscr{E}(t(R))$ is the ring of all multiplications in U, so if $f \in \mathscr{E}(R^+)$, then f is multiplication in R by some $x \in U$; in particular, $x = f(1) \in R$. Thus the mapping $x \mapsto$ multiplication by x is a ring homomorphism of R onto $\mathscr{E}(R^+)$. The kernel is zero, since $1 \in R$.

Conversely, we have by Lemma 4 that $R^+ \cong T$, an S-pure subring of $U = \bigoplus_{p \in S}^* R_p$ containing the identity, and $R_p \cong C(p^{kp})$ by Lemma 2.

REMARKS. If S is any infinite set of primes, and k_p a positive integer for each $p \in S$, there are c non-isomorphic subrings of

$$\bigoplus_{p \in S}^{*} C(p^{k_p}) / \bigoplus_{p \in S} C(p^{k_p}),$$

each of which is S-divisible. Hence there are c non-isomorphic rings R with fixed torsion subring $\bigoplus_{p \in S} C(p^{k_p})$ which satisfy the hypotheses of Theorem 4.

It is well known that if R is a p-pure subring of Z_p , or an S-pure subring of $\bigoplus_{p \in S}^* Z_p$, where S is any collection of primes, then $R \cong \mathscr{E}(R^+)$.

Other example of rings $R \cong \mathscr{E}(R^+)$ can be constructed by noting that if I is any index set, and R_i , $i \in I$, a collection of rings such that $R_i \cong \mathscr{E}(R_i^+)$ and such that Hom $(\bigoplus_{i\neq i}^* R_i, R_i) = 0$, then

$$\bigoplus_{i \in I}^{*} R_{i} \cong \mathscr{E}\left(\bigoplus_{i \in I}^{*} R_{i}^{+}\right).$$

Finally, we have a slight improvement on Lemma 4.

THEOREM 6. Let R be a mixed ring with relevant prime set S, and let

$$A = \{ x \in R \mid h(x)(p) = \infty \text{ for all } p \in S \}.$$

If $R \cong \mathscr{E}(R^+)$, then $R_p \cong C(p^{k_p})$, $0 < k_p < \infty$ for all $p \in S$, and R is an extension of A by a ring T such that $T \cong \mathscr{E}(T^+)$ and

$$t(R) \subset T \subset \bigoplus_{p \in S}^* R_p.$$

The extension splits if $A \cong \mathscr{E}(A^+)$.

PROOF. By Lemma 4, it suffices to prove that $T \cong \mathscr{E}(T^+)$ and the remark about splitting. The first statement follows from Theorem 5. If $A \cong \mathscr{E}(A^+)$, then A has an identity 1_A ; multiplication by 1_A is a retraction of R onto A.

3. The nature of the isomorphism: the commutative case

Let R be any ring with identity 1. Then the mapping $f \mapsto f(1)_L$ is a retraction of $\mathscr{E}(R^+)$ onto R_L , the ring of left multiplications in R. This mapping is a group homomorphism with kernel $K = \{f: f(1) = 0\}$. Hence $\mathscr{E}(R^+)$ is a group theoretic direct sum of the ring R_L and the left ideal K, so we have the following:

LEMMA 6. For a ring R with identity 1, the following statements are equivalent:

(1) R is commutative and $R \cong \mathscr{E}(R^+)$.

(2) The mapping $x \mapsto x_L$, left multiplication by x, is an isomorphism of R onto $\mathscr{E}(\mathbb{R}^+)$, with inverse $f \mapsto f(1)$.

(3) Every endomorphism of R^+ is a left multiplication in R.

PROOF. (1) \rightarrow (2) By the preceding remarks, R_L , which is isomorphic to R, is a direct summand of End (R^+) . But a group with commutative endomorphism ring cannot have a proper isomorphic direct summand, so $R_L = \mathscr{E}(R^+)$, and the ring isomorphism $x \mapsto x_L$ maps R onto $\mathscr{E}(R^+)$.

 $(2) \rightarrow (3)$ is trivial.

 $(3) \rightarrow (1)$ Clearly $\mathscr{E}(R^+) = R_L \cong R$. In particular, the right multiplications in R are left multiplications; let x_R be a right multiplication, and suppose $x_R = y_L$. Then $x = x_R(1) = y_L(1) = y$, so $x_R = x_L$; hence R is commutative.

DEFINITION.Let us call a ring R which satisfies the conditions of Lemma 6 an *E-ring*, and the additive group of an *E-ring* an *E-group*. This definition of *E*-group coincides with that in [3], where an *E*-group was defined by condition (3). In Corollary 4 below, we see that every ring with identity over an *E*-group is an *E*-ring.

COROLLARY 1. Every endomorphic image of an E-group R^+ is the additive group of a principal ideal of R.

COROLLARY 2. A group direct summand of an E-ring R is a ring direct summand, and hence R^+ cannot be decomposed as an infinite direct sum.

PROOF. Let $p \in \mathscr{E}(R^+)$ be the projection of R^+ onto the direct summand eR^+ . Then e = p(1), so

$$e^{2} = p(1)^{2} = e \cdot p(1) = p(p(1)) = p(1) = e.$$

Hence e is an idempotent, so eR is a ring direct summand. Since R has identity 1, R cannot be an infinite direct sum of ideals.

COROLLARY 3. If R is any ring with identity, then $\mathscr{E}(R^+)$ is commutative if and only if R is an E-ring.

PROOF. If $\mathscr{E}(R^+)$ is commutative, let $f \in \mathscr{E}(R^+)$. Then for all $x \in R$,

$$f(x) = f \cdot x_L(1) = x_L \cdot f(1) = x_R \cdot f(1) = f(1)x,$$

so $f = f(1)_L$. Condition (3) of Lemma 6 is satisfied.

The converse follows from the definition of E-ring.

COROLLARY 4. If R is an E-ring, and S any ring with identity over R^+ , then $R \cong S$.

PROOF. Since $\mathscr{E}(R^+) = \mathscr{E}(S^+)$ is commutative, S is an E-ring by Corollary 3. Hence $S \cong \mathscr{E}(S^+) \cong R$.

LEMMA 7. Let R be a ring with identity 1, and let F be an isomorphism of R onto $\mathscr{E}(R^+)$. Then for every $* \in Mult(R^+)$, there exists a unique $a \in R$ such that x * y = F(F(a)(x))(y) for all $x, y \in R$.

PROOF. There is a chain of well-known group isomorphisms

 $R^+ \xrightarrow{F} \text{End} (R^+) \xrightarrow{F^*} \text{Hom} (R^+, \text{End} (R^+)) \rightarrow \text{Mult} (R^+),$

where for all $a \in \mathbb{R}^+$, $a \mapsto F(a) \mapsto f_a \mapsto *_a$, where $f_a(x)(y) = F(F(a)(x))(y) = x*_a y$.

Note. The left multiplications in R correspond to elements of Mult(R^+) of the form x * y = F(ax)(y) for some $a \in R$, and in particular, the identity map on R^+ corresponds to the multiplication $x *_1 y = F(x)(y)$. Clearly 1 is a left identity for $*_1$, and we have the following criteria for commutativity of R:

LEMMA 8. Let R be a ring with identity 1, let F be an isomorphism of R onto $\mathscr{E}(R^+)$; let $a \mapsto *_a$ be the mapping defined in Lemma 7. Then the following conditions are equivalent:

- (1) R is an E-ring
- (2) Every multiplication $*_a$ is associative
- (3) Every multiplication $*_a$ is commutative
- (4) $*_1$ is associative
- (5) $*_1$ is commutative
- (6) 1 is a right identity for $*_1$.

PROOF. $(1) \mapsto (2)$ and (3).

Since R is an E-ring, we may replace F, if necessary, by the isomorphism $x \to x_L$. Then every multiplication in R^+ has the form $x *_a y = axy$, so is necessarily associative and commutative.

 $(2) \rightarrow (4)$ and $(3) \rightarrow (5)$ are trivial

(4) \rightarrow (6) For all $x, y, z \in R$,

 $F(F(x)(y))(z) = (x_1 * y) *_1 z = x *_1 (y *_1 z) = F(x) (F(y)(z)) = F(xy)(z),$

so F(F(x)(y) = F(xy). Hence $x *_1 y = F(x)(y) = xy$ for all $x, y \in R$ and 1 is a right identity.

(5) \rightarrow (6) For all $x \in R$, $x *_1 1 = 1 *_1 x = F(1)(x) = x$. (6) \rightarrow (1) If $x = x *_1 1 = F(x)(1)$ for all x, then

$$K = \{ f \in \mathscr{E}(R) \, \big| \, f(1) = 0 \} = 0,$$

so by the Remarks preceding Lemma 6, $\mathscr{E}(R^+) = R_L$ and R is an E-ring.

COROLLARY 5. If R is an E-ring, there is a 1-1 correspondence between elements a of R, and rings R_a over R^+ . This correspondence maps 1 into R, and units u of R into rings R_u with identity u^{-1} such that $R_u \cong R$.

PROOF. By Lemma 8, every element $*_a$ of Mult (R^+) is associative, and so defines a ring R_a over R^+ , whose multiplication is given by x * y = axy; since every ring R' over R^+ gives rise to some multiplication in R^+ , this correspondence is 1-1. The original ring $R = R_1$, and clearly u^{-1} is an identity for R_u . Of course all rings with identity over R^+ are isomorphic by Corollary 4.

LEMMA 9. Any endomorphic image of an E-group is an E-group; every endomorphism of an endomorphic image of an E-group R^+ can be extended to an endomorphism of R^+ .

PROOF. If R is an E-ring, any endomorphic image of R^+ has the form aR^+ for some $a \in R$ by Corollary 1. Define a multiplication * on aR^+ by ax * ay = axy. Then * induces a commutative ring S over aR^+ with identity a. Let $f \in \mathscr{E}(aR^+)$; then $f \cdot a_L \in \mathscr{E}(R^+)$, so for all $ax \in aR$,

$$f(ax) = (f \cdot a_L)(1) \cdot x = f(a) \cdot x = ayx,$$

where $ay = f(a) \in aR^+$. Hence f(ax) = ay * ax, so f is multiplication by ay in S. By Lemma 6, S is an E-ring, and aR^+ an E-group.

Let $f \in \mathscr{E}(aR^+)$, say f(a) = ay. Then $y_L \in \mathscr{E}(R^+)$ is an extension of f, for if $ax \in aR$,

$$f(ax) = ay * ax = axy.$$

Unfortunately, no such nice property seems to be true in general for rings $R \cong \mathscr{E}(R^+)$. We do know that $\mathscr{E}(R^+) = R_L \oplus K$, where $K = \{f | f(1) = 0\}$. If R is not commutative, then by Lemma 5, $K \neq 0$, so R^+ is isomorphic to a proper direct summand, the inverse image of R_L . Clearly, none of the rings described in Theorem 1–5 have this property, so they are all *E*-rings. In addition, we have the following partial result, corresponding to Theorem 6.

THEOREM 7. Let R be a mixed ring with identity with a set S of relevant primes. Let

P. Schultz

$$A = \{x \in R \mid h(x)(p) = \infty \text{ for all } p \in S\},\$$

and let $U = \bigoplus_{p \in S}^{*} R_p$. Then R is an E-ring if and only if:

(1) $R_p \cong (Cp^{kp}), 0 < k_p < \infty$ for all $p \in S$

(2) R is an extension of A by an E-ring T such that $t(R) \subset T \subset U$

(3) If $f \in \mathscr{E}(\mathbb{R}^+)$, then the restriction of $f - f(1)_L$ to A is the zero map.

(4) If $f \in \mathscr{E}(\mathbb{R}^+)$, then the unique homomorphism $\overline{f}: T/t(\mathbb{R}) \to A$ induced by $f - f(1)_L$ is the zero map.

PROOF. Suppose R is an E-ring. Condition (1) follows from Lemma 2. By Theorem 6, R is an extension of A by a ring $T \cong \mathscr{E}(T^+)$ such that $t(R) \subset T \subset U$. Since T is commutative, it is an E-ring. Conditions (3) and (4) are trivial, since $= f(1)_I$.

Now assume that R satisfies conditions (1)-(4), let $f \in \mathscr{E}(R^+)$, and consider the endomorphism $f' = f - f(1)_L$. Since $f'|_{R_p} \in \mathscr{E}(R_p)$, it is multiplication in R_p by $f'(1_p)$, where 1_p , the p-component of 1, is the identity of R_p . Hence $f'(1_p) = 0$ for all $p \in S$, so $f'|_{t(R)} = 0$. By condition (3), $f'|_A = 0$, so $A \oplus t(R)$ is contained in the kernel of f'; thus f' induces a unique homorphism \overline{f} on

$$R^+/A \oplus t(R) \cong T/t(R),$$

whose image must be a subgroup of A, since T/t(R) is S-divisible. Hence by condition (4) f = 0 so $f = f(1)_L$. Thus R is an E-ring.

REMARK. Conditions (3) and (4) are of little use in either constructing E-rings, or deciding whether a ring is an E-ring. It might be conjectured that they could be replaced by stronger conditions, for example:

(3') A is an E-ring

(4') Hom(T, A) = 0.

However, (3') is true if (by Theorem 6) and only if (since $\mathscr{E}(R^+)$ is commutative) the extension of Theorem 7 splits, so (3') implies (4'). While no non-splitting extension has been constructed, there seems no reason to believe they do not exist. Condition (4') seems more reasonable, and I conjecture that it is a necessary condition for R to be an E-ring.

4. The nature of the isomorphism: the non-commutative case

Let $R \cong \mathscr{E}(R^+)$, with R not commutative. Then we know from the remarks preceding Lemma 6 that:

$$\mathscr{E}(R^+) = R_L \oplus K$$
, where $K = \{f \in \mathscr{E}(R) \mid f(1) = 0\} \neq 0$.

Hence End (R^+) , and consequently R^+ , is an *ID-group*, that is, a group which is isomorphic to a proper direct summand. (It is not difficult to find elements of K: for example, if x is not in the centre of R, then $x_L - x_R \in K$). Now if R^+ is an

ID-group, there exist monomorphisms $\phi \in \mathscr{E}(R^+)$ such that $R^+ = \phi(R^+) \oplus H$, where $H \neq 0$. Beaumont and Pierce [1] have proved the following structure theorem for *ID*-groups R^+ :

Let $M = \bigcap_{n < \omega} \phi^n(R^+)$, let $P = \bigoplus_{n < \omega}^* H_n$, where $H_n = \phi^n(H) \cong H$, and let $S = \bigoplus_{n < \omega} H_n$. Then R^+ is an extension of M by a group T such that $S \subset T \subset P$, and $\phi \mid M$ is an automorphism of M.

In our case, let $F: R \to \mathscr{E}(R^+)$ be the isomorphism, and define ϕ by $\phi(x) = F^{-1}(x_L)$ for $x \in R^+$. Then $F(\phi(R^+)) = R_L$ so F(H) = K and by Beaumonts and Pierce's result, R^+ is an extension of $\bigcap_{n < \omega} \varphi^n(R^+)$ by a subgroup of $\bigoplus_{\kappa_0}^* K$. If R contains a fully invariant E-ring A, then clearly F can be modified so that $F(x) = x_L$ for $x \in A$, and in this case, $\phi|_A$ is the identity, so $A^+ \subset \bigcap_{n < \omega} \phi^n(R^+)$. In general however, little else is known.

LEMMA 10. Let $R \cong \mathscr{E}(R^+)$, R not commutative. Then the group U of units of R contains a copy of every finite group.

PROOF. It will suffice to show that U contains a copy of S(n), the symmetric group on n symbols for every positive integer n. Now

$$R^+ = H \oplus \phi(H) \oplus \cdots_{\oplus} \phi^{n-1}(H) \oplus \phi^n(R^+),$$

where $\phi^{i}(H) \cong H$, so each $x \in R^{+}$ can be expressed as

$$x = (x_1, \phi(x_2), \cdots, \phi^{n-1}(x_n), y),$$

with $x_i \in H$ for $i = 1, 2, \dots n$. For $\sigma \in S(n)$, define $f_{\sigma} \in \mathscr{E}(R^+)$ by

$$f_{\sigma}(x_1, \phi(x_2), \dots, \phi^{n-1}(x_n), y) = (x_{\sigma(1)}, \phi(x_{\sigma(2)}), \dots, \phi^{n-1}(x_{\sigma(n)}), y).$$

 f_{σ} is clearly an automorphism of R^+ , so the set $\{f_{\sigma} : \sigma \in S(n)\}$ is a group of units of $\mathscr{E}(R^+)$ isomorphic to S(n).

References

- R. A. Beaumont and R. S. Pierce, 'Isomorphic Direct Summands of Abelian Groups', Math. Annalen 153 (1964), 21-37.
- [2] L. Fuchs, Abelian Groups (Hungarian Academy of Science, Budapest, 1958).
- [3] P. Schultz, 'Periodic Homomorphism Sequences of Abelian Groups', Arch. Math. 21 (1970), 132-135.

Department of Mathematics University of Western Australia