
J. Aust. Math. Soc. 85 (2008), 81–86
doi:10.1017/S1446788708000682

REAL ZEROS OF ALGEBRAIC POLYNOMIALS WITH
STABLE RANDOM COEFFICIENTS

K. FARAHMAND

(Received 17 November 2006; accepted 5 January 2007)

Communicated by V. T. Stefanov

Abstract

We consider a random algebraic polynomial of the form Pn,θ,α(t)= θ0ξ0 + θ1ξ1t + · · · + θnξn tn , where
ξk , k = 0, 1, 2, . . . , n have identical symmetric stable distribution with index α, 0< α ≤ 2. First, for a
general form of θk,α ≡ θk we derive the expected number of real zeros of Pn,θ,α(t). We then show that
our results can be used for special choices of θk . In particular, we obtain the above expected number
of zeros when θk =

(n
k

)1/2. The latter generate a polynomial with binomial elements which has recently
been of significant interest and has previously been studied only for Gaussian distributed coefficients.
We see the effect of α on increasing the expected number of zeros compared with the special case of
Gaussian coefficients.
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1. Introduction

Let {ξk}
n
k=0 be a sequence of independent identically distributed random variables.

The classical random algebraic polynomial defined as Qn(t)=
∑n

k=0 ξk tk has been
well studied. However, most of the known results are for the case of Gaussian
distributed coefficients ξk . Assuming symmetric distribution for the ξk and large
n, Kac [5] found an asymptotic estimate for the expected number of real zeros of
Qn(t) in the entire real line as E NQ,n(−∞,∞)∼ (1/2π) log n. This is significantly
fewer than that of random trigonometric polynomial Tn(t)=

∑n
k=0 ξk cos kt which

has E NT,n(0, 2π)∼ n/
√

3 zeros. The error terms occurring in the above asymptotic
formula are reduced to O(1) in the two interesting papers by Wilkins in [9] for the
algebraic case and in [10] for the trigonometric polynomials. There are reviews on
the earlier results for the above polynomials and related topics in [1] and more recent
works in [3].
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Until recently the above classes of polynomials were most commonly studied,
and their various characteristics, such as their level crossings and maxima (minima),
were considered. Motivated by some physical applications, stated in Ramponi [8],
Edelman and Kostlan [2] introduced polynomials of the form

Pn(t)=
n∑

k=0

ξk

(
n

k

)1/2

tk . (1)

They found that in this case the expected number of real zeros that Pn(t) possesses
is significantly more than Qn(t) but fewer than Tn(t). For the symmetric Gaussian
coefficients they found E NP,n(−∞,∞)∼

√
n. Interestingly, unlike classical

algebraic polynomials Qn(t), this asymptotic value persists for the case of level
crossings or when the number of maxima (minima) is considered. The variance of
the kth term of Pn(t), which is

(n
k

)
, increases to its maximum at the middle term.

This initiated another type of random algebraic polynomials with this property in [4].
However, so far the only class of polynomials with E N (−∞,∞)∼

√
n is in the form

of Pn(t) given in (1).
As for distributions other than Gaussian, very little is known. This is not surprising

as the analysis involved for any other distribution becomes complicated. One can see
the latter in the works of Logan and Shepp [6, 7] where, for distributions not belonging
to the domain of attraction of normal law, it is shown that there is a slight increase in
the expected number of real zeros for Qn(t). However, the order of log n obtained
previously in the Gaussian case persists. Therefore it is of interest, and natural to
ask, whether this increase in the expected number of real zeros will also remain the
same for the polynomials with binomial elements Pn(t) given in (1). We will see, as
a consequence of our results here, that this is in fact the case. A very general case
considered in Theorem 1 and a formula for the expected number of real zeros is given.
Then for a special case, which is of interest as mentioned above, Theorem 2 gives an
asymptotic formula for E Nn . We prove the following result.

THEOREM 1. Let Pn,θ,α(t)=
∑n

k=0 θkξk tk where θn,k ≡ θk is a variable independent
of t and ξk have identical symmetric stable distribution with index α, 0< α ≤ 2. Then
the expected number of real zeros of Pn,θ,α(t) is

E Nn,θ,α(−∞,∞) =
2

π2α

∫
∞

0

dt

t

∫
∞

−∞

log
{ ∑n

k=0 πk |u − k|α

|
∑n

k=0 πk(u − k)|α

}
du

where

5k,α = πk =
tαkθαk∑n
j=0 tα jθαj

. (2)

Now, in Theorem 1, we assume θαk =
(n

k

)
, which leads to a natural definition for

Pn,α(t)=
n∑

k=0

(
n

k

)1/α

ξk tk . (3)
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This enables us to evaluate the expected number of real zeros of Pn,α(t) obtained in
Theorem 1 explicitly as the following result.

THEOREM 2. With the same assumptions as Theorem 1 and for Pn(t) defined as in (3),

E Nn,α(−∞,∞) ∼ C(α)
√

n

where

C(α)=
4

πα2

∫
∞

0
dx log

{∫
∞

−∞

∣∣∣∣1− y

x

∣∣∣∣α exp
(
−

y2

2

)
dy
√

2π

}
.

2. Proof of Theorem 1

Let pt,θ,α(x, y)≡ pt (x, y) be the joint probability density function of Pn,θ (t) and
its derivative with respect to t , P ′n,θ (t). Then, from [5] or [3, p. 12], we know that the
expected number of real zeros of Pn,θ (t) in the interval (a, b) is given by

E Nn,θ,α(a, b)=
∫ b

a
fn(t) dt

where

fn,θ,α(t)≡ fn(t)=
∫
∞

−∞

pt (0, y)|y| dy.

Let ϕ(z)= E{exp(i zξk)} = exp(−|z|α) be the common characteristic function of ξk ,
k = 0, 1, 2, . . . , n, ak = tk and bk = ktk ; then the inversion formula yields

fn(t)=

(
1

2π

)2 ∫ ∞
−∞

dy
∫
∞

−∞

dz
∫
∞

−∞

e−iyω
n∏

k=0

ϕ{θk(ak z + bkω/t)} dω.

Now with the change of variable z = uω, similar to [7], we obtain

fn(t) = lim
ε↓0

∫
∞

−∞

|y| exp(−ε|y|)pt (0, y) dy

= lim
ε↓0

(
1

π2

) ∫
∞

−∞

du
∫
∞

0
Re

ω

(ε − iω)2

n∏
k=0

ϕ(tk
|u − k|θkω) dω. (4)

As established in [7], we use the following identity valid for nonzero constants A and
B:

Re
(

1

π2

) ∫
∞

0
dω

∫
∞

−∞

1

(ε + iω)2
exp(−|Az + Bω|α) dz = 0. (5)

We subtract (5) from (4) and let ω =−tv to derive

fn(t)=

(
1

π2t

) ∫
∞

−∞

du
∫
∞

0

ϕn+1
{(Au − B)v} −

∏n
k=0 ϕ(t

k
|u − k|θkv)

v
dv. (6)
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In order for fn(t) in (6) to be convergent as ε ↓ 0 we need to chose constants A and B
such that

(n + 1)|Au − B|α −
∑n

k=0 |u − k|αtkαθαk

uα
= O

(
1

u2

)
as u→∞.

This would be the case for

A =

(
1

n + 1

n∑
k=0

tαkθαk

)1/α

and

B =
A1−α

n + 1

n∑
k=0

ktkαθαk .

We can now evaluate fn(t) in (6) further. We first modify the identity given in
[7, p. 310] to ∫

∞

0

exp(−aαvα)− exp(−bαvα)

v
dv = log

(
b

a

)
.

This, together with (6), yields

fn(t) =

(
1

π2t

) ∫
∞

−∞

du

×

∫
∞

0

[
exp{−(n + 1)1−α|(

∑n
k=0 tαkθαk )

1/αu − A1−α∑n
k=0 ktαkθαk |

αvα}

v

−
− exp{−

∑n
k=0 tkα

|u − k|αθαk }

v

]
dv

=

(
1

π2t

)
×

∫
∞

−∞

log

{
(
∑n

k=0 tαk
|u − k|αθαk )

1/α

|(
∑n

k=0 tαkθαk )
1/αu − A1−α

∑n
k=0 ktαkθαk |/(n + 1)1−1/α|

}
du

=

(
1

π2t

)
×

∫
∞

−∞

log

{
(
∑n

k=0 tαk
|u − k|αθαk )

1/α

|(
∑n

k=0 tαkθαk )
1/αu − (

∑n
k=0 tαkθαk )

1/α−1
∑n

k=0 ktαkθαk |

}
du

=

(
1

π2tα

)
×

∫
∞

−∞

log

{ ∑n
k=0 tαk

|u − k|αθαk
(
∑n

k=0 tαkθαk )|u −
∑n

k=0 ktαkθαk /
∑n

k=0 tαkθαk )|
α

}
du. (7)
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Now from (7) we have a formula for the expected number of zeros of Pn(t):

E Nn,θ,α(−∞,∞)=

(
2

π2α

) ∫
∞

0

dt

t

∫
∞

−∞

log
{ ∑n

k=0 πk |u − k|α

|
∑n

k=0 πk(u − k)|α

}
du, (8)

where πk is given in (2). This completes the proof of Theorem 1. If we assume θk ≥ 0
for all k, since t and α are nonnegative, πk is also nonnegative for all k. Therefore,

n∑
k=0

πk |u − k|α ≥

∣∣∣∣ n∑
k=0

πk(u − k)

∣∣∣∣α,
and we note that the term inside {·} in (8) is greater than or equal to one and therefore
the integrand is positive.

3. Random polynomials with binomial elements

Now we assume that in Theorem 1, θαk ≡
(n

k

)
. This, therefore, will be the case for

Theorem 2. We first evaluate the terms on the right-hand side of (8). To this end, we
note that if we let tα = p/(1− p) then the value of πk given in (2) becomes

πk =
tαk
(n

k

)
(1+ tα)n

=

(
n

k

)
pk(1− p)n−k

which is binomial B(n, p). Therefore, from (8),

E Nn,α(−∞,∞)=

(
2

π2α2

) ∫ 1

0

dp

p(1− p)

∫
∞

−∞

log
{

E |u − B(n, p)|α

|u − np|α

}
du.

(9)

Now we let B(n, p)= np +
√

np(1− p)η, u = np + v and v = y
√

np(1− p). Then
from (9) we obtain

E Nn,α(−∞,∞) =

(
2

π2α2

) ∫ 1

0

dp

p(1− p)

∫
∞

−∞

log E

∣∣∣∣v −√np(1− p)η

v

∣∣∣∣α dv

=

(
2
√

n

π2α2

) ∫ 1

0

dp
√

p(1− p)

∫
∞

−∞

log E

∣∣∣∣ y − η

y

∣∣∣∣α dy

=

(
2
√

n

π2α2

) ∫ 1

0

dp
√

p(1− p)

×

∫
∞

−∞

log
{∫
∞

−∞

∣∣∣∣1− x

y

∣∣∣∣α exp(−x2/2)
√

2π
dx

}
dy. (10)

Now, since we can evaluate
∫ 1

0 dp/
√

p(1− p) as 02(1/2)/0(1)= π , from (10)

E Nn,α(−∞,∞)=

(
4
√

n

πα2

) ∫
∞

0
log

{∫
∞

−∞

∣∣∣∣1− x

y

∣∣∣∣α exp(−x2/2)
√

2π
dx

}
dy.

This proves Theorem 2.
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In order to show that our general result in Theorem 2 corresponds with the known
results for α = 2 we make this substitution in the result of Theorem 2. We obtain

E Nn,2(−∞,∞) =

√
n

π

∫
∞

0
log

{∫
∞

−∞

(
1−

2x

y
+

x2

y2

)
exp(−x2/2)
√

2π
dx

}
dy

=

(√
n

π

) ∫
∞

0
log

(
1+

1

y2

)
dy =

(√
n

π

) ∫
∞

0

dy

1+ y2 dy

=
√

n.

Also numerical calculation shows that C(α) decreases from one to zero as α
decreases from 2 to 0.
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