4

Stable Pairs over Reduced Base Schemes

So far we have identified stable pairs (X,A) as the basic objects of our
moduli problem, defined stable and locally stable families of pairs over one-
dimensional regular schemes in Chapter 2, and in Chapter 3 we treated families
of varieties over reduced base schemes. Here we unite the two by discussing
stable and locally stable families over reduced base schemes.

After stating the main results in Section 4.1, we give a series of examples
in Section 4.2. The technical core of the chapter is the treatment of various
notions of families of divisors given in Section 4.3. Valuative criteria are
proved in Section 4.4 and the behavior of generically R-Cartier divisors is
studied in Section 4.5.

In Section 4.6, we finally define stable and locally stable families over
reduced base schemes (4.7) and prove that local stability is a representable
property. Families over a smooth base scheme are especially well behaved;
their properties are discussed in the short Section 4.7.

The universal family of Mumford divisors is constructed in Section 4.8;
this is probably the main technical result of the chapter. The correspondence
between (not necessarily flat) families of Mumford divisors and flat families of
Cayley—Chow hypersurfaces — established over reduced bases in Theorem 4.69
— leads to the fundamental notion of Cayley flatness in Chapter 7.

At the end, we have all the ingredients needed to treat the moduli functor
SPred, which associates to a reduced scheme S the set of all stable families
f:(X,A) = S, up to isomorphism. (Here the superscript ¢ indicates that we
work with reduced base schemes only.)

To be precise, we fix the dimension n of the fibers, a finite set of allowed
coefficients ¢ C [0, 1] and the volume v. Our families are f : (X, A) — S, where
X — § is flat and projective, A is a Weil R-divisor on X whose coefficients are
in ¢, Kx/s + A is R-Cartier, and the fibers (X, A,) are stable pairs of dimension
n with vol(Kx, + Ay) := ((Kx, + A,)") = v. This gives the functor
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138 Stable Pairs over Reduced Base Schemes

SPd (¢, n,v): {reduced S -schemes} — {sets}.
We can now state one of the main consequence of the results of this chapter.

Theorem 4.1 (Moduli theory of stable pairs 1) Let S be an excellent base
scheme of characteristic 0 and fix n,c,v. Then SP’“I(C, n,v) is a good moduli
theory (6.10), which has a projective, coarse moduli space SP"*(¢c,n,v) — S.

Moreover, SPred(c, n,v) is the reduced subscheme of the “true” moduli space
SP(c, n,v) of marked, stable pairs, to be constructed in Chapter 8.

Assumptions In the foundational Sections 4.1-4.5 we work with arbitrary
schemes, but for Sections 4.6 and 4.7 we need to assume that the base scheme
is over a field of characteristic 0.

4.1 Statement of the Main Results

In the study of locally stable families of pairs over reduced base schemes, the
key step is to give the “correct” definition for the divisorial component

Temporary Definition 4.2 A family of pairs (with Z-coefficients) of dimen-
sion n over a reduced scheme is an object

[ (X,D) - S, 4.2.1)

consisting of a morphism of schemes f: X — § and an effective Weil divisor
D satisfying the following properties.

4.2.2 (Flatness for X) The morphism f: X — S is flat, of finite type, of pure
relative dimension n, with geometrically reduced fibers. This is the expected
condition from the point of view of moduli theory, following the Principles
(3.12) and (3.13).

4.2.3 (Equidimensionality for Supp D) Every irreducible component D; C
Supp D dominates an irreducible component of S and all nonempty fibers of
Supp D — S have pure dimension n— 1. In particular, Supp D does not contain
any irreducible component of any fiber of f. If S is normal then SuppD — S
has pure relative dimension n — 1 by (2.71.2), but in general our assumption
is weaker. We noted in (2.41) that D — S need not be flat for locally stable
families. So we start with this weak assumption and strengthen it later.
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4.1 Statement of the Main Results 139

4.2.4 (Mumford condition) The morphism f is smooth at generic points of X;N
Supp D for every s € S. Equivalently, for each s € S, none of the irreducible
components of X; N Supp D is contained in Sing(Xj).

This condition was first codified in Mumford’s observation that, in order
to get a good moduli theory of pointed curves (C, P), the marked points P =
{p1,-..,pn} should be smooth points of C; see Section 4.8 for details.

If (X, A) is an slc pair, then X is smooth at all generic points of Supp A. So if
D is an effective divisor supported on Supp A, then this conditions is satisfied.

It turns out that such generic smoothness is a crucial condition technically.
So we make it part of the definition for families of pairs.

A big advantage is that, if S is reduced, then X is regular at the generic points
of Supp D. Thus, as for normal varieties, we can harmlessly identify Mumford
divisors with divisorial subschemes; see (4.16.6-7) for details.

Next we come to the heart of the matter: we would like the notion of families
of pairs to give a functor. So, for any morphism g : W — S, we need to define
the pulled-back family. We have a fiber product diagram

Xxs W20 x
fwi l f 4.2.5)

W————3S.

It is clear that we should take Xy := X xg W, with morphism fi: Xy — W.
The definition of the divisor part Dy is less clear, since pull-backs of Cartier
and of Weil divisors are not compatible in general.

4.2.6 (Weil-divisor pull-back) For any subscheme Z < X and morphism
h: Y — X, define the Weil-divisor pull-back as the Weil divisor Weil(h~!(Z))
associated to the subscheme 4~ 1(Z) C Y; see (4.16.6) for formal definitions.

Let D,X be as in (4.2.1) and g: W — § a morphism. Using the Mumford
condition we can view D as a subscheme of X. Then set

Zwain (D) 1= Weil(gy' (D).

In particular, if 7: {s} — S is a point, we get the Weil-divisor fiber, denoted by
Twaiy(D)-

If H ¢ X is a relative Cartier divisor and gy H does not contain any
codimension < 1 associated points of g;(1 (D), then

Swaiv(D N H) = gy, (D) N gy H.

Warning The Weil-divisor fiber is always defined, but frequently not functo-
rial, not even additive. If D’, D” are two divisors on X then T{‘Vdiv(D’ + D)
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and Ty, (D) + T3, (D”) have the same support, but the multiplicities can
be different, even in étale locally trivial families as in (4.14). If D', D" sat-
isfy (4.2.4), then 73, . (D" + D) < 744, (D) + 744, (D’), but otherwise the
inequality can go the other way; see (4.12) and (4.13).

4.2.7 (Generically Cartier divisor and pull-back) Assume that D is a relative
Cartier divisor (4.20) on an open subset U C X such that g)‘('(U N D) is dense
in g)‘(' (D). We can then define the generically Cartier pull-back of D as

g"I(D) := the closure of g§1(D|U) c Xw.
If f has S, fibers then Oy, (—g*!(D)) is the hull pull-back of &x(-D) (3.27).
The generically Cartier pull-back is clearly functorial, but not always defined.
If it is defined, then gy, (D) is the Weil divisor corresponding to g"*/(D), so
the two notions are equivalent; see (4.6).
4.2.8 (Well-defined pull-backs) We say that f: (X,D) — S has well-defined

Weil-divisor pull-backs if it satisfies the assumptions (4.2.2—4) and the Weil-
divisor pull-back (4.2.6) is a functor for reduced schemes. That is,

h:NdiV (g:VdiV (D)) = (g © h)iniv (D)

for all morphisms of reduced schemes h: V — Wand g: W — §.

In any concrete situation, the conditions (4.2.2—4) should be easy to check,
but (4.2.8) requires computing gy, (D) for all morphisms W — §. The
following variant is much easier to verify.

4.2.9 (Well-defined specializations) We say that f: (X,D) — S has well-
defined specializations if (4.2.8) holds whenever W is the spectrum of a
DVR.

The good news is that, over reduced schemes, the three versions (4.2.6-9)
are equivalent to each other and also to other natural conditions. The com-
mon theme is that we need to understand only the codimension 1 behavior of
f:(X,D)—S.

Theorem-Definition 4.3 (Well-defined families of pairs I) Let S be a reduced
scheme. A family of pairs f: (X, D) — S satisfying (4.2.2—4) is well defined if
the following equivalent conditions hold.

(4.3.1) The family has well-defined Weil-divisor pull-backs (4.2.8).

(4.3.2) The family has well-defined specializations (4.2.9).

(4.3.3) D is a relative, generically Cartier divisor (4.2.7).

(4.3.4) D — S is flat at the generic points of X; N Supp D for every s € S.

If f is projective then these are also equivalent to

(4.3.5) s+ deg(X; N D) is a locally constant function on S.

https://doi.org/10.1017/9781009346115.006 Published online by Cambridge University Press


https://doi.org/10.1017/9781009346115.006

4.1 Statement of the Main Results 141

The theorem is proved in (4.25). The next result says that, if S is normal,
then the conditions (4.2.2-4) imply that f: (X,D) — S is well defined. It
follows from (4.21) by setting W := Sing S'.

Theorem 4.4 (Ramanujam (1963); Samuel (1962)) Let S be a normal scheme,
f: X — S asmooth morphism and D a Weil divisor on X. Assume that D does
not contain any irreducible component of a fiber. Then D is a Cartier divisor,
hence a relative Cartier divisor.

Over nonnormal base schemes it is usually easy to check well-definedness
using the normalization.

Corollary 4.5 Let S be a reduced scheme with normalization § — S. Let
f: (X,D) — S be a projective family of pairs satisfying the assumptions
(4.2.2-4) and

f:(X,D):=X,D)xs S = S

the corresponding family over S. Then D is a relative, generically Cartier

divisor in either of the following cases.

(4.5.1) T3y (D) = Ty (D) = TH(D) for every geometric point t: {s} — S
and for every lifting T : {s} — §.

(4.5.2) S is weakly normal and T, (D) = T\(D) is independent of the lifting
7.5 — § for every geometric point T : {s} — S.

Proof Note first that D is a relative, generically Cartier divisor by (4.4), so
Tovan (D) = TH(D).

Let g € § be a generic point. Then (D), = D, and deg 7y, ;. (D) = deg(D),
by (4.3) applied to f : (X, D) — §. Together with (1) this shows that (4.3.5)
holds for f: (X,D) — S.

For (2), we explain in (4.25) how to reduce everything to the special case
when f has relative dimension 1. Then (10.64) shows that D is flat over S. O

Next we turn to the case that we are really interested in, when the boundary
A is a Q or R-divisor. The right choice is to work with the relative, generically
Cartier condition.

Definition 4.6 (Divisorial pull-back) Let S be a scheme, f: X — S a mor-
phism and A a Z,Q or R-divisor on X. For g: W — S, consider the fiber
product as in (4.2.5). We define relatively, generically Cartier divisors and
their divisorial pull-backs, denoted by Ay, in three steps as follows.
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(4.6.1) A is a relatively, generically Cartier Z-divisor if it is Cartier at the
generic points of X; N Supp D for every s € S. Ay is then defined as in (4.2.7).

(4.6.2) A is a relatively, generically Q-Cartier Q-divisor iff mA is a relatively,
generically Cartier Z-divisor for some m > 0. Then we set Ay := i((mA)W).

This is independent of m, but there is a subtle point. We prove in (4.39) that,
if the characteristic is 0, then a Z-divisor is relatively, generically Q-Cartier
iff it is relatively, generically Cartier. So we can choose m to be the com-
mon denominator of the coefficients in A. However, this is not true in positive
characteristic; see (8.75-8.76).

(4.6.3) A is a relatively, generically R-Cartier R-divisor iff one can write A =
>, ciA; where the A; are relatively, generically Q-Cartier Q-divisors. Then we
set Ay = Y.ci(A)w.

This is independent of the choice of ¢; and A;. We may assume that the c;
are Q-linearly independent. Then A is relatively, generically R-Cartier iff the
A; are relatively, generically Q-Cartier by (11.43.2).

Let f: (X,A) — S be a well-defined family of pairs as in (4.3). In (3.1) we
gave seven equivalent definitions of locally stable families of varieties. Some
of these extend to families of pairs. See (2.41) for some negative examples and
Section 8.2 for some solutions.

Definition—-Theorem 4.7 Let S be a reduced scheme, f: X — S a flat mor-

phism of finite type and f: (X,A) — S a well-defined family of pairs. Assume

that (X, Ay) is slc for every s € S. Then f: (X,A) — S is locally stable or slc

if the following equivalent conditions hold.

(4.7.1) Kx;s + Ais R-Cartier.

(4.7.2) For every spectrum of a DVR T and morphism g: T — S, the pull-
back fr: (Xr,Ar) — T is locally stable, as in (2.3).

(4.7.3) There is a closed subset Z C X such that codim(Z N Xy, X;) > 3 for
every s € S and flx\z: (X \ Z) — S satisfies the above (1-2).

Such a family is called stable if, in addition, f is proper and Ky;s + A is f-

ample.

Proof The arguments are essentially the same as in (3.37). It is clear that
4.7.1) = (4.7.2). If (4.7.2) holds then Ky, + Ar is R-Cartier for every
q:T — §.Thus Kx/s + A is R-Cartier by (4.35).

Finally, if any of the properties (4.7.1-2) holds for X, then it also holds for
X\ Z. Using (4.7.2) both for X and for X \ Z, reduces us to checking (4.7.3) =
(4.7.2) when S is the spectrum of a DVR; which is (2.7). O
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Let f: (X,A) — S be a family of pairs. It turns out that, starting in relative
dimension 3, the set of points {s € S : (Xj,A,)isslc} is neither open nor
closed; see (3.41) for an example. Thus the strongest result one can hope for is
the following.

Theorem 4.8 (Local stability is representable) Let S be a reduced, excellent
scheme over a field of characteristic 0 and f: (X,A) — S a well-defined,
projective family of pairs. Assume that A is an effective, relative, generically R-
Cartier divisor. Then there is a locally closed partial decomposition j : S —
S such that the following holds.

Let W be any reduced scheme and q: W — S a morphism. Then the family
obtained by base change fw: (Xw,Aw) — W is locally stable iff q factors as
g W—-S8h s,

A stable morphism is locally stable and stability is an open condition for a
locally stable morphism. Thus (4.8) implies the following.

Corollary 4.9 (Stability is representable) Using the notation and assumptions
as in (4.8), there is a locally closed partial decomposition j : S — § such
that the following holds.

Let W be any reduced scheme and q : W — S a morphism. Then the family
obtained by base change fy : (Xw,Aw) — W is stable iff q factors as g : W —
§stab 5 S O

4.2 Examples

We start with a series of examples related to (4.3).

Example 4.10 Let S = (xy = 0) ¢ A2 and X = (xy = 0) c A®. Consider the
divisors D, := (y = z—1 = 0)and D, := (x = z+ 1 = 0). We get a family
f:(X,D,+ Dy) — S that satisfies the assumptions (4.2.2-4).

We compute the “fiber” of the family over the origin in three different ways
and get three different results.

First, restrict the family to the x-axis. The pull-back of X becomes the plane
A2, The divisor D, pulls back to (z—1 = 0), but the pull-back of the ideal sheaf
of Dy is the maximal ideal (x, z + 1). It has no divisorial part, so restriction to
the x-axis gives the pair (A2, (z — 1 = 0)) — Al Similarly, restriction to the
y-axis gives the pair (A2, (z+ 1 = 0)) — Al. If we restrict these to the origin,
we get (AL, (z— 1 =0))and (A!,(z+ 1 = 0)).
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Finally, if we restrict to the origin of S in one step then we get the pair
(Al,(z=1=0)+(z+1 = 0)). Thus we have three different pairs that can claim
to be the fiber of f : (X, D, + D,) — S over the origin.

In this example the problem is visibly set-theoretic, but there can be
problems even when the set theory works out.

Example 4.11 Set C := (xy(x—y) = 0) C A7 and X := (xy(x—y) = 0) C A] .
For any ¢ € k consider the divisor

D.i=(x=z=0+@=z2=0+x-y=z-cx=0).

The pull-back of D, to any of the irreducible components of X is Cartier, it
intersects the central fiber at the origin of the z-axis and with multiplicity 1.
Nonetheless, we claim that D, is Cartier only for ¢ = 0.

Indeed, assume that /(x, y, z) = 0 is a local equation of D,. Then h(x,0, z) =
0 is a local equation of the x-axis and A(0,y,z) = 0 is a local equation of the
y-axis. Thus & = az + (higher terms). Restricting to the (x —y = 0) plane we
get that ¢ = 0.

Note also that if chark = 0 and ¢ # O then no multiple of D, is a Cartier
divisor. To see this note that if f(x,y,z) = 0is a local defining equation of mD,
on X then 8"~ £/0z"~" vanishes on D.. Its restriction to the z-axis vanishes at
the origin with multiplicity 1. We proved above that this is not possible.

However, if chark = p > 0, then z” — cPxy?~! = 0 shows that pD, is a
Cartier divisor.

Example 4.12 Consider the cusp C := (x* = y*) ¢ A% and the trivial curve
family ¥ := C X A; — C. Let D C Y be the Cartier divisor given by the
equation y = z>. Then D — C is flat of degree 2. Furthermore, D is reducible
with irreducible components D* := image of t > (£3, 12, +1).

Note that D* ~ A! and the projections D* — C corresponds to the ring
extension k[#3,*] < k[f]. Thus the projections D* — C are not flat and the
Weil-divisorial fiber of D* — C over the origin has length 2.

However, the Weil-divisorial fiber of D = D* U D™ — C over the origin is
again the point (0, 0, 0) with multiplicity 2.

Arguing as in (4.11) shows that the D* are not Q-Cartier in characteristic 0,
but pD* = (xy?~3/2 = zP) shows that it is Q-Cartier in characteristic p > 0.

The next example shows the importance of the Mumford condition.
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Example 4.13 Set X = (> —y> = > - V) CA*D = x-u=y-v =
OUx+u=y+v=0)and f: (X,D) — Aﬁv the coordinate projection. The
fiber X,,, is a pair of intersecting lines if > = v* and a smooth conic otherwise.

The irreducible components of D intersect only at the origin and D is not
Cartier there. The divisorial fiber D,,, consists of 2 distinct smooth points if
(u,v) # (0,0), but Dy is the origin with multiplicity 3.

Let L, be the line (v = cu) for some ¢ # +1. Restricting the family to L. we
get X, = (x> —y* = (1 — *)u?) c A3 and the divisor becomes D, = (x — u =
y—cu =0)Ux+u =y+cu = 0). Observe that D, is a Cartier divisor
with defining equation cx = y. (Note that base change does not commute with
union, so D X2 L, has an embedded point at the origin.)

Thus although D is not Cartier at the origin, after base change to a general
line we get a Cartier divisor. For all of these base changes, D, has multiplicity
2 at the origin. (These also hold after base change to any smooth curve.)

However, the origin is a singular point of the fiber. If we restrict D, to the
fiber over the origin, the resulting scheme structure varies with c.

This would be a very difficult problem to deal with, but for a stable pair
(X, A) we are in a better situation since the irreducible components of A are not
contained in Sing X.

involution o and by,b, € B a pair of points interchanged by o. Let C’ be
another smooth curve with two points ¢}, ¢, € C’. Start with the trivial fam-
ily (B x C',{b1} X C" + {by} x C') — C’ and then identify ¢| ~ ¢} and
(b,c})) ~ (o(b), ) for every b € B. We get an €tale locally trivial stable mor-
phism (S, D, + D,) — C. Here C is a nodal curve with node 7 : {c} — C. The
fiber over the node is (B, [b] + [b>]). However, the fiber of each D; over ¢ is
[61] + [b2], hence

Example 4.14 Let B be a smooth projective curve of genus > 1 with an

Twaiv(D1) + Tyaiy(D1) = (B, 2[b1] +2[b2]) # (B, [b1] + [b2]) = Ty4i, (D1 + D2).

The next examples discuss the variation of the Q-Cartier property in families
of divisors. Related positive results are in Section 4.6.

Example 4.15 Let C ¢ P? be a smooth cubic curve and S ¢ ¢ P? the cone over
it. For p € C let L, C S¢ denote the ruling over p. Note that L, is Q-Cartier
iff p is a torsion point, that is, 3m[p] ~ Oc(m) for some m > 0. The latter is a
countable dense subset of the moduli space of the lines Chow; 1(S¢) = C.

In the above example the surface is not Q-factorial and the curve L), is some-
times Q-Cartier, sometimes not. Next we give a similar example of a flat family
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of Ic surfaces S — B such that {b : S, is Q-factorial} C B is a countable set of
points. Thus being Q-factorial is not a constructible condition.

Let C c P? be a smooth cubic curve. Pick 11 points Py, ..., P;; € C and set
P, = —(P; + --- 4+ Py1). Then there is a quartic curve D such that C N D =
Py + -+ + Py. Thus the linear system |ﬁ]pz(4)(—P1 — = P12)| blows up the

points P; and contracts C. Its image is a degree 4 surface S = S(Py,...,P11)
in P3 with a single simple elliptic singularity. If C = (f3(x,y,z) = 0) and
D = (fa(x,y,z) = 0) then

S = (6 y, 2w + fa(x,y,2) = 0) € P*.

At the point (x = y = z = 0), the singularity of S is analytically isomorphic to
the cone S ¢ and S is smooth elsewhere iff the points Py, ..., P}, are distinct. If
this holds, then the class group of S is generated by the image L of a line in P2
and the images E1, ..., E|; of the 12 exceptional curves. They satisfy a single
relation 3L = E| + - -- + E}». Note that E; is Q-Cartier iff P; is a torsion point.
If we vary Py, ..., P1 € C, we get a flat family of Ic surfaces parametrized
by m: S — C'!'\ (diagonals), with universal divisors E; C S. We see that
(4.15.1) Ei(Py,...,Py1)is Q-Cartier iff P; is a torsion point and
(4.15.2) S(Py,...,P11)is Q-factorial iff P; is a torsion point for every i.

4.3 Families of Divisors I1

At least three different notions of effective divisors are commonly used in
algebraic geometry, but our discussions show that other variants are also
necessary.

4.16 (Five notions of effective divisors) Let X be an arbitrary scheme.

(4.16.1) An effective Cartier divisor is a subscheme D C X such that, for
every x € D, the ideal sheaf Ox(-D) is locally generated by a non-zero
divisor s, € O, x, called a local equation of D.

(4.16.2) A divisorial subscheme is a subscheme D C X such that & has no
embedded points and Supp D has pure codimension 1 in X.

(4.16.3) A divisorial subscheme D is called an effective, generically Cartier
divisor if it is Cartier at its generic points. These are called almost Cartier
divisors in Hartshorne (1986) and Hartshorne and Polini (2015).

(4.16.4) A divisorial subscheme D is called an effective Mumford divisor if X
is regular at generic points of D. More generally, D is Mumford along Z,
if X and Z are both regular at every generic point of Z N Supp D.
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(4.16.5) A Weil divisor is a formal, finite linear combination D = ), m;D;
where m; € Z and the D; are integral subschemes of codimension 1 in X.
We say that D is effective if m; > 0 for every i.

If A is an abelian group then a Weil A-divisor is a formal, finite linear com-
bination D = }; a;D; where a; € A. We will only use the cases A = Z,Q,R.
Thus Weil Z-divisor = traditional Weil divisor; we use the terminology “Weil
Z-divisor” if the coefficient group is not clear. (A Weil Z-divisor is sometimes
called an integral Weil divisor, but the latter could also mean the Weil divisor
corresponding to an integral subscheme of codimension 1.)

Note that usually divisorial subschemes and Weil divisors are used only
when X is irreducible or at least pure dimensional, but the definition makes
sense in general.

If X is smooth then the five variants are equivalent to each other, but in
general they are different.

Usually we think of Cartier divisor as the most restrictive notion. If X is S,
then every effective Cartier divisor is a divisorial subscheme. However, if X is
not S,, then there are Cartier divisors D C X such that D is not a divisorial
subscheme, and the natural map from Cartier divisors to divisorial subschemes
is not injective; see (4.16.9). These are good to keep in mind, but they will not
cause problems for us.

Let W C X be a closed subscheme. We can associate to it both a divisorial
subscheme and a Weil divisor by the rules

Div(W)
Weil(W)

pure W := Spec(Oy /(torsion)), and

4.16.6
Y length, (O, w) - [Dil, ( )

where, in the first case, we take the quotient by the subsheaf of those sec-
tions whose support has codimension > 2 in X (see also (10.1)). In the second
case, D; C Supp W are the irreducible components of codimension 1 in X with
generic points g; € D;. In particular, this associates an effective Weil divisor to
any effective Cartier divisor or divisorial subscheme.

Thus, if X is S, then we have the basic relations among effective divisors

Cartier divisors subschemes

Cartier c Mumford c generically c divisorial
divisors divisors '

Assume next that X is regular at a codimension 1 point g € X. Then 0, x is
a DVR, hence its ideals are uniquely determined by their colength. Thus we
have the following.
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Claim 4.16.7 If X is a normal scheme then four of the notions agree for
effective divisors

Mumford | generically _( divisorial ) [ Weil
divisors | | Cartier divisors | | subschemes | | divisors |

We are mainly interested in slc pairs (X, A), thus the underlying schemes X
are demi-normal. Fortunately, X is smooth at the generic points of A. Thus, for
our purposes, we can always imagine that the identifications (4.16.7) hold.

Convention 4.16.8 Let X be a scheme and W C X a subscheme. Assume
that X is regular at all generic points of W. Then we will frequently iden-
tify Div(W), the divisorial subscheme associated to W and Weil(W), the Weil
divisor associated to W. We denote this common object by [W].

We can thus usually harmlessly identify divisorial subschemes and Weil
divisors. However — and this is one of the basic difficulties of the theory —
it is quite problematic to keep the identification between families of divisorial
subschemes and families of Weil divisors.

Example 4.16.9 Let S ¢ A* be the union of the planes (x; = x, = 0) and
(x3 = x4 = 0). For ¢ # 0, consider the Cartier divisors D, := (x; + cx3 = 0).
For any c, the corresponding divisorial subscheme is the union of the lines
(x; = x2 = x3 =0)U (x; = x3 = x4 = 0), hence independent of c. However the
D, are different Cartier divisors for different ¢ € k. Indeed, (x+c¢"x3)/(x1+cx3)
is a nonregular rational function that is constant ¢’/c on the first plane and 1 on
the second. Note that S is seminormal and the D, are Mumford.

Corresponding to the five notions of divisors, there are five notions of fami-
lies. We discuss four of these next, leaving Mumford divisors to Section 4.8.

Relative Weil divisors

Definition 4.17 Let f : X — S be a morphism whose fibers have pure dimen-
sion n. A Weil divisor W = )’ m;W; is called a relative Weil divisor if the fibers
of flw, : W; — f(W;) have pure dimension n—1 for every i.

We are interested in defining the divisorial fibers of W — §. A typical
example is (4.13), where the multiplicity of the scheme-theoretic fiber jumps
over the origin. It is, however, quite natural to say that the “correct” fiber is
the origin with multiplicity 2; the only problem we have is that scheme theory
miscounts the multiplicity. The following theorem, proved in Kollar (1996,
3.17), says that this is indeed frequently the case.
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Theorem 4.18 Let S be a normal scheme, f: X — S a projective morphism,

and Z C X a closed subscheme such that f|; : Z — S has pure relative dimen-

sion m. Then there is a section oz : S — Chow,,(X/S) with the following

properties.

(4.18.1) Let g € S be the generic point. Then oz(g) = [Z,], the cycle
associated to the generic fiber of f|; : Z — S as in (3.8).

(4.18.2) Supp(oz(s)) = Supp(Z,) for every s € S.

(4.18.3) oz(s) = [Z,] if flz is flat at all generic points of Z;.

(4.18.4) s> (0z(s) - L") is a locally constant function of s € S, for any line
bundle L on X. O

Example (4.10) shows that (4.18) does not hold if S is only seminormal.
The notion of well-defined families of algebraic cycles is designed to avoid
similar problems, leading to the definition of the Cayley—Chow functor; see
Kollar (1996, sec.1.3—4) for details.

Flat Families of Divisorial Subschemes

Let X — S be amorphism and D C X a subscheme. If Supp D does not contain
any irreducible component of a fiber Xj, then &pny, /(torsion) is (the structure
sheaf of) a divisorial subscheme of X;. This notion, however, frequently does
not have good continuity properties, as illustrated by (4.13).

We would like to have a notion of flat families of divisorial subschemes,
where both the structure sheaf &p and the ideal sheaf Ox(—D) are “well
behaved.” This seems possible only if X — S is “well behaved,” but then
the two aspects turn out to be equivalent.

Definition—-Lemma 4.19 Let f : X — S be a flat morphism of pure rela-
tive dimension n with S, fibers and D C X a closed subscheme of relative
dimension n—1 over S. We say that f|p : D — S is a flat family of divisorial
subschemes if the following equivalent conditions hold.

(4.19.1) flp : D — S is flat with pure fibers of dimension n—1 (10.1).
(4.19.2) Ox(-D) is flat over S with S, fibers.

If f is projective and pure D, denotes the largest pure subscheme as in (10.1),
these are further equivalent to:

(4.19.3) s = x(Xy, Opure p,(*)) is locally constant on S

(4.19.4) s — x(X;, Ox,(—pure D;)(x)) is locally constant on S'.

Proof We have a surjection Oy — Op and if both of these sheaves are flat
then so is the kernel Ox(—D). If the kernel is flat then Ox (—D;) =~ Ox(—=D)lx,
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is also the kernel of Oy, — O)p,. Since O, is S, we see that Ox (-D;) is S»
iff Op, is pure of dimension n—1.

Conversely, assume (2). For any 7 — S the pull-back map g5 Ox(-D) —
g3 O is an isomorphism over X7 \ Dr. Since Ox(-D) is flat with S, fibers,
g3 Ox(=D) does not have any sections supported on Dy. Thus the pulled-back
sequence

is exact. Therefore, Tor‘lS (Or, Op) = 0 hence Op is flat over S and we already
noted that then it has pure fibers of dimension n—1.
The last two claims are proved as in (2.75). O

Relative Cartier Divisors

Definition—-Lemma 4.20 Let f: X — S be a flat morphism with S, fibers,

x € X apoint, and s := f(x). A subscheme D C X is a relative Cartier divisor

at x € X if the following equivalent conditions hold.

(4.20.1) D isflatover S at x and D; := Dly, is a Cartier divisor on X; at x.

(4.20.2) D is a Cartier divisor on X at x and a local equation g, € O, x of D
restricts to a non-zerodivisor on the fiber Xj.

(4.20.3) D is a Cartier divisor on X at x and it does not contain any irreducible
component of X, that passes through x.

If these hold for all x € D then D is a relative Cartier divisor. If f: X — §

is also proper then the functor of relative Cartier divisors is represented by an

open subscheme of the Hilbert scheme CDiv(X/S) c Hilb(X/S); see Kollar

(1996, 1.1.13) for the easy details.

If (2) holds then D is flat by (4.19). The other nontrivial claim is that (1)
implies that D is a Cartier divisor on X at x. We may assume that (x € X) is
local. A defining equation g, of Djy lifts to an equation g of D. We have the
exact sequence

0— Ip/(g) = Ox/(g) > Op — 0.
Here 0% /(g) and Op are both flat, hence so is Ip/(g). Restricting to X; we get
0 = (In/()), = Ox,/(g5) — Op, = 0.

Thus Ip/(g) = 0 by Nakayama’s lemma and g is a defining equation of D. O

Relative Cartier divisors form a very well behaved class, but in applications
we frequently have to handle two problems. It is not always easy to see which
divisors are Cartier, and we also need to deal with divisors that are not Cartier.
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On a smooth variety every divisor is Cartier, thus if X itself is smooth then a
divisor D is relatively Cartier iff its support does not contain any of the fibers.
In the relative setting, we usually focus on properties of the morphism f. Thus
we would like to have similar results for smooth morphisms. (See (4.36) and
(4.41) for closely related results.)

Theorem 4.21 Let f: X — S be a smooth morphism and W C S a closed
subset such that depthy, S > 2. Let D° be a Cartier divisor on X \ f~'(W)
and D c X its closure. Assume that Supp D does not contain any irreducible
component of any fiber. Then D is Cartier, hence a relative Cartier divisor.

Proof Assume first that f has relative dimension 1. Then f|p: D — § is
quasi-finite, so f|p is flat by (10.63), so D is a Cartier divisor by (4.20.1).

For the general case, pick a closed point x € D. Since f is smooth, locally
it factors through an étale morphism 7: (x, X) — ((0, 5), A%). Composing with
any linear projection we locally factor f as

fi 6 X) 5 (0,5), A5 > S,

where g is smooth of relative dimension 1. If D does not contain the fiber
of g passing through x, then D is a Cartier divisor by the already discussed
one-dimensional case.

To find such a g, assume first that k(s) is infinite. Let L C A’ be a general
line through the origin. Then #;!(L) ¢ D;. Thus if we choose the projection
A — Ag‘l to have kernel L over s, then the argument proves that D is a
Cartier divisor at x.

If k(s) is finite then consider the trivial lifting f) : XxA! — § x A'. By the
previous argument D x A! is a Cartier divisor at the generic point of {x} x A!,
hence D is a Cartier divisor at x by (2.92.1). O

Examples 4.22 We give two examples showing that in (4.21) we do need
depth assumptions on S.

Set S, := Spec k[x,y]/(xy) and X,, = Spec k[x,y, z]/(xy). Then (x, z) defines
a Weil divisor which is not Cartier.

Set S := Spec k[x%, x*] and X, = Spec k[xz,x3,y]. Then (y2 — xz,y3 -x)
defines a Weil divisor which is not Cartier.

Lemma 4.23 Let X be a pure dimensional, S, scheme, D C X a Cartier divi-

sor and W C D a subscheme such that codimp W > 2. Let L be a rank 1,
torsion-free sheaf on X that is locally free along D \ W. Let s be a section of
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L such that s\p\w is nowhere zero. Then L is trivial and s is nowhere zero in a
neighborhood of D.

Proof The section s gives an exact sequence
0—- Oy 5L Q0 —0.

By (10.7) every associated prime of Q has codimension I in X. Thus D N
Supp O has codimension 1 in D. Therefore, D is disjoint from Supp Q and L is
trivial on X \ Supp Q. O

Relative Generically Cartier Divisors

This is the most important class for moduli purposes.

Definition 4.24 Let f: X — S be a morphism. A subscheme D C X is a
relative, generically Cartier, effective divisor or a family of generically Cartier,
effective divisors over S if there is an open subset U C X such that

(4.24.1) fis flat over U with S, fibers,

(4.24.2) codimy, (X, \ U) > 2 forevery s € S,

(4.24.3) D|y is arelative Cartier divisor (4.20), and

(4.24.4) D is the closure of D|y.

If U c X denotes the largest open set with these properties then Z := X \ U is
the non-Cartier locus of D.

Thus Ox(mD) is a mostly flat family of divisorial sheaves on X (3.28) for
any m € Z. Conversely, if L is a mostly flat family of divisorial sheaves on X
and & a global section of it that does not vanish on any irreducible component
of any fiber, then (7 = 0) is a family of generically Cartier, effective divisors
over S.

4.25 (Proof of 4.3) All five conditions are local on §; the first four are local
on X. All of them can be checked on a general relative hyperplane section of
X; see (4.2.6), (4.26) and (10.56).

Thus we may assume that X — S has relative dimension 1, hence f is
smooth along Supp D. We view D as a divisorial subscheme of X. After an
étale base change we may assume that D — S is finite.

Applying (3.20) to F := f.0p (with X = §) we see that (4.3.5) holds iff )
is flat over S. By (4.20) the latter holds iff D a relative Cartier divisor. Thus
(4.3.3) o (4.34)  4.3.5).

As we noted in (4.24), these imply (4.3.1), and (4.3.1) =(4.3.2) is clear. It
remains to show that (4.3.2) =(4.3.4).
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To see this, fix a point 7: {s} — S and let T be the spectrum of a DVR and
h: T — S amorphism that maps the closed point to 7(s) and the generic point
of T to a generic point g € S. Then Ay, ; D is flat over T of degree deg,) Op,.
Thus if 7 : § — T is a lifting of 7 and (4.3.2) holds, then

deg Tiyg, D = deg Ty g iwai D = degy () Ob, -
Thus D — § is flat by (3.20). O

The following Bertini-type results are frequently useful. The first claim is
an immediate consequence of (10.56) and the second follows from (10.20).

Proposition 4.26 Let (0 € S) be a local scheme, X C stv a quasi-projective

S -scheme with fibers of pure dimension > 2, and D C X a relative divisorial

subscheme. Then, for general H € |Ox(1)],

(4.26.1) D is a generically Cartier family of divisors on X iff D|y is a
generically Cartier family of divisors on H, and

(4.26.2) Ox(D)ln = Ou(Dln). m

Representability Theorems

4.27 (Representability of the generically Cartier condition) There are two ver-
sions of this question. Let f: X — S be a flat, projective morphism and D C X
a divisorial subscheme.

The traditional problem is to study those morphisms g : W — S for which
q"D is a generically Cartier divisor on Xy . This gives a representable functor.
This will be used during the construction of the moduli of Mumford divisors,
so we treat it there (4.77).

From the point of view of Section 4.1, it may seem more natural to study
those morphisms ¢ : W — § for which the Weil-divisor pull-back g3, D is a
generically Cartier divisor on Xy, This, however, does not give a representable
functor; see (4.13). This variant is actually not well posed, since the Weil-
divisor pull-back is not functorial in general.

Fortunately, it turns out to be relatively easy to ensure the generically Cartier
condition. So we focus on studying additional properties of such families.

As afirst problem, we start with a family of generically Cartier divisors, and
study those morphisms g: W — S for which the generically Cartier pull-back
Dy is flat or relatively Cartier.

The first result is a reformulation of (3.29) and (3.30).
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Theorem 4.28 Let S be a scheme, f : X — S a flat, projective morphism with
Sy fibers, and D C X a family of generically Cartier divisors. Then there is a
locally closed decomposition jH7
decomposition j": S°" — S) such that, for every morphism g: W — S,
the divisorial pull-back Dy = ¢ D is flat (resp. Cartier) iff q factors through

SHAat (resp. §€r). O

: SHAat s S (resp. a locally closed partial

This leads to a valuative criterion for Cartier divisors in (4.34).

As we saw in (4.15), the set of fibers where a divisor is Q-Cartier need
not be constructible. So the straightforward Q-Cartier version of (4.28) fails.
However, this failure of constructibility is the only obstruction.

Proposition 4.29 Let S be a reduced scheme, f : X — S a flat, projective
morphism with S, fibers, and D a family of generically Q-Cartier (resp. R-
Cartier) divisors on X. Let S* C S be a constructible subset. Assume that D
is Q-Cartier (resp. R-Cartier) for every point s € S*.
Then there is a locally closed partial decomposition j9°v: S — § (resp.
Jjeer. §7 — S) such that the following holds.
(4.29.1) Letg : W — S be a reduced S -scheme such that gq(W) C S*. Then the
divisorial pull-back Dy C Xw is Q-Cartier (resp. R-Cartier) iff q factors
though S 9" (resp. S™).

Proof We may assume that S* is dense in S and start with the Q-Cartier case.
By (4.28) there are maximal open subsets §* € §5* C --- such that r! - D is
Cartier over S;*. By assumption, S¢* is dense for » > 1 and the union of all
of them is the open stratum of §9°“" — §. Noetherian induction then gives the
other strata.

In the R-Cartier case, we write D = ¥ d;D' where the D' are Q-divisors and
the d; € R are linearly independent over Q. We already have locally closed
partial decompositions ;i : ST — § using D', and j<" : §™* — § s their
fiber product over S using (11.43.2). O

4.4 Valuative Criteria

We aim to show that various properties of morphisms can be checked after
base change to one-dimensional, regular schemes, equivalently, to spectra of
DVRs. We aim to use as few DVRs as possible.
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Definition 4.30 A morphism ¢: (x,X) — (y,Y) of local schemes is local if
g(x) = y. A morphism of schemes g: X — Y is component-wise dominant
if every generic point of X is mapped to a generic point of Y. If X,Y are
irreducible, then component-wise dominant is the same as dominant.

We are especially interested in local, component-wise dominant morphisms
q: t,T) — (s,5) from the spectrum of a DVR to S. To construct these, let
S| € § be an irreducible component and 7: ByS| — S the blow-up of s. The
exceptional divisor has pure codimension 1. Let n € Ex(xr) be a generic point
and 0, its local ring. If S is excellent, we can take 7 to be the normalization of
Spec &,,. Then (1, T) — (s, 5 1) is essentially of finite type. In general, we need
to take 7' to be one of the irreducible components of the normalization of the
completion of &,,. Then T is excellent, but g is not essentially of finite type.

Lemma 4.31 Let (s,S) be a local scheme and g: S’ — S a locally closed
partial decomposition (10.83). Then g is an isomorphism iff every local, com-
ponent-wise dominant morphism q: (t,T) — (s,S) from the spectrum of an
excellent DVR to S factors through g.

Proof We see that g is proper and dominant by (10.78.1), hence an isomor-
phism by (10.83.2). O

Theorem 4.32 (Valuative criterion for divisorial sheaves) Let (s,S) be a

reduced, local scheme and f: X — S a flat morphism of finite type with S,

fibers. Let L be a mostly flat family of divisorial sheaves on X (3.28). Assume

that either f is projective or S is excellent. The following are equivalent.

(4.32.1) Lisflat over S with S, fibers.

(4.32.2) For every local, component-wise dominant morphism q: (t,T) —
(s, S) from the spectrum of an excellent DVR to S, the hull pull-back (3.27)
LIT'I is flat over T with S, fibers.

Proof 1t is clear that (1) implies (2). For the converse, we use the theory of
hulls and husks from Chapter 9.

Assume first that f is projective. Consider the locally closed decomposition
j: Hull(L) — S given by (9.40). By assumption, every ¢: (t,T7) — (s,S)
factors through j, so j is an isomorphism by (4.31). Thus L is its own hull,
hence it is flat over S with S, fibers.

This is the main case that we use. The argument in the nonprojective case is
similar, but relies on (9.44).

Pick any point x € X and its image s := f(x). Let § denote the completion
of § at s; it is reduced since S is excellent. Then L is flat over S with S, fibers
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at x iff this holds after base change to S. Thus it is enough to show that (2) =
(1) whenever s € S is complete, in which case the hull of L is represented by a
subscheme i : §* < S for local, Artinian S -algebras by (9.44).

Let (R, m) be a complete DVR and ¢: SpecR — (s,S5) a local morphism.
By assumption (2), the hull pull-back LY is flat over R with S, fibers. Thus
the same holds for Spec(R/m") for every n, hence the restriction of g to
Spec(R/m™) factors through i : §* < S. Since this holds for every n € N,
q factors through i : S* < §. We conclude that S* = S. So, as before, L is its
own hull, hence it is flat over § with S, fibers. O

Putting together (2.79), (2.82) and (4.32) gives the following higher dimen-
sional version.

Corollary 4.33 Let f: (X,A) — S be a locally stable morphism to a reduced
scheme over a field of characteristic 0. Let D be a relative Mumford Z-divisor
(4.68). Assume that either f is projective or S is excellent. Then, in any of the
cases (2.79.1-8) and (2.82),

(4.33.1) Ox(D) is flat over S with S, fibers, and

(4.33.2) Ox(D)lx, = Ox (Dy) for s € S. O

We can restate (4.32) for Cartier divisors as follows.

Corollary 4.34 (Valuative criterion for Cartier divisors) Let (s,S) be a

reduced, local scheme, f: X — S a flat morphism of finite type with S, fibers,

and D a relative, generically Cartier divisor on X. Assume that either f is

projective or S is excellent. Then the following are equivalent.

(4.34.1) D is a relative Cartier divisor.

(4.34.2) For every local, component-wise dominant morphism q: (t,T) —
(s,S) from the spectrum of an excellent DVR to S, the divisorial pull-back
Dy C Xy is a Cartier divisor. O

Reduction to the Cartier case as in (4.29) gives the following.

Corollary 4.35 (Valuative criterion for Q- and R-Cartier divisors) Let (s, S)
be a reduced, local scheme, f: X — S a flat morphism of finite type with S,
fibers, and D a family of generically Q-Cartier (resp. R-Cartier) divisors on
X. Assume that either f is projective or S is excellent. Then the following are
equivalent.

(4.35.1) D is a Q-Cartier (resp. R-Cartier) divisor.
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(4.35.2) For every local, component-wise dominant morphism q: (t,T) —
(s,S) from the spectrum of an excellent DVR to S, the divisorial pull-back
Dy is Q-Cartier (resp. R-Cartier). |

The following two consequences of (4.34) are important; see (4.41.1) for a
more direct proof of the first one.

Corollary 4.36 Let S be a reduced scheme, f : X — S a smooth morphism,
and D a relative, generically Cartier divisor on X. Assume that either f is
projective or S is excellent. Then D is a relative Cartier divisor.

Proof Letq:T — S be a morphism from the spectrum of a DVR to S. Then
Xr is regular, hence Dy is Cartier. So D is Cartier by (4.34). O

Theorem 4.37 Let (s,S) be a reduced, local, excellent scheme, f: X — S a
flat morphism of finite type with S , fibers, and D a relative, generically Cartier
divisor on X. Then D is Cartier & D is Q-Cartier, D is Cartier, and Dy is
Cartier for all generic points g € S.

Proof The necessity is clear. By (4.34) it is enough to prove the converse
after base change to T whenever g: (t,7) — (s,5) is a local, component-
wise dominant morphism from the spectrum of an excellent DVR to §. The
assumptions are preserved.

Let Z c X, be the locus where D7 is not known to be Cartier. After localizing
at the generic point of Z, we are in the situation of (2.91). Thus Dy is Cartier
and so is D. O

Another valuative criterion is the following local version of (3.20).

Theorem 4.38 (Grothendieck, 1960, IV.11.6,1V.11.8) Let (s,S) be a reduced,
local scheme, f : X — S a morphism of finite type, and F a coherent sheaf on
X. Let T be a disjoint union of spectra of DVRs and q: T — S a dominant,
local morphism. Then F is flat over S at x € X; iff q\F is flat over T along

gy (x). o

4.5 Generically Q-Cartier Divisors

In the study of Ic and slc pairs, Q-Cartier divisors are more important than
Cartier divisors. We have seen many examples of Weil Z-divisors that are Q-
Cartier, but not Cartier. By contrast, we show that if a relative Weil Z-divisor
is generically Q-Cartier, then it is generically Cartier in characteristic 0.
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Let f: (X, D) — S be a family of pairs and D a relative Weil Z-divisor.

Since we are interested in generic properties, we can focus on a generic point
x of D N X;. If the assumption (4.2.4) holds then f is smooth at x. Thus we
may as well assume that f is smooth (but not proper).

If S is normal then D is a Cartier divisor by (4.4), thus here our main interest
is in those cases where S is reduced, but not normal. As (4.10) shows, D need
not be Cartier in general. However, the next result shows that if some multiple
of D is Cartier, then so is D, at least in characteristic 0.

Positive characteristic counter examples are given in (4.11) and (4.12).

Theorem 4.39 Let S be a reduced scheme, f: X — S a smooth morphism of
relative dimension > 1, and D a relative Weil Z-divisor on X. Assume that mD
is Cartier at a point x € X and char k(x) ¥ m. Then D is Cartier at x.

Proof By Noetherian induction and shrinking X, we may assume that D is
Cartier on X \ {x} and mD ~ 0.

By (11.24), mD ~ 0 determines a cyclic cover X — X that is étale over
X \ {x} whenever char k(x) 1 m. This gives a correspondence between torsion
in Pic!®(x, X) and torsion in the abelian quotient of the fundamental group
#1(X \ {x}). There are now two ways to finish the proof.

In characteristic 0, we may work over C. After replacing X with a suitable
Euclidean neighborhood x € U C X, it is enough to prove that (U \ {x}) is
trivial. We do this in (4.40).

In general, let X — X be the weak normalization (10.74). We prove
in (4.41) that Pic'°(x™, X") is free of finite rank. It remains to show that
K™ := ker[Pic'®(x,X) — Pic!®(x*", X"")] does not contain prime-to-p
torsion in characteristic p > 0.

Since X™" — X is finite and purely inseparable, it is a factor of a power F,
of the Frobenius (10.78.2). This gives pull-back maps

Pic'(x, X) — Pic'(x™", X™) — Pic'*(x,, X,),

where the composite is L — L7. So K™ is g-torsion.
Alternatively, one can use Grothendieck (1971, 1.11), which implies that
X\ {x"} — X\ {x} induces an isomorphism of the fundamental groups. O

4.40 (Links and smooth morphisms) Let f: X — S be a smooth morphism of
complex spaces of relative dimension n > 1. We describe the topology of the
link of a point x € X in terms of the topology of the link of s := f(x) € S.

We can write S C CJY such that s is the origin and X C § x CJ where x is
the origin. Intersecting S with a sphere of radius & centered at s, we get Ly, the
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link of s € S. The intersection of S with the corresponding ball of radius ¢ is
homeomorphic to the cone Cg over Lg.
The link Ly of x € X can be obtained as the intersection of X with

the level set maX{ZIZi|2,2|tj|2} = &% Thus Ly is homeomorphic to the
amalgamation of

Lg x D> = {@t): Yzl =& JltP <&} andof

Cs xS 1 = A@t): Ylzl* < &% Yltj? = &%), glued along

Ly xs™' = {@v: Tl =&, Tl =&}

Let L, be the connected components of Lg. Note that 71y (LL xS*™!) = 7y (L§)x
71(S?*~1). The first factor gets killed in 7;(Cg x S*"~1); the second is trivial if
n > 2 and gets killed in 7r1(Lfg xD?)if n = 1. Thus Ly is simply connected for
n>1.

The cohomology of Ly can be computed from the Mayer—Vietoris sequence.
Using that H'(Ls x D*",Z) = H'(Lg,Z) and H'(Cs x $**~',Z) = H|(S**"1,Z),
for H? the key pieces are

(T]
- HI(LS’Z)@HI(Sznil,Z) e HI(LS X SZn—l’Z)
2
—— H(Ly,Z) — H*(Ls, Z)®HX($”",Z) — = H*(Ls x §*", Z).

The Kiinneth formula gives that the o are injections and ! is an isomorphism

if n > 2. In this case H*(Lx,Z) = 0.If n = 1, then
H*(Ly,Z) ~ coker[H'(S',Z) —» H(Ls,Z) ® H'(S",Z)] @401)
~ H'(Ls,Z)/Z. o

We have thus proved the following.

Claim 4.40.2 Let f : X — S be a smooth morphism of complex spaces, Ly the
link of a point x € X, and s := f(x). Assume that dim, X > dim, S > 1.

Then Ly is simply connected. Furthermore, HZ(LX, Z) = 0 iff either n > 2
or the link of s € S is connected. a

Next we compute the local Picard groups in more detail in the weakly
normal case.

Theorem 4.41 Let (s € S) be a local, weakly normal pair (10.74) and f :
X — S a smooth morphism. Let x € X; be a point. Then,

(4.41.1) if codim(x € X;) > 2 then Pic"(x, X) = 0, and

(4.41.2) if codim(x € X,) = 1 then Pic"(x, X) is free of finite rank.

Proof Setd = dimX; and let 7: X — A{™' be a general projection. Then
7 is generically quasi-finite along the closure of x. Let (w, W) be the strict
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Henselization of 7(x) € A‘;‘l (2.18). By base change, we have a smooth mor-
phism 7”: (x’, X") — (w, W) of relative dimension 1, where x" € X", w € W are
closed points.

By (2.92.1), Pic'®(x, X) < Pic'®(x’, X’), thus it is enough to prove (1-2)
for Pic'*(x’, X).

Every class in Pic'°(x’, X’) can be represented by an effective divisor D that
does not contain X|,. Then n’|p : D — W is finite and flat over W \ {w}.

Let {W; : i € I} be the connected components of W \ {w}. Then [D] —
(ranky, 7, Op : i € I) gives a map

Pic"°(x', X") - Z! - Z")7(1,..., ).

We claim that it is an injection. Indeed, if 7, &5 has constant rank d then n’|p
is flat by (10.64), hence D is Cartier by (4.20). This proves (2).

If codim(x € X;) > 2 then g(x) is not the generic point 1, € Agl‘l. Thus
every irreducible component of Ag’l contains 7, and this continues to hold
after strict Henselization. Thus W \ {w} is connected and we get (1). O

Complement 4.41.3 The proof shows that in case (2) the rank is bounded by
r — 1, where r is the maximum number of connected components of S’ \ {5}
for all étale (s',S’) — (s,5). It is < the number of geometric points over s on
the normalization of S'.

4.6 Stability Is Representable 11
Assumption. In this section we work over a field of characteristic 0.

The main result of this section is the following. Eventually we remove the
reduced assumption by introducing the notion of K-flatness in Chapter 7.

Theorem 4.42 Let f: (X,A) — S be a projective, well-defined family of
pairs. Then the functor of locally stable pull-backs is represented, for reduced
schemes, by a locally closed partial decomposition i* : §¥" — §.

Since ampleness is an open condition for an R-Cartier divisor (11.54.2),
(4.42) implies the analogous result for stable morphisms.

Corollary 4.43 Let f: (X,A) — S be a projective, well-defined family
of pairs. Then the functor of stable pull-backs is represented, for reduced
schemes, by a locally closed partial decomposition i*®* : §5% — §. O
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We start the proof of (4.42), which will be completed in (4.46), with a
weaker version.

Lemma 4.44 Ler f: (X,A) — S be a proper, well-defined family of pairs.
Then there is a finite collection of locally closed subschemes S; C S such that
(4.44.1) fi: (Xs,,As,) = S;is locally stable for every i, and

(4.44.2) afiber (X, Ay) is slc iff s € U;S .

In particular, {s : (X, Ay) is slc} C S is constructible.

Proof Being demi-normal is an open condition by (10.42) and slc implies
demi-normal by definition. So we may assume that all fibers are demi-normal
and S is irreducible with generic point g. Throughout the proof we use S° c S
to denote a dense open subset which we shrink whenever necessary.

First, we treat morphisms whose generic fiber X, is normal.

Case I: (Xg, Ay) is lc. Then Ky, + A is R-Cartier, hence Kx/s + A is R-Cartier
over an open neighborhood of g. Next consider a log resolution pg : Y, — X,.
It extends to a simultaneous log resolution p° : Y° — X° over a suitable
S° c §. Thus, if E° C Y° is any exceptional divisor, then a(Ey, X;, A;) =
a(E°,X°,A°) = a(Eg, Xg, Ag). This shows that all fibers over §° are lc.

Case 2: (Xg, A,) is not lc. Note that the previous argument works if Ky, + A,
is R-Cartier. Indeed, then there is a divisor £ with a(E,, X,,A,) < —1 and
this shows that a(Ey, X, A;) < —1 for s € §°. However, if Ky, + A, is not
R-Cartier, then the discrepancy a(E,, X,,A,) is not defined. We could try to
prove that Ky, + A, is not R-Cartier for s € §°, but this is not true in general;
see (4.15).

Thus we use the notion of numerically Cartier divisors (4.48) instead. If
Kx, + A, is not numerically Cartier, then, by (4.51), Kx + A, is also not
numerically Cartier over an open subset S° > g. Thus (Xj, Ay) is not Ic for
seS°.

If Kx, + Ag is numerically Cartier, then the notion of discrepancy makes
sense (4.48) and, again using (4.51), the arguments show that if (X, A,) is
numerically lc (resp. not numerically Ic) then the same holds for (X;, Ay) for
s in a suitable open subset S° > g. We complete Case 2 by noting that being
numerically Ic is equivalent to being lc by (4.50).

An alternative approach to the previous case is the following. By (11.30),
the log canonical modification (5.15) m,: (¥,,0,) — (X4, A,) exists and it
extends to a simultaneous log canonical modification 7 : (¥,®) — (X, A) over
an open subset S° C S. By the arguments of Case 1, (¥, ®;) is Ic for s € S°
and the relative ampleness of the log canonical class is also an open condition.
Thus 75 (Y, ©5) — (X5, Ay) is the log canonical modification for s € S°. By
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assumption, 7, is not an isomorphism, so none of the 7 are isomorphisms.
Therefore, none of the fibers over S ° are Ic.

If X, is not normal, the proofs mostly work the same using a simultaneous
semi-log-resolution (Kollar, 2013b, Sec.10.4). However, for Case 2 it is more
convenient to use the following argument.

Let m,: X, — X, denote the normalization. Over an open subset S° > g it
extends to a simultaneous normalization (X, D+A) — S.If (X,, Dy +A,) is not
Ic then (X;, D + AS) is not lc for s € S°, hence (X, A;) is not slc, essentially
by definition; see Kollar (2013b, 5.10).

Using the already settled normal case, it remains to deal with the situation
when (X;, Dy + Ay) is Ic for every s € S°. By Kollar (2013b, 5.38), (X, A,) is
sle iff Diff A, is Ts-invariant. The different can be computed on any log reso-
lution as the intersection of the birational transform of Dy with the discrepancy
divisor. Thus Diff 5. A is also locally constant over an open set S °. Therefore,
if Diff p, A, is not 7g-invariant then Diff 5, A, is also not 7,-invariant for s € §°.
Hence (X, Ay) is not slc for every s € S°.

In both cases we complete the proof by Noetherian induction. O

The following consequence of (4.44) is quite useful, though it could have
been proved before it as in (3.39).

Corollary 4.45 Let f: (X,A) — S be a proper, well-defined family of pairs
such that Kx;s + A is R-Cartier. Then {s : (X,, Ay) is slc } C S is open.

Proof By (4.44), this set is constructible. A constructible set U C S is open
iff it is closed under generalization, that is, x € U and x € y implies thaty € U.
This follows from (2.3). ]

4.46 (Proof of 4.42) LetS; C S be as in (4.44). We apply (4.29) to the family
[ (X,Kx;s + A) — S to obtain $™" — § such that, for every reduced S -
scheme g : T — § satisfying g(T') C U;S;, the pulled-back divisor Ky, ;r + Ar
is R-Cartier iff g factorsas g : T — S™ — §.

Assume now that fr: (Xr,Ar) — T is slc. Then Ky, ;7 + Ar is R-Cartier,
hence ¢ factors through S™* — S. As we observed in (3.23), this implies that
§sle = (grearysle By definition Kywu g + A is R-Cartier, thus (4.45) implies
that §81° = (S™*)sle js an open subscheme of §™%. m]

We showed in (4.15) that being Q-Cartier or R-Cartier is not a constructi-

ble condition. The next result shows that the situation is better for boundary
divisors of Ic pairs.
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Corollary 4.47 Let f: (X,A) — S be a proper, flat family of pairs with sic

fibers. Let D be an effective divisor on X. Assume that

(4.47.1) either Supp D C Supp A,

(4.47.2) or Supp D does not contain any of the log canonical centers of any of
the fibers (X, Ay).

Then {s : Dy is R-Cartier} C S is constructible.

Proof Over an open subset, we have a simultaneous log resolution of (X, D +
A). Choose 0 < £ < 1. In the first case, (X, A; — &Dy) is slc iff Dy is R-Cartier.
In the second case, (Xy, Ay + £Dy) is slc iff Dy is R-Cartier. Thus, in both cases,
(4.44) implies our claim. |

Numerically Cartier Divisors

Definition 4.48 Let g: ¥ — S be a proper morphism. An R-Cartier divisor
D is called numerically g-trivial if (C - D) = 0 for every curve C C Y that is
contracted by g.

Let X be a demi-normal scheme. A Mumford R-divisor D on X is called
numerically R-Cartier if there is a proper, birational contraction p: ¥ — X and
a numerically p-trivial R-Cartier Mumford divisor Dy on Y such that p.(Dy) =
D.

It follows from (11.60) that such a Dy is unique. If D is a Q-divisor then
Dy is also a Q-divisor since its coefficients are solutions of a linear system of
equations. Such a D is called numerically Q-Cartier.

If p” : Y — X is a proper, birational contraction and Y’ is Q-factorial, then
being numerically R-Cartier can be checked on Y.

Being numerically R-Cartier is preserved by R-linear equivalence, but the
exceptional part Dy — p;'D depends on D € |D|.

For Kx + A, we can make a canonical choice. Thus we see that Ky + A
is numerically R-Cartier iff there is a p-exceptional R-divisor Ex,a such that
Eg.a + Ky + p;'A is numerically p-trivial.

If Kx + A is numerically R-Cartier, then one can define the discrepancy of
any divisor E over X by

a(E, X,A) = a(E, Y, Ex.a + p.'A).

We can thus define when a demi-normal pair (X, A) is numerically Ic or slc.
If g: X — S is proper, then a numerically R-Cartier divisor D is called
numerically g-trivial if Dy is numerically (g o p)-trivial on Y.

Examples 4.49 On a normal surface, every divisor is numerically R-Cartier.
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The divisor (x = z = 0) is not numerically R-Cartier on the demi-normal
surface (xy = 0) c A%

If X has rational singularities, then a numerically R-Cartier divisor is also
R-Cartier by Kollar and Mori (1992, 12.1.4).

Assume that dim X > 3 and D is Cartier except at a point x € X. There is a
local Picard scheme Picl"c(x, X), which is an extension of a finitely generated
local Néron—Severi group with a connected algebraic group Pic'™°(x, X); see
Boutot (1978) or Kollar (2016a) for details. Then D is numerically R-Cartier iff
[D] € Pic™ " (x, X) where Pic'® " (x, X)/ Pic°™°(x, X) is the torsion subgroup
of the local Néron—Severi group.

There are many divisors that are numerically R-Cartier, but not R-Cartier,
however, the next result says that the notion of numerically slc pairs does not
give anything new.

Theorem 4.50 (Hacon and Xu, 2016, 1.4) A numerically slc pair is slc.

Outline of the proof This is surprisingly complicated, using many different
ingredients. We start with the normal, numerically Q-Cartier case.

For clarity, let us concentrate on the very special case when (X, A) is dlt,
except at a single point x € X. All the key ideas appear in this case, but we
avoid a technical inductive argument.

Starting with a thrifty log resolution (Kollar, 2013b, 2.79), the method of
(Kollar, 2013b, 1.34) gives a Q-factorial, dlt modification f: (¥, E + Ay) —
(X, A) such that Ky + E + Ay is numerically f-trivial, where E is the excep-
tional divisor dominating x and Ay is the birational transform of A. Let Ag :=
Diffg Ay. Then (E, Ag) is a semi-dlt pair such that Kz + Ag is numerically
trivial. Next we need a global version of the theorem.

Claim 4.50.1 Let (E, Ag) be a projective semi-slc pair such that Kz + Ag is
Q-Cartier and numerically trivial. Then K¢ + Ag ~q 0.

The first general proof is in Gongyo (2013), but special cases go back to
Kawamata (1985) and Fujino (2000). We discuss a very special case: E is
smooth and A = 0. The following argument is from Campana et al. (2012) and
Kawamata (2013).

We assume that Og(Kg) € Pic'(E), but after passing to an étale cover of E
we have that Og(Kg) € Pic’(E). Serre duality shows that if [L] € Pic"(E) and
W'(E,L) =1, then L ~ Or(Kg).
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Next we use a theorem of Simpson (1993) which says that the cohomology
groups of line bundles in Pic® jump precisely along torsion translates of abelian
subvarieties. Thus [Kg] is a torsion translate of a trivial abelian subvariety,
hence a torsion element of Pic°(E). |

It remains to lift information from the exceptional divisor E to the dlt model
Y. To this end consider the exact sequence

00— ﬁy(m(Ky +FE+ Ay) - E) g ﬁy(m(KY +FE+ Ay)) - ﬁE(m(KE + AE)) — 0.

Note that D := m(Ky + E + Ay) — E — (Ky + Ay) = 0. We apply (Kolldr,
2013b, 10.38.1) or the even stronger (Fujino, 2014, 1.10) to conclude that

R'f.(Oy(m(Ky + E + Ay) — E)) = R' f.(Oy(D + Ky + Ay)) = 0.

Hence a nowhere zero global section of (m(Kg + Ag)) lifts back to a global
section of Oy(m(Ky + E + Ay)) that is nowhere zero near E. Thus Ox(m(Kx +
A)) = f,O0y(m(Ky + E + Ay)) is free in a neighborhood of x. Thus completes
the numerically Q-Cartier case.

The R-Cartier case is reduced to the numerically Q-Cartier setting using
(11.47) as follows.

Let f: (Y,Ay) — (X,A) be a log resolution. Pick curves C,, that span
Ni(Y/X) and apply (11.47) to (¥,Ay). Thus for n > 1 we get Ky + Ay =
2Ky + A{/) where the A{V are Q-divisors and (Y, A{,) is lc. Also, since
(Cn - (Ky + Ay)) = 0, (11.47.6.a) shows that (C,, - (Ky + A{,)) = 0. Thus
each (X, f (AJY')) is a numerically Q-Cartier Ic pair. They are thus Ic and so is
(X, A) by (11.4.4). The demi-normal case now follows using (11.38). |

The advantage of the concept of numerically R-Cartier divisors is that we
have better behavior in families.

Proposition 4.51 Let f: X — S be a proper morphism with normal fibers
over a field of characteristic 0 and D a generically Cartier family of divisors
on X. Then there is a finite collection of locally closed subschemes S; C S such
that

(4.51.1) Dy is numerically R-Cartier iff s € U;S;, and

(4.51.2) the pull-back of D to X Xg S; is numerically R-Cartier for every i.
In particular, {s € S : Dy is numerically R-Cartier} C S is constructible.

Proof Let g € § be a generic point. We show that if D, is numerically R-
Cartier (resp. not numerically R-Cartier) then the same holds for all Dy in an
open neighborhood g € §° ¢ S. Then we finish by Noetherian induction.
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To see our claim, consider a log resolution p,: Y, — X,. It extends to a
simultaneous log resolution p°: Y° — X° over a suitable open neighborhood
gesS°csS.

If D, is numerically R-Cartier then there is a p,-exceptional R-divisor E,
such that E, + (pg)ngg is numerically p,-trivial. This E, extends to a p-
exceptional R-divisor E and E + p;'D is numerically p-trivial over an open
neighborhood g € §° c S by (4.52). Thus Dy is numerically R-Cartier for
seES°.

Assume next that D, is not numerically R-Cartier. Let E} be the p-
exceptional divisors. Then there are proper curves Cé C Y, that are contracted
by p, and such that (p,);' Dy, viewed as a linear function on ® jR[Cé], is lin-
early independent of the E;. Both the divisors E; and the curves CC{’; extend to
give divisors E' and curves C! over an open neighborhood g € S° ¢ §. Thus
(ps);' Dy, viewed as a linear function on @ jR[C{], is linearly independent of
the E é, hence D; is not numerically R-Cartier for s € S°. O

Lemma 4.52 Let p: Y — X be a morphism of proper S -schemes and D an
R-Cartier divisor on Y. Then

S™:={s €S : Dy is numerically p,-trivial}
is an open subset of S.

Proof We check Nagata’s openness criterion (10.14).

Let us start with the special case when X = §. Pick points s; € 5, C S. A
curve Cp C Yy, specializes to C| C Y, and if (Dy, - C1) = 0 then (D, - C2) = 0.

Next assume that Dy, is numerically pg,-trivial. By (11.43.2), Dy, = }; a,-Ai2
where the A{, are numerically py,-trivial Q-divisors. Thus each mA{, is alge-
braically equivalent to 0 for some m > 0; see Lazarsfeld (2004, 1.4.38). We
can spread out this algebraic equivalence to obtain that there is an open subset
U C 55 such that mD; is algebraically (and hence numerically) equivalent to 0
on all fibers s € U.

Applying this to ¥ — X shows that

X" := {x € X : D, is numerically trivial on Y.}

is an open subset of X. Thus §™ = S \ 7y (X \ X™) is an open subset of S, where
mx : X — § is the structure map. O

4.53 (Warning on intersection numbers) In general, one cannot define inter-
section numbers of numerically R-Cartier divisors with curves. This would
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need the stronger property: (Z - Dy) = 0 for every (not necessarily effective)
1-cycle Z on Y such that p.[Z] = 0.

To see that this is indeed a stronger requirement, let E C P? be a smooth
cubic and S c P? the cone over it. For x € E let L, ¢ S denote the line over x.
Set X := § x E and consider the divisors D, swept out by the lines L, X {x}
for some fixed xo € E, and D,, swept out by the lines L, X {x} for x € E.
Let p: Y — X be the resolution obtained by blowing up the singular set, with
exceptional divisor F ~ E X E. Then pz(D| — D,) shows that D| — D, is
numerically Cartier.

Set C := F N p;!(D; — D»). It is a section minus the diagonal on E x E. Thus
p.IC1=0,but (C- p;' (D1 = Dy)) = 2.

4.7 Stable Families over Smooth Base Schemes

All the results of the previous sections apply to families p: (X,A) — S over
a smooth base scheme, but the smooth case has other interesting features as
well. The following can be viewed as a direct generalization of (2.3).

Theorem 4.54 Let (0 € S) be a smooth, local scheme and Dy + ---+ D, C S
an snc divisor such that D1N---ND, = {0}. Let p : (X,A) — (0 € §) be a pure
dimensional morphism and A an R-divisor on X such that Supp A N Sing X,
has codimension > 2 in Xo. The following are equivalent:

4.54.1) p: (X,A) > S is slc.

(4.54.2) Kx;s + A is R-Cartier; p is flat and (X, Ao) is slc.

(4.54.3) Kx;s + A is R-Cartier, X is S, and (pure(Xo), Ao) (10.1) is sic.
(4.544) (X,A+ p*Dy +---+ p*D,) is slc.

Proof Note that (1) = (2) holds by definition and (2) = (3) since both §
and Xy are S, (10.10). If (3) holds, then (10.72) shows that p is flat and X is
pure, hence (3) = (2). Next we show that (2) & (4) using induction on r. Both
implications are trivial if r = 0.

Assume (4) and pick a point x € Xy. Then Kx + A+ p*D; + --- + p*D, is
R-Cartier at x hence so is Kx + A. Set Dy := p*D,. By (11.17),

(Dy,Alp, + p*Dilp, + -+ p"D,_1lp,)

is slc at x, hence (Xp, Ap) is slc at x by induction. The local equations of the
p*D; form a regular sequence at x by (4.58), hence p is flat at x.
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Conversely, assume that (2) holds. By induction,
(Dy,Alp, + p*Dilp, + -+ p*Dr-1lp,)

is slc at x, hence inversion of adjunction (11.17) shows that (X, A+ p*D;+---+
p*D,) is slc at x. O

Corollary 4.55 Let S be a smooth scheme and p: (X,A) — S a morphism.
Then p : (X,A) — S is locally stable iff the pair (X, A + p*D) is slc for every
snc divisor D C S. m|

Corollary 4.56 Let S be a smooth, irreducible scheme and p : (X,A) — S a
locally stable morphism. Then every log center of (X, A) dominates S .

Proof Let E be a divisor over X such that a(E, X,A) < 0 and let Z C S denote
the image of £ in S. If Z # S then, possibly after replacing S by an open
subset, we may assume that Z is contained in a smooth divisor D C S. Thus
(X,A + p*D) is slc by (4.55). However, a(E,X,A + p*D) < a(E,X,A) — 1
< —1, a contradiction. O

Corollary 4.57 Let S be a smooth scheme and p: (X,A) — S a projective,
locally stable morphism with normal generic fiber. Let p°: (X°,A°) — S
denote the canonical model of p : (X,A) — S and p* : (X",A") - S a
weak canonical model as in Kolldr and Mori (1998, 3.50). Then

4.57.1) p¥: (X",A") — S is locally stable and

(4.57.2) p°:(X°,A°) — S is stable.

Warning 4.57.3 As in (2.47.1), the fibers of p® are not necessarily the canonical
models of the fibers of p.

Proof Let D C S be an snc divisor. By (4.55), (X,A + p*D) is Ic and pY :
(XY,AY + (p*D)") — S is also a weak canonical model over S by Kollar
(2013b, 1.28). Thus (X, AY + (p*D)¥) is also slc, where (p*D)Y is the push-
forward of p*D. Next we claim that (p*D)" = (p™)*D. This is clear away from
the exceptional set of (p*)~' which has codimension > 2 in X*. Thus (p*D)*
and (p%)* D are two divisors that agree outside a codimension > 2 subset, hence
they agree. Now we can use (4.55) again to conclude that p% : (XV,A%) —» §
is locally stable.

A weak canonical model is a canonical model iff Kxv,s + A¥ is p¥-ample
and the latter is also what makes a locally stable morphism stable. O
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Lemma 4.58 Let (y € Y, A+ Dy +--- + D,) be slc. Assume that the D; are
Cartier divisors with local equations (s; = 0). Then the s; form a regular
sequence.

Proof We use induction on r. Since Y is S, s, is a non-zerodivisor at y. By
adjunction (y € D,,Alp, + Dilp, + -+ + D,_1lp,) is slc, hence the restric-
tions silp,, ..., Sr—1lp, form a regular sequence at x. Thus sy, ..., s, is a regular
sequence at y. O

The following result of Karu (2000) is a generalization of (2.51) from one-
dimensional to higher-dimensional bases.

Theorem 4.59 Let U be a k-variety and fy: (Xy,Ay) — U a stable mor-
phism. Then there is projective, generically finite, dominant morphismm : V —
U and a compactification V. < V such that the pull-back (Xy,Ay) Xy V
extends to a stable morphism fy : (Xy, Ay) — V.

Proof We may assume that U is irreducible with generic point g.

Assume first that the generic fiber of fi; is normal and geometrically irreduc-
ible. Let (Y,, Ag ) = (Xg, A,) be alog resolution. It extends to a simultaneous
log resolution (YUO,A{JO) — (Xy,,Ay,) over an open subset Uy C U. By
Abramovich and Karu (2000) (see also Adiprasito et al. (2019)), there is a
projective, generically finite, dominant morphism r : Vy — U, and a compact-
ification Vo < V such that the pull-back (Y, Us>s Af/o) Xy, Vo extends to a locally
stable morphism gy : (Yy,A}) — V.

We can harmlessly replace V by a resolution of it. Thus we may assume
that V is smooth and there is an open subset V C V such that the rational map
fly : V --» U is a proper morphism.

Since gy is a projective, locally stable morphism, the relative canonical
model fy: (Xy,Ay) = Vof gp: (Yy,A}) — V exists by Hacon and Xu (2013)
and it is stable by (4.57.2).

By construction, (Xy,Ay) and (Xy, Ay) Xy V are isomorphic over Vy C V,
but (11.40) implies that in fact they are isomorphic over V. This completes the
case when the generic fiber of f; is normal.

In general, we can first pull back everything to the Stein factorization of
X" — U where X" is the normalization of X. The previous step now gives
foi (X3,A%) — V. Finally, (4.56) shows that (11.41) applies and we get fj :
Xy, Ap) = V. i

Corollary 4.60 Let k be a field of characteristic 0 and assume that the coarse
moduli space of stable pairs SP exists, is separated, and locally of finite type.
Then every irreducible component of SP is proper over k.
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Proof Let M be an irreducible component of SP with generic point gy By
assumption, there is a field extension K O k(gy) and a stable K-variety
(Xk, Ag) corresponding to gy.

Since it takes only finitely many equations to define a stable pair, we may
also assume that K/k(gy,) is finitely generated, hence so is K/k.

By (4.59), there is a smooth, projective k-variety V and a stable family £ :
(Y,Ay) — V such that k(V) is a finite field extension of K and the generic fiber
of f is isomorphic to (Xx, ARi)-

The image of the corresponding moduli morphism ¢ : ¥ — SP contains gy,
and it is proper. It is thus the closure of g,,, which is M. So M is proper. O

4.8 Mumford Divisors

On a normal variety, our basic objects are Weil divisors. On a nonnormal
variety, we work with Weil divisors whose irreducible components are not
contained in the singular locus. It has been long understood that these give
the correct theory of generalized Jacobians of curves; see Serre (1959). Their
first appearance in the moduli theory of curves may be Mumford’s definition
of pointed stable curves given in Knudsen (1983, Def.1.1).

Here we consider the relative version that is compatible with Cayley—Chow
forms in a very strong way (4.69). This enables us to construct a universal
family of Mumford divisors (4.76), which is a key step in the construction of
the moduli space of stable pairs.

We start by recalling the foundational properties of Chow varieties, as
treated in Kollar (1996, secs.[.3—4), and then discuss the ideal of Chow equa-
tions. We focus on the classical theory, which is over fields. A closer inspection
reveals that the theory works for Mumford divisors over arbitrary bases. The
end result is that the functor of Mumford divisors (4.69) is representable over
reduced bases (4.76).

Definition 4.61 A d-cycle on a scheme X is a finite linear combination Z :=
>.im;i[Vi], where m; € Z and the V; are d-dimensional irreducible, reduced sub-
schemes. We usually tacitly assume that the V; are distinct and m; # 0. Then
the V; are called the irreducible components of Z and the m; the multiplici-
ties. A d-cycle is called effective if m; > 0 for every i and reduced if all its
multiplicities equal 1.

To a subscheme W C X of dimension < d, we associate a d-cycle, called the
fundamental cycle

[W] := Y(length,, Oy) - [Wi], 4.61.1)
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where W; c W are the d-dimensional irreducible components with generic
points w; € W;. If W is reduced and pure dimensional then [W] determines W;
we will not always distinguish them clearly. However, if W is nonreduced, then
it carries much more information than [W]. The only exception is when W is a
Mumford divisor.

If X is projective and L is an ample line bundle on X, then the degree of a
d-cycle Z = ), m;[V;] is defined as deg; Z := >}, m;deg, V; = }; mi(L% - V).

Assume that X is a scheme of finite type over a field k and K/k a field exten-
sion. If V ¢ X is a d-dimensional irreducible, reduced subvariety then Vg C Xk
is a d-dimensional subscheme which may be reducible and, if char k£ > 0, may
be nonreduced. If Z = Y} m;V; is a d-cycle, we set

Zg = Ym[(V)k]. (4.61.2)

Z is called geometrically reduced if Z, is reduced. If char k = 0 then reduced
is the same as geometrically reduced.

Given an embedding X < P”, every d-cycle on X is also a d-cycle on P".
Thus Cayley—Chow theory focuses primarily on cycles in P”

4.62 (Cayley—Chow correspondence over fields I) Fix a projective space P”
over a field k with dual projective space P. Points in P" are hyperplanes in P".
For d < n — 1 we have an incidence correspondence

1D .= {(p,Ho,...,Hg): p€ HyN--- N Hg) CP" x B, (4.62.1)

which comes with the coordinate projections

P D 2 (@t s @y (4.62.2)
where 7 is a (P""1)%*1_bundle and o; deletes the ith component. The projection
71, is a P"~*"_bundle over a dense open subset. For a closed subscheme Y c P
set 1) .= 77 (Y).

Let Z c P" be an irreducible, geometrically reduced, closed subvariety of

dimension d. Its Cayley—Chow hypersurface is defined as

Ch(Z) := m(I3?)

o dt] (4.62.3)
={(Ho,...,Hy) € (P") :ZNHyN---NHy #0}.
An equation of Ch(Z) is called a Cayley—Chow form. Next note that
1Y Ny (Ho,...,Hy) = ZO HyN -+ 0 Hy. (4.62.4)
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In particular, a general HyN - - - NH, is disjoint from Z and a general HyN --- N
H, containing a smooth point p € Z meets Z only at p (scheme theoretically).
Thus we see the following.

Claim 4.62.5 Let Z be a geometrically reduced d-cycle. Then 75 : I(Z”’d) —
Ch(Z) is birational and Ch(Z) is a hypersurface in (P")?*!. m]

For any Hy, ..., H;; the fiber of the coordinate projection o;: Ch(Z) —
P is P if dim(ZNHyN---NH, 1) > 1; otherwise it is the set of hyperplanes
that contain one of the points of ZN Hy N ---N Hy_;. Similarly for all the other
0. Thus we proved the following.

Claim 4.62.6 Let Z be a geometrically reduced d-cycle of degree r. Then a gen-
eral geometric fiber of any of the projections o; : Ch(Z) — (P")? is the union
of r distinct hyperplanes in P”. In particular, the projections are geometrically
reduced and Ch(Z) has multidegree (7, ..., r). O

For p € P", let p denote the set of hyperplanes passing through p. Then
peZiff px---x p c Ch(Z). This leads us to the definition of the inverse of
the map Z — Ch(Z). Let D c (P")?*! be a geometrically reduced subscheme.
(In practice, D will always be a hypersurface.) Define

Ch(D):={p:px---XpCD}CP". (4.62.7)

For now we will view Ch_l(D) as a reduced subscheme; scheme-theoretic
versions will be discussed in (4.71).

It is easy to see that dim Ch}(D) < d and an irreducible hypersurface D
is of Cayley—Chow type if dim Chs_ell(D) = d. An arbitrary hypersurface D
is of Cayley—Chow type if all of its irreducible components are. The basic
correspondence of Cayley—Chow theory is the following; see Kollar (1996,
1.3.24.5).

Claim 4.62.8 Fix n,d, r, and a base field k. Then the maps Ch and Chs_elt provide
a one-to-one correspondence between

geometrically reduced
Cayley—Chow type hypersurfaces of

{ geometrically reduced } -
degree (r, ..., r) in (P")*!

d-cycles of degree r in P"

Proof We already saw the = part. To see the converse, observe the inclusion
Ch(Ch_l(D)) c D. Thus if Z c Ch_l(D) is any subvariety of dimension d,
then Ch(Z) c D, hence Ch(Z) is an irreducible component of D. Thus D =
Ch(Chgy(D)). D
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Let Z c P" be a pure dimensional subscheme or a cycle. The Chow equations
are the “most obvious” equations of Z. They generate a homogeneous ideal
(or an ideal sheaf), which was studied in various forms in Catanese (1992),
Dalbec and Sturmfels (1995), and Kollar (1999). Its relationship with the
scheme-theoretic Ch;clh will be given in (4.73).

4.63 (Element-wise power) Let R be a ring, I C R an ideal, and m € N. Set

" =" rel.

These ideals have been studied mostly when chark = p > 0 and ¢ is a power of
p; one of the early occurrences is in Kunz (1976). In these cases, [ lal i called
a Frobenius power of I. Other values of the exponent are also interesting. Of
the following properties, (1) is clear and (4.63.2-3) are implied by (4.63.4-5).
We assume for simplicity that R is a k-algebra.

(4.63.1) If I is principal then /™ = ™.

(4.63.2) If chark = 0 then '™ = ™,

(4.63.3) If m < chark then U™ = ™,

(4.63.4) If k is infinite then (ry,...,r)"™ = (X cir))" : ¢; € k).

Note that (3) is close to being optimal. For example, if / = (x,y) € k[x, y] and
chark = p > 3 then (x, Y)P*H = (x?*!, xPy, xy?, yP*1) € (x, y)P*1.

Claim 4.63.5 Let k be an infinite field. Then

((crxi+ -+ eum)" s ci € k) = (oo (7, ) # 0.

Here ( " ) denotes the coefficient of )cil1 X (g 4+ X))

iy

Proof The containment C is clear. If the two sides are not equal then the left-
hand side is contained in some hyperplane of the form 3 A;x’ = 0, but this
would give a nontrivial polynomial identity ), ( " )/llc’ = 0 for the c;. O

i1 vy

4.64 (Ideal of Chow equations) Let Z be a d-cycle of degree r in P". Let
o0 : P" --> P! be a projection that is defined along Z. Then o.(Z) is a d-cycle in
P91, thus it can be identified with a hypersurface; hence with a homogeneous
polynomial ¢(Z, o) of degree r. Its pull-back to P” is a homogeneous poly-
nomial ®(Z, o) of degree r. Together they generate the ideal sheaf of Chow
equations I"(Z) C Opn.

Over a finite field k there may not be any projections defined along Z. The
definition gives I°"(Z) over k and it is clearly defined over k.

0% This is not related to the symbolic power, frequently denoted by 1.
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The embedded primes of I°"(Z) are quite hard to understand, so frequently
we focus on the Chow hull of the cycle Z:

CHull(Z) := pure(Spec Oz [I(2)).

Any Zariski dense set of projections generate I"(Z). That is, if P ¢ Gr(n —
d,n + 1) is Zariski dense then I°"(Z) = (®(Z, 0) : ¢ € P). It is enough to show
that this holds in every Artinian quotient o : Op» - A. Let B C A be the ideal
generated by o-(®(Z, 0) : 0 € P). All the o(D(Z, o)) are points of an irreducible
subvariety G C A obtained as an image of Gr(n — d,n + 1). By assumption,
G N B contains the points o(O(Z, 0) : o € P), hence it is dense in G. So G C B,
since B is Zariski closed, if we think of A as a k-vectorspace.

Claim 4.64.1 Let Z be a geometrically reduced cycle. Then I"(Z) c I, and the
two agree along the smooth locus of Z.

Proof Let p € Z be a smooth point and v € T,P" \ T,Z. A general projection
o0 : P" > P! maps (T,Z, v) isomorphically onto T, P**!. Then d®(Z, ) is
nonzero on v. Thus the ®(Z, o) generate I, in a neighborhood of p. O

For the nonreduced case, we need a definition.

Definition-Lemma 4.65 Let Z C P” be an irreducible, d-dimensional sub-

scheme such that red Z is geometrically reduced. Its width is defined in the

following equivalent ways.

(4.65.1) The projection width of Z is the generic multiplicity of n(Z) for a
general projection 7 : P --> P41,

(4.65.2) The power width of Z is the smallest m such that Ir[:é]z - Oy is
generically 0 along Z.

In general, we first take a purely inseparable field extension K/k such that

red(Zg) is geometrically reduced and define the width of Z as the width of Zg.

For example, it is easy to see that the width of Spec k[x, y]/(x,y)" is m and
the width of Spec k[x, y]/(x™,y™) is 2m — 1.

Proof For a general projection 7 : P" --> P?*! let ¢, be an equation of n(red Z)
and @, its pull-back to P". Then Z has projection width m iff @) - 07 is
generically O for every &, and m is the smallest such. Since the @, generically
generate I;.qz, this holds iff Ir[gg]z - Uy is generically 0 and m is the smallest.
Thus the projection width equals the power width. O

Proposition 4.66 Let Z; C P" be distinct, geometrically irreducible cycles of
the same dimension. Then CHull(Ym;Z;) = pure(Spec Os:/ N; 1(Z;)!™M).
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Proof The equations of the projections ¢(3. Z;,0) (as in (4.64)) generate Iy »
at its smooth points. So if p € Z; is a smooth point of 3 Z, then I1(Z;)!"! agrees
with I°"(Y, m;Z;) at p by (4.63.4). ]

The following consequence of (4.66) is key to our study of Mumford divisors.

Corollary 4.67 Let k be an infinite field, X C P} a reduced subscheme of
pure dimension d + 1 and D C X a Mumford divisor, viewed as a divisorial
subscheme. Then pure(X N CHull(D)) = D.

Proof The containment D is clear, hence equality can be checked after a field
extension. Write D = ) m;D; where the D; are geometrically irreducible and
reduced. Then CHull(D) = pure(Spec Oz / N; (D))" by (4.66). Let g; € D;
be the generic point and R; its local ring in P} Let J; C R; be the ideal defining
X and (J;, h;) the ideal defining D;. The ideal defining the left-hand side of
(4.67.1) is then (J; + (J;, h)!™1)/J;. This is the same as (h;)!™], as an ideal in
R;/J;, which equals (h}") by (4.63.1). |

Relative Mumford Divisors

Definition 4.68 Let S be a scheme and f: X — S a morphism of pure relative
dimension #n that is mostly flat (3.26). A relative Mumford divisor on X is a
relative, generically Cartier divisor D (4.24) such that, for every s € S, the
fiber X; is smooth at all generic points of D;.

Let S’ be another scheme and 4 : §” — S a morphism. Then the pull-back
h"!D is again a relative Mumford divisor on X xg S’ — S§’. This gives the
Sfunctor of Mumford divisors, denoted by

MDiv(X/S)(x): {S-schemes} — {sets}. (4.68.1)

We prove in (4.76) that if f is projective, then the functor of effective Mumford
divisors is represented by an S -scheme

Univ™(X/S) — MDiv(X/S), (4.68.2)

whose connected components are quasi-projective over S .

We will see that relative, effective Mumford divisors form the right class for
moduli purposes over a reduced base, but not in general. Fixing this problem
leads to the notion of K-flatness in Chapter 7.

The following result — whose proof will be given after (4.76.5) — turns a
relative, effective Mumford divisor into a flat family of Cartier divisors on
another morphism, leading to the existence of MDiv(X/S) in (4.76).
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Theorem 4.69 Let S be a reduced scheme, f: X — S a projective morphism
that is mostly flat (3.26), and j : X — Pg an embedding into a PN-bundle.
Then the maps Ch and Ch;(1 —to be defined in (4.70) and (4.75.2) — provide a
one-to-one correspondence

{ relative Mumford } o { flat Cayley—Chow forms of }

divisors on X Mumford divisors on X

(4.69.1)

Comments 4.69.2 There are two remarkable aspects of this equivalence. First,
the left-hand side depends only on X — S, while the right-hand side is defined
in terms of an embedding j : X — Pyg.

Second, on the left we have families that are usually not flat, on the right
families of hypersurfaces in a product of projective spaces; these are the
simplest possible flat families.

The correspondence (4.69.1) fails very badly over nonreduced bases. We
see in (7.14) that, in an analogous local setting, the left-hand side is locally
infinite dimensional for § = Spec C[¢], but the right-hand side is locally finite
dimensional. Nonetheless, we will be guided by (4.69.1). The rough plan is
that we declare the right-hand side to give the correct answer and then work
backwards to see what additional conditions this imposes on relative Mumford
divisors. This leads us to the notion of C-flatness (7.37). Independence of the
embedding j : X < Py then becomes a major issue in Chapter 7.

4.70 (Definition of Ch) In order to construct Chow, (P5), the Chow vari-
ety of degree r cycles of dimension d in P?, we start with the incidence
correspondence as in (4.62)

Incg (point, (P")4*1)

/ \ (4.70.1)

P: B+,
Note that here o = 0,4, is a (P""")%!-bundle. The fibers of 7 = 7,4, are
linear spaces of dimension > n —d — 1 and 7 is a P"~*~!-bundle over a dense
open subset.

Let now D C ¢ be a generically flat family of d-dimensional subschemes
(3.26). Assume also that the generic embedding dimension of Dy is < d + 1
for every s € S. (This is satisfied iff each Dy is a Mumford divisor on some
X C P*; a more general definition is in (7.46).) Set Ch(D) := 7.(c~'(D)).

Claim 4.70.2 The map, t: o~ '(D) — Ch(D) is a local isomorphism on the
preimage of a dense open subset U C D such that U N Dy is dense in Dy for
every s € S.
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Proof Pick p € D, such that Tp, has dimensiond+1 at p. If Ly O pis a general
linear subspace of dimension n—d—1, then LN Dy = {p}, scheme theoretically.
This is exactly the fiber of 7 : o~'(D) — Ch(D) over any (H,, ..., Hy) for
which Ly, = HyN---N H,. |

Corollary 4.70.3 Ch(D) is a generically flat family of Cartier divisors. If S is
reduced, then Ch(D) is flat over S.

Proof By assumption, D is a generically flat family, hence so is o~ ! (D) since
o is smooth. The first part is now immediate from (4.70.2). The second claim
then follows from (4.36). |

4.71 (Definition of Ch_l) Although Ch(D) is not a flat family of Cartier divi-

sch
sor in general, we decide that from now on we are only interested in the cases

when it is flat. Thus let H*° (P’; )?*! be a relative hypersurface of multidegree

(r,...,r). We first define its scheme-theoretic Cayley—Chow inverse, denoted
by Chs‘c'h(Hcc). It is a first approximation of the “correct” Cayley—Chow
inverse.

Working with (4.70.1) consider the restriction of the left-hand projection
o (Incs Nt ' (H®)) — P}, 4.71.1)

Fix s € § and a point p; € P7. Note that the preimage of p, consists of all
(d + 1)-tuples (Hy, ..., H,) such that p; € H; for every i and (Hy,...,H;) €
H{. In particular, if Z is a d-cycle of degree r on P and H* = Ch(Z) is its
Cayley—Chow hypersurface, then o*° is a (P%~!)¢*!-bundle over Supp Z.

The key observation is that this property alone is enough to define Chs_clh and
to construct the Chow variety. So we define Chs_clh(HCC) C P as the unique,
largest, closed subscheme over which o¢ is a (Br=1yd+1_pundle. (Its existence
is a special case of (3.19), but we derive its equations in (4.72.2).)

The set-theoretic behavior of the projection o : Chs‘clh(HCC) — § is described
in (4.62). The fibers have dimension < d and Z; C P? is a d-dimensional
irreducible component iff Ch(Zy) is an irreducible component of H:°. It is not
hard to see that there is a maximal closed subset S (H*) C S over which H*
is the Cayley—Chow hypersurface of a family of d-cycles; see Kollar (1996,
1.3.25.1).

However, we do not yet have the “correct” scheme structure on S (H*®), since
the scheme structure of the fibers of o: Ch;clh(HCC) — § is not the “correct”
one. Before we move ahead, we need to understand this scheme structure.
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4.72 (Scheme structure of Chs_ch(HCC)) Let S be a scheme and H* := (F =

0) c (P")g” a hypersurface of multidegree (r,...,r). We aim to write down
equations for Chs_clh(F =0).

Choose coordinates (xg: - - - :x,) on P¢ and dual coordinates (Xg;: - - - :X,,;) on
the jth copy of g for j = 0,...,d. So F = F(X;;) is a homogeneous poly-
nomial of multidegree (r, ..., r). For notational simplicity we compute in the

affine chart Ag = Pg \ (xp = 0).

For (x1,...,x,) € Ag, the hyperplanes H in the jth copy of P§ that pass
through (xy, ..., x,) are all written as (=X x;%;; : Xy -+ 1 %y).

Let M(X;;) be all the monomials in the X;; and write

F(=> xiXio s X10 o+ 2 %03+ 5= XiXig = Xig o v+ 2 X
(=X xifio © X0 0 i1 Xiia * X1a d} 472.1)
= Y u(xr, ..., x)M(X;)).
Since the monomials M(X;;) are linearly independent, this vanishes for all X;;
iff Fy; = 0 for every M. Equivalently:

Claim 4.72.2 The subscheme Chs_clh(F = 0) N A§ is given by the equations
Fuy(x1,...,x,) = 0 for all monomials M, with Fj; as in (4.72.1). O

Assume that (F = 0) = Ch(Y). If we fix X;; = ¢;;, then these give the matrix
of a linear projection e : A% — A‘S’“. The corresponding Chow equation of Y
is Yy Fu(xi, ..., x,)M(c;ij) = 0. Thus we proved the following.

Theorem 4.73 Let Z C P} be a d-cycle of degree r. Then Chs_clh(Ch(Z)) c P
is the subscheme defined by the ideal of Chow equations I"(Z). O

Note that we proved a little more. If the residue field of § is infinite,
then IN(Y)| 4z 1s generated by the Chow equations of the linear projections
me  AG — Ag“. A priori we would need to use the more general projections
(7.34.4), but this is just a matter of choosing the hyperplane at infinity.

Combining (4.73) and (4.67) gives the following.

Corollary 4.74 Let k be a field, X C P} a subscheme of pure dimension d + 1,
and D C X a Mumford divisor. Then pure(X N Ch;clh(Ch(D))) =D. O

4.75 (Construction of MDiv(X/S)) As we noted in (4.69.2), we construct
MDiv(X/S) by starting on the right-hand side of (4.69.1)

Let S be a scheme, f: X — S a mostly flat, projective morphism of pure
dimension d, and j : X — P¢ an embedding.
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We fix the intended degree to be r and let P, 4, = Iﬁ’(]pn)m(r, ...,1)| be
the linear system of hypersurfaces of multidegree (r,...,r) in (P")%*!, with
universal hypersurface H'*, C (Bryd+! x P, .. Thus (4.70.1) extends to

Incg (point, (P”)d”) Xs Puar

% T 4.75.1)

Pg Xs Pn,d,r (Pn)ngl Xs Pn,d,r-

Asin (4.71), we get Chy (HE, ) € P% Xg P,,. We are interested in d-cycles

nd,r
that lie on X, so we should take

Ch)_(l (Hcc

n,d,r

) := Chy, (HS

n,d,r

) N (X Xs Pn,d,r) C Pg Xg Pn,d,r- 4.75.2)

By (4.74), if Dy ¢ X is a Mumford divisor of degree r then the fiber of the
coordinate projection 9,4, : Ch)‘('(Hff d,r) — P, 4, over [Ch(Dy)] is Dy (aside
from possible embedded points).

This leads us to the following. Recall the difference between mostly flat (in
codimension < 1) and generically flat (in codimension 0) as in (3.26).

Theorem 4.76 Let S be a scheme, f : X — S a mostly flat, projective mor-

phism of pure relative dimension d + 1, and j : X — Pg an embedding. Then

the functor of generically flat families of degree r Mumford divisors on X is

represented by a locally closed subscheme MDiv.(X/S) of P4, (4.75). Over

MDiv,(X) we have

4.76.1) Univ’r"d(X/S) C XXsMDiv,(X/S), a universal, generically flat family
of degree r Mumford divisors on X, and

(4.76.2) HC C (B)4+! ¢ MDiv,(X/S), a flat family of multidegree (r,...,r)
hypersurfaces,

that correspond to each other under Ch and Chy'.

Proof As we noted in (4.62), every fiber of g, 4, has dimension < d. So
{H : dim(Sing X, N Supp Chy' (H)) < d — 1}

defines a closed subset of P, 4,; let PZ’ dr denote its complement. Thus [H°] €
P; . iff the divisorial part of Chy' (H®) satisfies the Mumford condition.
Now apply (4.77) to Ch;(1 (H*) over P , to getalocally closed decomposi-
tion jflat : Ps’z;’r — Py . representing the functor of generically flat pull-backs
of Ch)}l (H®) asin (4.77). Over each connected component of ngg,’r, the degree
of the d-dimensional part is locally constant. The union of those connected

components where this degree equals r is MDiv,(X/S). O
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Warning 4.76.3 In the nonreduced case the resulting MDiv(X) a priori depends
on the projective embedding j: X < Pg. We write MDiv(X C %) if we
want to emphasize this. In Chapter 7 we construct a subscheme KDiv(X) C
MDiv(X c PY), that does not depend on the embedding. The two have the same
underlying reduced structure and a positive answer to Question 7.42 would
imply that in fact MDiv(X c P§) = KDiv(X).

We have used the following variant of (3.19).

Proposition 4.77 Let f: X — S be a projective morphisms and F a coher-
ent sheaf on X such that Supp F — S has fiber dimension < d. Then there
is a locally closed decomposition j’;‘”: S};at — S such that Fy is flat at
d-dimensional points of the fibers iff W — S factors through j’;m.

Proof We may replace X by the scheme-theoretic support SSupp F. The ques-
tion is local on S. By (10.46.1), we may assume that there is a finite morphism
X - Pg. Note that Fy is flat at d-dimensional points iff the same holds
for (). Fy. We may thus assume that X = P¢; the important property is that
now f: X — § is flat with integral geometric fibers. By (3.19.1) we get a
decomposition LI;X; — X, where Fly, is locally free of rank i.

Let Z c X be a closed subscheme. Applying (3.19) to the projection 0, we
see that there is a unique largest subscheme S(Z) c S such that f~'(S(2)) c
Z, scheme theoretically. For a locally closed subscheme Z c X set S(Z) =
S(Z)\ S(Z\ Z), where Z denotes the closure of Z. Note that S (Z) is the largest
subscheme 7' C § with the following property:

(4.77.1) There is an open subscheme X; C X7 that contains the generic point
of X; for every t € T and X3 C Z, scheme theoretically.

We claim that S%a‘ = ;S (X;). One direction is clear. Fly, is locally free of
rank i, so the restriction of F to S(X;) Xs X is locally free, hence flat, at the
generic point of every fiber.

Conversely, let W be a connected scheme and ¢ : W — § a morphism such
that Fy is generically flat over W the fiber dimension of Supp Fy — S is n.
Since X,, is integral, F,, is generically free for every w € W, so Fy is locally
free at the generic point of every fiber. Let X}, C Xy be the open set where Fy
is locally free.

By assumption, Xy, contains the generic point of every fiber X,,, so Xj, is
connected. Thus Fy has constant rank, say 7, on Xj,. Therefore, the restriction
of gx : Xw — X to Xj, lifts to g5 : Xj, — X;. By (4.77.1), this means that ¢
factorsas g : W — S(X;) — S. O
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