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Stable Pairs over Reduced Base Schemes

So far we have identified stable pairs (X,∆) as the basic objects of our
moduli problem, defined stable and locally stable families of pairs over one-
dimensional regular schemes in Chapter 2, and in Chapter 3 we treated families
of varieties over reduced base schemes. Here we unite the two by discussing
stable and locally stable families over reduced base schemes.

After stating the main results in Section 4.1, we give a series of examples
in Section 4.2. The technical core of the chapter is the treatment of various
notions of families of divisors given in Section 4.3. Valuative criteria are
proved in Section 4.4 and the behavior of generically R-Cartier divisors is
studied in Section 4.5.

In Section 4.6, we finally define stable and locally stable families over
reduced base schemes (4.7) and prove that local stability is a representable
property. Families over a smooth base scheme are especially well behaved;
their properties are discussed in the short Section 4.7.

The universal family of Mumford divisors is constructed in Section 4.8;
this is probably the main technical result of the chapter. The correspondence
between (not necessarily flat) families of Mumford divisors and flat families of
Cayley–Chow hypersurfaces – established over reduced bases in Theorem 4.69
– leads to the fundamental notion of Cayley flatness in Chapter 7.

At the end, we have all the ingredients needed to treat the moduli functor
SP

red, which associates to a reduced scheme S the set of all stable families
f : (X,∆) → S , up to isomorphism. (Here the superscript red indicates that we
work with reduced base schemes only.)

To be precise, we fix the dimension n of the fibers, a finite set of allowed
coefficients c ⊂ [0, 1] and the volume v. Our families are f : (X,∆)→ S , where
X → S is flat and projective, ∆ is a Weil R-divisor on X whose coefficients are
in c, KX/S + ∆ is R-Cartier, and the fibers (Xs,∆s) are stable pairs of dimension
n with vol(KXs + ∆s) :=

(
(KXs + ∆s)n) = v. This gives the functor
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138 Stable Pairs over Reduced Base Schemes

SP
red(c, n, v) : {reduced S -schemes} → {sets}.

We can now state one of the main consequence of the results of this chapter.

Theorem 4.1 (Moduli theory of stable pairs I) Let S be an excellent base
scheme of characteristic 0 and fix n, c, v. Then SPred(c, n, v) is a good moduli
theory (6.10), which has a projective, coarse moduli space SPred(c, n, v)→ S .

Moreover, SPred(c, n, v) is the reduced subscheme of the “true” moduli space
SP(c, n, v) of marked, stable pairs, to be constructed in Chapter 8.

Assumptions In the foundational Sections 4.1–4.5 we work with arbitrary
schemes, but for Sections 4.6 and 4.7 we need to assume that the base scheme
is over a field of characteristic 0.

4.1 Statement of the Main Results

In the study of locally stable families of pairs over reduced base schemes, the
key step is to give the “correct” definition for the divisorial component

Temporary Definition 4.2 A family of pairs (with Z-coefficients) of dimen-
sion n over a reduced scheme is an object

f : (X,D)→ S , (4.2.1)

consisting of a morphism of schemes f : X → S and an effective Weil divisor
D satisfying the following properties.

4.2.2 (Flatness for X) The morphism f : X → S is flat, of finite type, of pure
relative dimension n, with geometrically reduced fibers. This is the expected
condition from the point of view of moduli theory, following the Principles
(3.12) and (3.13).

4.2.3 (Equidimensionality for Supp D) Every irreducible component Di ⊂

Supp D dominates an irreducible component of S and all nonempty fibers of
Supp D→ S have pure dimension n−1. In particular, Supp D does not contain
any irreducible component of any fiber of f . If S is normal then Supp D → S
has pure relative dimension n − 1 by (2.71.2), but in general our assumption
is weaker. We noted in (2.41) that D → S need not be flat for locally stable
families. So we start with this weak assumption and strengthen it later.
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4.1 Statement of the Main Results 139

4.2.4 (Mumford condition) The morphism f is smooth at generic points of Xs∩

Supp D for every s ∈ S . Equivalently, for each s ∈ S , none of the irreducible
components of Xs ∩ Supp D is contained in Sing(Xs).

This condition was first codified in Mumford’s observation that, in order
to get a good moduli theory of pointed curves (C, P), the marked points P =

{p1, . . . , pn} should be smooth points of C; see Section 4.8 for details.
If (X,∆) is an slc pair, then X is smooth at all generic points of Supp ∆. So if

D is an effective divisor supported on Supp ∆, then this conditions is satisfied.
It turns out that such generic smoothness is a crucial condition technically.

So we make it part of the definition for families of pairs.
A big advantage is that, if S is reduced, then X is regular at the generic points

of Supp D. Thus, as for normal varieties, we can harmlessly identify Mumford
divisors with divisorial subschemes; see (4.16.6–7) for details.

Next we come to the heart of the matter: we would like the notion of families
of pairs to give a functor. So, for any morphism g : W → S , we need to define
the pulled-back family. We have a fiber product diagram

X ×S W
fW
��

qX // X
f
��

W
q // S .

(4.2.5)

It is clear that we should take XW := X ×S W, with morphism fW : XW → W.
The definition of the divisor part DW is less clear, since pull-backs of Cartier
and of Weil divisors are not compatible in general.

4.2.6 (Weil-divisor pull-back) For any subscheme Z ⊂ X and morphism
h : Y → X, define the Weil-divisor pull-back as the Weil divisor Weil

(
h−1(Z)

)
associated to the subscheme h−1(Z) ⊂ Y; see (4.16.6) for formal definitions.

Let D, X be as in (4.2.1) and g : W → S a morphism. Using the Mumford
condition we can view D as a subscheme of X. Then set

g∗Wdiv(D) := Weil
(
g−1

X (D)
)
.

In particular, if τ : {s} → S is a point, we get the Weil-divisor fiber, denoted by
τ∗Wdiv(D).

If H ⊂ X is a relative Cartier divisor and g∗XH does not contain any
codimension ≤ 1 associated points of g−1

X (D), then

g∗Wdiv(D ∩ H) = g∗Wdiv(D) ∩ g∗XH.

Warning The Weil-divisor fiber is always defined, but frequently not functo-
rial, not even additive. If D′,D′′ are two divisors on X then τ∗Wdiv(D′ + D′′)
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140 Stable Pairs over Reduced Base Schemes

and τ∗Wdiv(D′) + τ∗Wdiv(D′′) have the same support, but the multiplicities can
be different, even in étale locally trivial families as in (4.14). If D′,D′′ sat-
isfy (4.2.4), then τ∗Wdiv(D′ + D′′) ≤ τ∗Wdiv(D′) + τ∗Wdiv(D′′), but otherwise the
inequality can go the other way; see (4.12) and (4.13).

4.2.7 (Generically Cartier divisor and pull-back) Assume that D is a relative
Cartier divisor (4.20) on an open subset U ⊂ X such that g−1

X (U ∩ D) is dense
in g−1

X (D). We can then define the generically Cartier pull-back of D as

g[∗](D) := the closure of g−1
X (D|U) ⊂ XW .

If f has S 2 fibers then OXW

(
−g[∗](D)

)
is the hull pull-back of OX(−D) (3.27).

The generically Cartier pull-back is clearly functorial, but not always defined.
If it is defined, then g∗Wdiv(D) is the Weil divisor corresponding to g[∗](D), so
the two notions are equivalent; see (4.6).

4.2.8 (Well-defined pull-backs) We say that f : (X,D) → S has well-defined
Weil-divisor pull-backs if it satisfies the assumptions (4.2.2–4) and the Weil-
divisor pull-back (4.2.6) is a functor for reduced schemes. That is,

h∗Wdiv
(
g∗Wdiv(D)

)
= (g ◦ h)∗Wdiv(D)

for all morphisms of reduced schemes h : V → W and g : W → S .

In any concrete situation, the conditions (4.2.2– 4) should be easy to check,
but (4.2.8) requires computing g∗Wdiv(D) for all morphisms W → S . The
following variant is much easier to verify.

4.2.9 (Well-defined specializations) We say that f : (X,D) → S has well-
defined specializations if (4.2.8) holds whenever W is the spectrum of a
DVR.

The good news is that, over reduced schemes, the three versions (4.2.6–9)
are equivalent to each other and also to other natural conditions. The com-
mon theme is that we need to understand only the codimension 1 behavior of
f : (X,D)→ S .

Theorem-Definition 4.3 (Well-defined families of pairs I) Let S be a reduced
scheme. A family of pairs f : (X,D)→ S satisfying (4.2.2–4) is well defined if
the following equivalent conditions hold.
(4.3.1) The family has well-defined Weil-divisor pull-backs (4.2.8).
(4.3.2) The family has well-defined specializations (4.2.9).
(4.3.3) D is a relative, generically Cartier divisor (4.2.7).
(4.3.4) D→ S is flat at the generic points of Xs ∩ Supp D for every s ∈ S .
If f is projective then these are also equivalent to
(4.3.5) s 7→ deg(Xs ∩ D) is a locally constant function on S .
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4.1 Statement of the Main Results 141

The theorem is proved in (4.25). The next result says that, if S is normal,
then the conditions (4.2.2–4) imply that f : (X,D) → S is well defined. It
follows from (4.21) by setting W := Sing S .

Theorem 4.4 (Ramanujam (1963); Samuel (1962)) Let S be a normal scheme,
f : X → S a smooth morphism and D a Weil divisor on X. Assume that D does
not contain any irreducible component of a fiber. Then D is a Cartier divisor,
hence a relative Cartier divisor.

Over nonnormal base schemes it is usually easy to check well-definedness
using the normalization.

Corollary 4.5 Let S be a reduced scheme with normalization S̄ → S . Let
f : (X,D) → S be a projective family of pairs satisfying the assumptions
(4.2.2–4) and

f̄ :
(
X̄, D̄

)
:= (X,D) ×S S̄ → S̄

the corresponding family over S̄ . Then D is a relative, generically Cartier
divisor in either of the following cases.
(4.5.1) τ∗Wdiv(D) = τ̄∗Wdiv(D̄) = τ̄[∗](D̄) for every geometric point τ : {s} → S

and for every lifting τ̄ : {s} → S̄ .
(4.5.2) S is weakly normal and τ̄∗Wdiv(D̄) = τ̄[∗](D̄) is independent of the lifting
τ̄ : s→ S̄ for every geometric point τ : {s} → S .

Proof Note first that D̄ is a relative, generically Cartier divisor by (4.4), so
τ̄∗Wdiv(D̄) = τ̄[∗](D̄).

Let g ∈ S be a generic point. Then (D̄)g = Dg and deg τ̄∗Wdiv(D̄) = deg(D̄)g

by (4.3) applied to f̄ :
(
X̄, D̄

)
→ S̄ . Together with (1) this shows that (4.3.5)

holds for f : (X,D)→ S .
For (2), we explain in (4.25) how to reduce everything to the special case

when f has relative dimension 1. Then (10.64) shows that D is flat over S . �

Next we turn to the case that we are really interested in, when the boundary
∆ is a Q or R-divisor. The right choice is to work with the relative, generically
Cartier condition.

Definition 4.6 (Divisorial pull-back) Let S be a scheme, f : X → S a mor-
phism and ∆ a Z,Q or R-divisor on X. For q : W → S , consider the fiber
product as in (4.2.5). We define relatively, generically Cartier divisors and
their divisorial pull-backs, denoted by ∆W , in three steps as follows.
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142 Stable Pairs over Reduced Base Schemes

(4.6.1) ∆ is a relatively, generically Cartier Z-divisor if it is Cartier at the
generic points of Xs ∩ Supp D for every s ∈ S . ∆W is then defined as in (4.2.7).

(4.6.2) ∆ is a relatively, generically Q-Cartier Q-divisor iff m∆ is a relatively,
generically Cartier Z-divisor for some m > 0. Then we set ∆W := 1

m
(
(m∆)W

)
.

This is independent of m, but there is a subtle point. We prove in (4.39) that,
if the characteristic is 0, then a Z-divisor is relatively, generically Q-Cartier
iff it is relatively, generically Cartier. So we can choose m to be the com-
mon denominator of the coefficients in ∆. However, this is not true in positive
characteristic; see (8.75–8.76).

(4.6.3) ∆ is a relatively, generically R-Cartier R-divisor iff one can write ∆ =∑
ci∆i where the ∆i are relatively, generically Q-Cartier Q-divisors. Then we

set ∆W :=
∑

ci(∆i)W .
This is independent of the choice of ci and ∆i. We may assume that the ci

are Q-linearly independent. Then ∆ is relatively, generically R-Cartier iff the
∆i are relatively, generically Q-Cartier by (11.43.2).

Let f : (X,∆) → S be a well-defined family of pairs as in (4.3). In (3.1) we
gave seven equivalent definitions of locally stable families of varieties. Some
of these extend to families of pairs. See (2.41) for some negative examples and
Section 8.2 for some solutions.

Definition–Theorem 4.7 Let S be a reduced scheme, f : X → S a flat mor-
phism of finite type and f : (X,∆)→ S a well-defined family of pairs. Assume
that (Xs,∆s) is slc for every s ∈ S . Then f : (X,∆) → S is locally stable or slc
if the following equivalent conditions hold.
(4.7.1) KX/S + ∆ is R-Cartier.
(4.7.2) For every spectrum of a DVR T and morphism q : T → S , the pull-

back fT : (XT ,∆T )→ T is locally stable, as in (2.3).
(4.7.3) There is a closed subset Z ⊂ X such that codim(Z ∩ Xs, Xs) ≥ 3 for

every s ∈ S and f |X\Z : (X \ Z)→ S satisfies the above (1–2).
Such a family is called stable if, in addition, f is proper and KX/S + ∆ is f -
ample.

Proof The arguments are essentially the same as in (3.37). It is clear that
(4.7.1) ⇒ (4.7.2). If (4.7.2) holds then KXT + ∆T is R-Cartier for every
q : T → S . Thus KX/S + ∆ is R-Cartier by (4.35).

Finally, if any of the properties (4.7.1–2) holds for X, then it also holds for
X \ Z. Using (4.7.2) both for X and for X \ Z, reduces us to checking (4.7.3)⇒
(4.7.2) when S is the spectrum of a DVR; which is (2.7). �
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4.2 Examples 143

Let f :
(
X,∆

)
→ S be a family of pairs. It turns out that, starting in relative

dimension 3, the set of points
{
s ∈ S :

(
Xs,∆s

)
is slc

}
is neither open nor

closed; see (3.41) for an example. Thus the strongest result one can hope for is
the following.

Theorem 4.8 (Local stability is representable) Let S be a reduced, excellent
scheme over a field of characteristic 0 and f :

(
X,∆

)
→ S a well-defined,

projective family of pairs. Assume that ∆ is an effective, relative, generically R-
Cartier divisor. Then there is a locally closed partial decomposition j : S ls →

S such that the following holds.
Let W be any reduced scheme and q : W → S a morphism. Then the family

obtained by base change fW :
(
XW ,∆W

)
→ W is locally stable iff q factors as

q : W → S ls → S .

A stable morphism is locally stable and stability is an open condition for a
locally stable morphism. Thus (4.8) implies the following.

Corollary 4.9 (Stability is representable) Using the notation and assumptions
as in (4.8), there is a locally closed partial decomposition j : S stab → S such
that the following holds.

Let W be any reduced scheme and q : W → S a morphism. Then the family
obtained by base change fW :

(
XW ,∆W

)
→ W is stable iff q factors as q : W →

S stab → S . �

4.2 Examples

We start with a series of examples related to (4.3).

Example 4.10 Let S = (xy = 0) ⊂ A2 and X = (xy = 0) ⊂ A3. Consider the
divisors Dx :=

(
y = z − 1 = 0

)
and Dy :=

(
x = z + 1 = 0

)
. We get a family

f :
(
X,Dx + Dy

)
→ S that satisfies the assumptions (4.2.2–4).

We compute the “fiber” of the family over the origin in three different ways
and get three different results.

First, restrict the family to the x-axis. The pull-back of X becomes the plane
A2

xz. The divisor Dx pulls back to (z−1 = 0), but the pull-back of the ideal sheaf
of Dy is the maximal ideal (x, z + 1). It has no divisorial part, so restriction to
the x-axis gives the pair

(
A2

xz, (z − 1 = 0)
)
→ A1

x. Similarly, restriction to the
y-axis gives the pair

(
A2

yz, (z + 1 = 0)
)
→ A1

y . If we restrict these to the origin,
we get

(
A1

z , (z − 1 = 0)
)

and
(
A1

z , (z + 1 = 0)
)
.
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144 Stable Pairs over Reduced Base Schemes

Finally, if we restrict to the origin of S in one step then we get the pair(
A1

z , (z−1 = 0) + (z + 1 = 0)
)
. Thus we have three different pairs that can claim

to be the fiber of f :
(
X,Dx + Dy

)
→ S over the origin.

In this example the problem is visibly set-theoretic, but there can be
problems even when the set theory works out.

Example 4.11 Set C := (xy(x−y) = 0) ⊂ A2
xy and X := (xy(x−y) = 0) ⊂ A3

xyz.
For any c ∈ k consider the divisor

Dc := (x = z = 0) + (y = z = 0) + (x − y = z − cx = 0).

The pull-back of Dc to any of the irreducible components of X is Cartier, it
intersects the central fiber at the origin of the z-axis and with multiplicity 1.
Nonetheless, we claim that Dc is Cartier only for c = 0.

Indeed, assume that h(x, y, z) = 0 is a local equation of Dc. Then h(x, 0, z) =

0 is a local equation of the x-axis and h(0, y, z) = 0 is a local equation of the
y-axis. Thus h = az + (higher terms). Restricting to the (x − y = 0) plane we
get that c = 0.

Note also that if char k = 0 and c , 0 then no multiple of Dc is a Cartier
divisor. To see this note that if f (x, y, z) = 0 is a local defining equation of mDc

on X then ∂m−1 f /∂zm−1 vanishes on Dc. Its restriction to the z-axis vanishes at
the origin with multiplicity 1. We proved above that this is not possible.

However, if char k = p > 0, then zp − cpxyp−1 = 0 shows that pDc is a
Cartier divisor.

Example 4.12 Consider the cusp C := (x2 = y3) ⊂ A2
xy and the trivial curve

family Y := C × A1
z → C. Let D ⊂ Y be the Cartier divisor given by the

equation y = z2. Then D → C is flat of degree 2. Furthermore, D is reducible
with irreducible components D± := image of t 7→ (t3, t2,±t).

Note that D± ' A1
t and the projections D± → C corresponds to the ring

extension k[t3, t2] ↪→ k[t]. Thus the projections D± → C are not flat and the
Weil-divisorial fiber of D± → C over the origin has length 2.

However, the Weil-divisorial fiber of D = D+ ∪ D− → C over the origin is
again the point (0, 0, 0) with multiplicity 2.

Arguing as in (4.11) shows that the D± are not Q-Cartier in characteristic 0,
but pD+ =

(
xy(p−3)/2 = zp) shows that it is Q-Cartier in characteristic p > 0.

The next example shows the importance of the Mumford condition.
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Example 4.13 Set X = (x2 − y2 = u2 − v2) ⊂ A4,D = (x − u = y − v =

0) ∪ (x + u = y + v = 0) and f : (X,D) → A2
uv the coordinate projection. The

fiber Xuv is a pair of intersecting lines if u2 = v2 and a smooth conic otherwise.
The irreducible components of D intersect only at the origin and D is not

Cartier there. The divisorial fiber Duv consists of 2 distinct smooth points if
(u, v) , (0, 0), but D00 is the origin with multiplicity 3.

Let Lc be the line (v = cu) for some c , ±1. Restricting the family to Lc we
get Xc = (x2 − y2 = (1 − c2)u2) ⊂ A3 and the divisor becomes Dc = (x − u =

y − cu = 0) ∪ (x + u = y + cu = 0). Observe that Dc is a Cartier divisor
with defining equation cx = y. (Note that base change does not commute with
union, so D ×A2 Lc has an embedded point at the origin.)

Thus although D is not Cartier at the origin, after base change to a general
line we get a Cartier divisor. For all of these base changes, Dc has multiplicity
2 at the origin. (These also hold after base change to any smooth curve.)

However, the origin is a singular point of the fiber. If we restrict Dc to the
fiber over the origin, the resulting scheme structure varies with c.

This would be a very difficult problem to deal with, but for a stable pair
(X,∆) we are in a better situation since the irreducible components of ∆ are not
contained in Sing X.

Example 4.14 Let B be a smooth projective curve of genus ≥ 1 with an
involution σ and b1, b2 ∈ B a pair of points interchanged by σ. Let C′ be
another smooth curve with two points c′1, c

′
2 ∈ C′. Start with the trivial fam-

ily (B × C′, {b1} × C′ + {b2} × C′) → C′ and then identify c′1 ∼ c′2 and
(b, c′1) ∼ (σ(b), c′2) for every b ∈ B. We get an étale locally trivial stable mor-
phism (S ,D1 + D2) → C. Here C is a nodal curve with node τ : {c} → C. The
fiber over the node is

(
B, [b1] + [b2]

)
. However, the fiber of each Di over c is

[b1] + [b2], hence

τ∗Wdiv(D1) + τ∗Wdiv(D1) =
(
B, 2[b1] + 2[b2]

)
,

(
B, [b1] + [b2]

)
= τ∗Wdiv(D1 + D2).

The next examples discuss the variation of theQ-Cartier property in families
of divisors. Related positive results are in Section 4.6.

Example 4.15 Let C ⊂ P2 be a smooth cubic curve and S C ⊂ P
3 the cone over

it. For p ∈ C let Lp ⊂ S C denote the ruling over p. Note that Lp is Q-Cartier
iff p is a torsion point, that is, 3m[p] ∼ OC(m) for some m > 0. The latter is a
countable dense subset of the moduli space of the lines Chow1,1(S C) ' C.

In the above example the surface is notQ-factorial and the curve Lp is some-
timesQ-Cartier, sometimes not. Next we give a similar example of a flat family
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of lc surfaces S → B such that {b : S b is Q-factorial} ⊂ B is a countable set of
points. Thus being Q-factorial is not a constructible condition.

Let C ⊂ P2 be a smooth cubic curve. Pick 11 points P1, . . . , P11 ∈ C and set
P12 = −(P1 + · · · + P11). Then there is a quartic curve D such that C ∩ D =

P1 + · · · + P12. Thus the linear system
∣∣∣OP2 (4)(−P1 − · · · − P12)

∣∣∣ blows up the
points Pi and contracts C. Its image is a degree 4 surface S = S (P1, . . . , P11)
in P3 with a single simple elliptic singularity. If C = ( f3(x, y, z) = 0) and
D = ( f4(x, y, z) = 0) then

S '
(
f3(x, y, z)w + f4(x, y, z) = 0

)
⊂ P3.

At the point (x = y = z = 0), the singularity of S is analytically isomorphic to
the cone S C and S is smooth elsewhere iff the points P1, . . . , P12 are distinct. If
this holds, then the class group of S is generated by the image L of a line in P2

and the images E1, . . . , E12 of the 12 exceptional curves. They satisfy a single
relation 3L = E1 + · · · + E12. Note that Ei is Q-Cartier iff Pi is a torsion point.

If we vary P1, . . . , P11 ∈ C, we get a flat family of lc surfaces parametrized
by π : S→ C11 \ (diagonals), with universal divisors Ei ⊂ S. We see that
(4.15.1) Ei(P1, . . . , P11) is Q-Cartier iff Pi is a torsion point and
(4.15.2) S (P1, . . . , P11) is Q-factorial iff Pi is a torsion point for every i.

4.3 Families of Divisors II

At least three different notions of effective divisors are commonly used in
algebraic geometry, but our discussions show that other variants are also
necessary.

4.16 (Five notions of effective divisors) Let X be an arbitrary scheme.
(4.16.1) An effective Cartier divisor is a subscheme D ⊂ X such that, for

every x ∈ D, the ideal sheaf OX(−D) is locally generated by a non-zero
divisor sx ∈ Ox,X , called a local equation of D.

(4.16.2) A divisorial subscheme is a subscheme D ⊂ X such that OD has no
embedded points and Supp D has pure codimension 1 in X.

(4.16.3) A divisorial subscheme D is called an effective, generically Cartier
divisor if it is Cartier at its generic points. These are called almost Cartier
divisors in Hartshorne (1986) and Hartshorne and Polini (2015).

(4.16.4) A divisorial subscheme D is called an effective Mumford divisor if X
is regular at generic points of D. More generally, D is Mumford along Z,
if X and Z are both regular at every generic point of Z ∩ Supp D.
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(4.16.5) A Weil divisor is a formal, finite linear combination D =
∑

i miDi

where mi ∈ Z and the Di are integral subschemes of codimension 1 in X.
We say that D is effective if mi ≥ 0 for every i.

If A is an abelian group then a Weil A-divisor is a formal, finite linear com-
bination D =

∑
i aiDi where ai ∈ A. We will only use the cases A = Z,Q,R.

Thus Weil Z-divisor = traditional Weil divisor; we use the terminology “Weil
Z-divisor” if the coefficient group is not clear. (A Weil Z-divisor is sometimes
called an integral Weil divisor, but the latter could also mean the Weil divisor
corresponding to an integral subscheme of codimension 1.)

Note that usually divisorial subschemes and Weil divisors are used only
when X is irreducible or at least pure dimensional, but the definition makes
sense in general.

If X is smooth then the five variants are equivalent to each other, but in
general they are different.

Usually we think of Cartier divisor as the most restrictive notion. If X is S 2

then every effective Cartier divisor is a divisorial subscheme. However, if X is
not S 2, then there are Cartier divisors D ⊂ X such that D is not a divisorial
subscheme, and the natural map from Cartier divisors to divisorial subschemes
is not injective; see (4.16.9). These are good to keep in mind, but they will not
cause problems for us.

Let W ⊂ X be a closed subscheme. We can associate to it both a divisorial
subscheme and a Weil divisor by the rules

Div(W) := pure W := Spec
(
OW/(torsion)

)
, and

Weil(W) :=
∑

i lengthgi

(
Ogi,W

)
· [Di],

(4.16.6)

where, in the first case, we take the quotient by the subsheaf of those sec-
tions whose support has codimension ≥ 2 in X (see also (10.1)). In the second
case, Di ⊂ Supp W are the irreducible components of codimension 1 in X with
generic points gi ∈ Di. In particular, this associates an effective Weil divisor to
any effective Cartier divisor or divisorial subscheme.

Thus, if X is S 2, then we have the basic relations among effective divisors

 Cartier
divisors

 ⊂  Mumford
divisors

 ⊂  generically
Cartier divisors

 ⊂  divisorial
subschemes

 .
Assume next that X is regular at a codimension 1 point g ∈ X. Then Og,X is

a DVR, hence its ideals are uniquely determined by their colength. Thus we
have the following.
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Claim 4.16.7 If X is a normal scheme then four of the notions agree for
effective divisors Mumford

divisors

 =

 generically
Cartier divisors

 =

 divisorial
subschemes

 =

 Weil
divisors

 .
We are mainly interested in slc pairs (X,∆), thus the underlying schemes X

are demi-normal. Fortunately, X is smooth at the generic points of ∆. Thus, for
our purposes, we can always imagine that the identifications (4.16.7) hold.

Convention 4.16.8 Let X be a scheme and W ⊂ X a subscheme. Assume
that X is regular at all generic points of W. Then we will frequently iden-
tify Div(W), the divisorial subscheme associated to W and Weil(W), the Weil
divisor associated to W. We denote this common object by [W].

We can thus usually harmlessly identify divisorial subschemes and Weil
divisors. However – and this is one of the basic difficulties of the theory –
it is quite problematic to keep the identification between families of divisorial
subschemes and families of Weil divisors.

Example 4.16.9 Let S ⊂ A4 be the union of the planes (x1 = x2 = 0) and
(x3 = x4 = 0). For c , 0, consider the Cartier divisors Dc := (x1 + cx3 = 0).
For any c, the corresponding divisorial subscheme is the union of the lines
(x1 = x2 = x3 = 0) ∪ (x1 = x3 = x4 = 0), hence independent of c. However the
Dc are different Cartier divisors for different c ∈ k. Indeed, (x1+c′x3)/(x1+cx3)
is a nonregular rational function that is constant c′/c on the first plane and 1 on
the second. Note that S is seminormal and the Dc are Mumford.

Corresponding to the five notions of divisors, there are five notions of fami-
lies. We discuss four of these next, leaving Mumford divisors to Section 4.8.

Relative Weil divisors

Definition 4.17 Let f : X → S be a morphism whose fibers have pure dimen-
sion n. A Weil divisor W =

∑
miWi is called a relative Weil divisor if the fibers

of f |Wi : Wi → f (Wi) have pure dimension n−1 for every i.

We are interested in defining the divisorial fibers of W → S . A typical
example is (4.13), where the multiplicity of the scheme-theoretic fiber jumps
over the origin. It is, however, quite natural to say that the “correct” fiber is
the origin with multiplicity 2; the only problem we have is that scheme theory
miscounts the multiplicity. The following theorem, proved in Kollár (1996,
3.17), says that this is indeed frequently the case.
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Theorem 4.18 Let S be a normal scheme, f : X → S a projective morphism,
and Z ⊂ X a closed subscheme such that f |Z : Z → S has pure relative dimen-
sion m. Then there is a section σZ : S → Chowm(X/S ) with the following
properties.
(4.18.1) Let g ∈ S be the generic point. Then σZ(g) = [Zg], the cycle

associated to the generic fiber of f |Z : Z → S as in (3.8).
(4.18.2) Supp

(
σZ(s)

)
= Supp(Zs) for every s ∈ S .

(4.18.3) σZ(s) = [Zs] if f |Z is flat at all generic points of Zs.
(4.18.4) s 7→

(
σZ(s) · Lm)

is a locally constant function of s ∈ S , for any line
bundle L on X. �

Example (4.10) shows that (4.18) does not hold if S is only seminormal.
The notion of well-defined families of algebraic cycles is designed to avoid
similar problems, leading to the definition of the Cayley–Chow functor; see
Kollár (1996, sec.I.3–4) for details.

Flat Families of Divisorial Subschemes

Let X → S be a morphism and D ⊂ X a subscheme. If Supp D does not contain
any irreducible component of a fiber Xs, then OD∩Xs/(torsion) is (the structure
sheaf of) a divisorial subscheme of Xs. This notion, however, frequently does
not have good continuity properties, as illustrated by (4.13).

We would like to have a notion of flat families of divisorial subschemes,
where both the structure sheaf OD and the ideal sheaf OX(−D) are “well
behaved.” This seems possible only if X → S is “well behaved,” but then
the two aspects turn out to be equivalent.

Definition–Lemma 4.19 Let f : X → S be a flat morphism of pure rela-
tive dimension n with S 2 fibers and D ⊂ X a closed subscheme of relative
dimension n−1 over S . We say that f |D : D → S is a flat family of divisorial
subschemes if the following equivalent conditions hold.
(4.19.1) f |D : D→ S is flat with pure fibers of dimension n−1 (10.1).
(4.19.2) OX(−D) is flat over S with S 2 fibers.
If f is projective and pure Ds denotes the largest pure subscheme as in (10.1),
these are further equivalent to:
(4.19.3) s 7→ χ

(
Xs,Opure Ds (∗)

)
is locally constant on S .

(4.19.4) s 7→ χ
(
Xs,OXs (− pure Ds)(∗)

)
is locally constant on S .

Proof We have a surjection OX → OD and if both of these sheaves are flat
then so is the kernel OX(−D). If the kernel is flat then OXs (−Ds) ' OX(−D)|Xs
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is also the kernel of OXs → ODs . Since OXs is S 2, we see that OXs (−Ds) is S 2

iff ODs is pure of dimension n−1.
Conversely, assume (2). For any T → S the pull-back map q∗T OX(−D) →

q∗T OX is an isomorphism over XT \ DT . Since OX(−D) is flat with S 2 fibers,
q∗T OX(−D) does not have any sections supported on DT . Thus the pulled-back
sequence

0→ q∗T OX(−D)→ q∗T OX → q∗T OD → 0

is exact. Therefore, TorS
1 (OT ,OD) = 0 hence OD is flat over S and we already

noted that then it has pure fibers of dimension n−1.
The last two claims are proved as in (2.75). �

Relative Cartier Divisors

Definition–Lemma 4.20 Let f : X → S be a flat morphism with S 2 fibers,
x ∈ X a point, and s := f (x). A subscheme D ⊂ X is a relative Cartier divisor
at x ∈ X if the following equivalent conditions hold.
(4.20.1) D is flat over S at x and Ds := D|Xs is a Cartier divisor on Xs at x.
(4.20.2) D is a Cartier divisor on X at x and a local equation gx ∈ Ox,X of D

restricts to a non-zerodivisor on the fiber Xs.
(4.20.3) D is a Cartier divisor on X at x and it does not contain any irreducible

component of Xs that passes through x.
If these hold for all x ∈ D then D is a relative Cartier divisor. If f : X → S
is also proper then the functor of relative Cartier divisors is represented by an
open subscheme of the Hilbert scheme CDiv(X/S ) ⊂ Hilb(X/S ); see Kollár
(1996, I.1.13) for the easy details.

If (2) holds then D is flat by (4.19). The other nontrivial claim is that (1)
implies that D is a Cartier divisor on X at x. We may assume that (x ∈ X) is
local. A defining equation gs of Ds lifts to an equation g of D. We have the
exact sequence

0→ ID/(g)→ OX/(g)→ OD → 0.

Here OX/(g) and OD are both flat, hence so is ID/(g). Restricting to Xs we get

0→
(
ID/(g)

)
s → OXs/(gs)

'
−→ ODs → 0.

Thus ID/(g) = 0 by Nakayama’s lemma and g is a defining equation of D. �

Relative Cartier divisors form a very well behaved class, but in applications
we frequently have to handle two problems. It is not always easy to see which
divisors are Cartier, and we also need to deal with divisors that are not Cartier.
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On a smooth variety every divisor is Cartier, thus if X itself is smooth then a
divisor D is relatively Cartier iff its support does not contain any of the fibers.
In the relative setting, we usually focus on properties of the morphism f . Thus
we would like to have similar results for smooth morphisms. (See (4.36) and
(4.41) for closely related results.)

Theorem 4.21 Let f : X → S be a smooth morphism and W ⊂ S a closed
subset such that depthW S ≥ 2. Let D◦ be a Cartier divisor on X \ f −1(W)
and D ⊂ X its closure. Assume that Supp D does not contain any irreducible
component of any fiber. Then D is Cartier, hence a relative Cartier divisor.

Proof Assume first that f has relative dimension 1. Then f |D : D → S is
quasi-finite, so f |D is flat by (10.63), so D is a Cartier divisor by (4.20.1).

For the general case, pick a closed point x ∈ D. Since f is smooth, locally
it factors through an étale morphism τ : (x, X)→

(
(0, s),An

S
)
. Composing with

any linear projection we locally factor f as

f : (x, X)
g
→

(
(0, s),An−1

S
)
→ S ,

where g is smooth of relative dimension 1. If D does not contain the fiber
of g passing through x, then D is a Cartier divisor by the already discussed
one-dimensional case.

To find such a g, assume first that k(s) is infinite. Let L ⊂ An
s be a general

line through the origin. Then π−1
s (L) 1 Ds. Thus if we choose the projection

An
S → A

n−1
S to have kernel L over s, then the argument proves that D is a

Cartier divisor at x.
If k(s) is finite then consider the trivial lifting f (1) : X×A1 → S ×A1. By the

previous argument D × A1 is a Cartier divisor at the generic point of {x} × A1,
hence D is a Cartier divisor at x by (2.92.1). �

Examples 4.22 We give two examples showing that in (4.21) we do need
depth assumptions on S .

Set S n := Spec k[x, y]/(xy) and Xn = Spec k[x, y, z]/(xy). Then (x, z) defines
a Weil divisor which is not Cartier.

Set S c := Spec k[x2, x3] and Xc = Spec k[x2, x3, y]. Then (y2 − x2, y3 − x3)
defines a Weil divisor which is not Cartier.

Lemma 4.23 Let X be a pure dimensional, S 2 scheme, D ⊂ X a Cartier divi-
sor and W ⊂ D a subscheme such that codimD W ≥ 2. Let L be a rank 1,
torsion-free sheaf on X that is locally free along D \ W. Let s be a section of
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L such that s|D\W is nowhere zero. Then L is trivial and s is nowhere zero in a
neighborhood of D.

Proof The section s gives an exact sequence

0→ OX
s
→ L→ Q→ 0.

By (10.7) every associated prime of Q has codimension 1 in X. Thus D ∩
Supp Q has codimension 1 in D. Therefore, D is disjoint from Supp Q and L is
trivial on X \ Supp Q. �

Relative Generically Cartier Divisors

This is the most important class for moduli purposes.

Definition 4.24 Let f : X → S be a morphism. A subscheme D ⊂ X is a
relative, generically Cartier, effective divisor or a family of generically Cartier,
effective divisors over S if there is an open subset U ⊂ X such that
(4.24.1) f is flat over U with S 2 fibers,
(4.24.2) codimXs (Xs \ U) ≥ 2 for every s ∈ S ,
(4.24.3) D|U is a relative Cartier divisor (4.20), and
(4.24.4) D is the closure of D|U .
If U ⊂ X denotes the largest open set with these properties then Z := X \ U is
the non-Cartier locus of D.

Thus OX(mD) is a mostly flat family of divisorial sheaves on X (3.28) for
any m ∈ Z. Conversely, if L is a mostly flat family of divisorial sheaves on X
and h a global section of it that does not vanish on any irreducible component
of any fiber, then (h = 0) is a family of generically Cartier, effective divisors
over S .

4.25 (Proof of 4.3) All five conditions are local on S ; the first four are local
on X. All of them can be checked on a general relative hyperplane section of
X; see (4.2.6), (4.26) and (10.56).

Thus we may assume that X → S has relative dimension 1, hence f is
smooth along Supp D. We view D as a divisorial subscheme of X. After an
étale base change we may assume that D→ S is finite.

Applying (3.20) to F := f∗OD (with X = S ) we see that (4.3.5) holds iff OD

is flat over S . By (4.20) the latter holds iff D a relative Cartier divisor. Thus
(4.3.3)⇔ (4.3.4)⇔ (4.3.5).

As we noted in (4.24), these imply (4.3.1), and (4.3.1) ⇒(4.3.2) is clear. It
remains to show that (4.3.2)⇒(4.3.4).
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To see this, fix a point τ : {s} → S and let T be the spectrum of a DVR and
h : T → S a morphism that maps the closed point to τ(s) and the generic point
of T to a generic point g ∈ S . Then h∗WdivD is flat over T of degree degk(g) ODg .
Thus if τ̄ : s̄→ T is a lifting of τ and (4.3.2) holds, then

deg τ∗WdivD = deg τ̄∗Wdivh∗WdivD = degk(g) ODg .

Thus D→ S is flat by (3.20). �

The following Bertini-type results are frequently useful. The first claim is
an immediate consequence of (10.56) and the second follows from (10.20).

Proposition 4.26 Let (0 ∈ S ) be a local scheme, X ⊂ PN
S a quasi-projective

S -scheme with fibers of pure dimension ≥ 2, and D ⊂ X a relative divisorial
subscheme. Then, for general H ∈ |OX(1)|,
(4.26.1) D is a generically Cartier family of divisors on X iff D|H is a

generically Cartier family of divisors on H, and
(4.26.2) OX(D)|H ' OH(D|H). �

Representability Theorems

4.27 (Representability of the generically Cartier condition) There are two ver-
sions of this question. Let f : X → S be a flat, projective morphism and D ⊂ X
a divisorial subscheme.

The traditional problem is to study those morphisms q : W → S for which
q∗D is a generically Cartier divisor on XW . This gives a representable functor.
This will be used during the construction of the moduli of Mumford divisors,
so we treat it there (4.77).

From the point of view of Section 4.1, it may seem more natural to study
those morphisms q : W → S for which the Weil-divisor pull-back q∗WdivD is a
generically Cartier divisor on XW . This, however, does not give a representable
functor; see (4.13). This variant is actually not well posed, since the Weil-
divisor pull-back is not functorial in general.

Fortunately, it turns out to be relatively easy to ensure the generically Cartier
condition. So we focus on studying additional properties of such families.

As a first problem, we start with a family of generically Cartier divisors, and
study those morphisms q : W → S for which the generically Cartier pull-back
DW is flat or relatively Cartier.

The first result is a reformulation of (3.29) and (3.30).
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Theorem 4.28 Let S be a scheme, f : X → S a flat, projective morphism with
S 2 fibers, and D ⊂ X a family of generically Cartier divisors. Then there is a
locally closed decomposition jH-flat : S H-flat → S (resp. a locally closed partial
decomposition jcar : S car → S ) such that, for every morphism q : W → S ,
the divisorial pull-back DW = q[∗]D is flat (resp. Cartier) iff q factors through
S H-flat (resp. S car). �

This leads to a valuative criterion for Cartier divisors in (4.34).
As we saw in (4.15), the set of fibers where a divisor is Q-Cartier need

not be constructible. So the straightforward Q-Cartier version of (4.28) fails.
However, this failure of constructibility is the only obstruction.

Proposition 4.29 Let S be a reduced scheme, f : X → S a flat, projective
morphism with S 2 fibers, and D a family of generically Q-Cartier (resp. R-
Cartier) divisors on X. Let S ∗ ⊂ S be a constructible subset. Assume that Ds

is Q-Cartier (resp. R-Cartier) for every point s ∈ S ∗.
Then there is a locally closed partial decomposition jqcar : S qcar → S (resp.

jrcar : S rcar → S ) such that the following holds.
(4.29.1) Let q : W → S be a reduced S -scheme such that q(W) ⊂ S ∗. Then the

divisorial pull-back DW ⊂ XW is Q-Cartier (resp. R-Cartier) iff q factors
though S qcar (resp. S rcar).

Proof We may assume that S ∗ is dense in S and start with the Q-Cartier case.
By (4.28) there are maximal open subsets S car

1 ⊂ S car
2 ⊂ · · · such that r! · D is

Cartier over S car
r . By assumption, S car

r is dense for r � 1 and the union of all
of them is the open stratum of S qcar → S . Noetherian induction then gives the
other strata.

In the R-Cartier case, we write D =
∑

diDi where the Di are Q-divisors and
the di ∈ R are linearly independent over Q. We already have locally closed
partial decompositions jqcar

i : S qcar
i → S using Di, and jrcar : S rcar → S is their

fiber product over S using (11.43.2). �

4.4 Valuative Criteria

We aim to show that various properties of morphisms can be checked after
base change to one-dimensional, regular schemes, equivalently, to spectra of
DVRs. We aim to use as few DVRs as possible.
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Definition 4.30 A morphism q : (x, X) → (y,Y) of local schemes is local if
q(x) = y. A morphism of schemes q : X → Y is component-wise dominant
if every generic point of X is mapped to a generic point of Y . If X,Y are
irreducible, then component-wise dominant is the same as dominant.

We are especially interested in local, component-wise dominant morphisms
q : (t,T ) → (s, S ) from the spectrum of a DVR to S . To construct these, let
S 1 ⊂ S be an irreducible component and π : BsS 1 → S 1 the blow-up of s. The
exceptional divisor has pure codimension 1. Let η ∈ Ex(π) be a generic point
and Oη its local ring. If S is excellent, we can take T to be the normalization of
Spec Oη. Then (η,T )→ (s, S 1) is essentially of finite type. In general, we need
to take T to be one of the irreducible components of the normalization of the
completion of Oη. Then T is excellent, but q is not essentially of finite type.

Lemma 4.31 Let (s, S ) be a local scheme and g : S ′ → S a locally closed
partial decomposition (10.83). Then g is an isomorphism iff every local, com-
ponent-wise dominant morphism q : (t,T ) → (s, S ) from the spectrum of an
excellent DVR to S factors through g.

Proof We see that g is proper and dominant by (10.78.1), hence an isomor-
phism by (10.83.2). �

Theorem 4.32 (Valuative criterion for divisorial sheaves) Let (s, S ) be a
reduced, local scheme and f : X → S a flat morphism of finite type with S 2

fibers. Let L be a mostly flat family of divisorial sheaves on X (3.28). Assume
that either f is projective or S is excellent. The following are equivalent.
(4.32.1) L is flat over S with S 2 fibers.
(4.32.2) For every local, component-wise dominant morphism q : (t,T ) →

(s, S ) from the spectrum of an excellent DVR to S , the hull pull-back (3.27)
LH

T is flat over T with S 2 fibers.

Proof It is clear that (1) implies (2). For the converse, we use the theory of
hulls and husks from Chapter 9.

Assume first that f is projective. Consider the locally closed decomposition
j : Hull(L) → S given by (9.40). By assumption, every q : (t,T ) → (s, S )
factors through j, so j is an isomorphism by (4.31). Thus L is its own hull,
hence it is flat over S with S 2 fibers.

This is the main case that we use. The argument in the nonprojective case is
similar, but relies on (9.44).

Pick any point x ∈ X and its image s := f (x). Let Ŝ denote the completion
of S at s; it is reduced since S is excellent. Then L is flat over S with S 2 fibers
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at x iff this holds after base change to Ŝ . Thus it is enough to show that (2)⇒
(1) whenever s ∈ S is complete, in which case the hull of L is represented by a
subscheme i : S u ↪→ S for local, Artinian S -algebras by (9.44).

Let (R,m) be a complete DVR and q : Spec R → (s, S ) a local morphism.
By assumption (2), the hull pull-back LH

R is flat over R with S 2 fibers. Thus
the same holds for Spec(R/mn) for every n, hence the restriction of q to
Spec(R/mn) factors through i : S u ↪→ S . Since this holds for every n ∈ N,
q factors through i : S u ↪→ S . We conclude that S u = S . So, as before, L is its
own hull, hence it is flat over S with S 2 fibers. �

Putting together (2.79), (2.82) and (4.32) gives the following higher dimen-
sional version.

Corollary 4.33 Let f : (X,∆) → S be a locally stable morphism to a reduced
scheme over a field of characteristic 0. Let D be a relative Mumford Z-divisor
(4.68). Assume that either f is projective or S is excellent. Then, in any of the
cases (2.79.1–8) and (2.82),
(4.33.1) OX(D) is flat over S with S 2 fibers, and
(4.33.2) OX(D)|Xs ' OXs (Ds) for s ∈ S . �

We can restate (4.32) for Cartier divisors as follows.

Corollary 4.34 (Valuative criterion for Cartier divisors) Let (s, S ) be a
reduced, local scheme, f : X → S a flat morphism of finite type with S 2 fibers,
and D a relative, generically Cartier divisor on X. Assume that either f is
projective or S is excellent. Then the following are equivalent.
(4.34.1) D is a relative Cartier divisor.
(4.34.2) For every local, component-wise dominant morphism q : (t,T ) →

(s, S ) from the spectrum of an excellent DVR to S , the divisorial pull-back
DT ⊂ XT is a Cartier divisor. �

Reduction to the Cartier case as in (4.29) gives the following.

Corollary 4.35 (Valuative criterion for Q- and R-Cartier divisors) Let (s, S )
be a reduced, local scheme, f : X → S a flat morphism of finite type with S 2

fibers, and D a family of generically Q-Cartier (resp. R-Cartier) divisors on
X. Assume that either f is projective or S is excellent. Then the following are
equivalent.
(4.35.1) D is a Q-Cartier (resp. R-Cartier) divisor.
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(4.35.2) For every local, component-wise dominant morphism q : (t,T ) →
(s, S ) from the spectrum of an excellent DVR to S , the divisorial pull-back
DT is Q-Cartier (resp. R-Cartier). �

The following two consequences of (4.34) are important; see (4.41.1) for a
more direct proof of the first one.

Corollary 4.36 Let S be a reduced scheme, f : X → S a smooth morphism,
and D a relative, generically Cartier divisor on X. Assume that either f is
projective or S is excellent. Then D is a relative Cartier divisor.

Proof Let q : T → S be a morphism from the spectrum of a DVR to S . Then
XT is regular, hence DT is Cartier. So D is Cartier by (4.34). �

Theorem 4.37 Let (s, S ) be a reduced, local, excellent scheme, f : X → S a
flat morphism of finite type with S 2 fibers, and D a relative, generically Cartier
divisor on X. Then D is Cartier ⇔ D is Q-Cartier, Ds is Cartier, and Dg is
Cartier for all generic points g ∈ S .

Proof The necessity is clear. By (4.34) it is enough to prove the converse
after base change to T whenever q : (t,T ) → (s, S ) is a local, component-
wise dominant morphism from the spectrum of an excellent DVR to S . The
assumptions are preserved.

Let Z ⊂ Xt be the locus where DT is not known to be Cartier. After localizing
at the generic point of Z, we are in the situation of (2.91). Thus DT is Cartier
and so is D. �

Another valuative criterion is the following local version of (3.20).

Theorem 4.38 (Grothendieck, 1960, IV.11.6, IV.11.8) Let (s, S ) be a reduced,
local scheme, f : X → S a morphism of finite type, and F a coherent sheaf on
X. Let T be a disjoint union of spectra of DVRs and q : T → S a dominant,
local morphism. Then F is flat over S at x ∈ Xs iff q∗XF is flat over T along
q−1

X (x). �

4.5 Generically Q-Cartier Divisors

In the study of lc and slc pairs, Q-Cartier divisors are more important than
Cartier divisors. We have seen many examples of Weil Z-divisors that are Q-
Cartier, but not Cartier. By contrast, we show that if a relative Weil Z-divisor
is generically Q-Cartier, then it is generically Cartier in characteristic 0.
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Let f : (X,D)→ S be a family of pairs and D a relative Weil Z-divisor.
Since we are interested in generic properties, we can focus on a generic point

x of D ∩ Xs. If the assumption (4.2.4) holds then f is smooth at x. Thus we
may as well assume that f is smooth (but not proper).

If S is normal then D is a Cartier divisor by (4.4), thus here our main interest
is in those cases where S is reduced, but not normal. As (4.10) shows, D need
not be Cartier in general. However, the next result shows that if some multiple
of D is Cartier, then so is D, at least in characteristic 0.

Positive characteristic counter examples are given in (4.11) and (4.12).

Theorem 4.39 Let S be a reduced scheme, f : X → S a smooth morphism of
relative dimension ≥ 1, and D a relative Weil Z-divisor on X. Assume that mD
is Cartier at a point x ∈ X and char k(x) - m. Then D is Cartier at x.

Proof By Noetherian induction and shrinking X, we may assume that D is
Cartier on X \ {x} and mD ∼ 0.

By (11.24), mD ∼ 0 determines a cyclic cover X̃ → X that is étale over
X \ {x} whenever char k(x) - m. This gives a correspondence between torsion
in Picloc(x, X) and torsion in the abelian quotient of the fundamental group
π̂1

(
X \ {x}

)
. There are now two ways to finish the proof.

In characteristic 0, we may work over C. After replacing X with a suitable
Euclidean neighborhood x ∈ U ⊂ X, it is enough to prove that π1

(
U \ {x}

)
is

trivial. We do this in (4.40).
In general, let Xwn → X be the weak normalization (10.74). We prove

in (4.41) that Picloc(xwn, Xwn) is free of finite rank. It remains to show that
Kwn := ker

[
Picloc(x, X) → Picloc(xwn, Xwn)

]
does not contain prime-to-p

torsion in characteristic p > 0.
Since Xwn → X is finite and purely inseparable, it is a factor of a power Fq

of the Frobenius (10.78.2). This gives pull-back maps

Picloc(x, X)→ Picloc(xwn, Xwn)→ Picloc(xq, Xq),

where the composite is L 7→ Lq. So Kwn is q-torsion.
Alternatively, one can use Grothendieck (1971, I.11), which implies that

Xwn \ {xwn} → X \ {x} induces an isomorphism of the fundamental groups. �

4.40 (Links and smooth morphisms) Let f : X → S be a smooth morphism of
complex spaces of relative dimension n ≥ 1. We describe the topology of the
link of a point x ∈ X in terms of the topology of the link of s := f (x) ∈ S .

We can write S ⊂ CN
z such that s is the origin and X ⊂ S × Cn

t where x is
the origin. Intersecting S with a sphere of radius ε centered at s, we get LS , the
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link of s ∈ S . The intersection of S with the corresponding ball of radius ε is
homeomorphic to the cone CS over LS .

The link LX of x ∈ X can be obtained as the intersection of X with
the level set max{

∑
|zi|

2,
∑
|t j|

2} = ε2. Thus LX is homeomorphic to the
amalgamation of

LS × D
2n =

{
(z, t) :

∑
|zi|

2 = ε2,
∑
|t j|

2 ≤ ε2} and of
CS × S

2n−1 =
{
(z, t) :

∑
|zi|

2 ≤ ε2,
∑
|t j|

2 = ε2}, glued along
LS × S

2n−1 =
{
(z, t) :

∑
|zi|

2 = ε2,
∑
|t j|

2 = ε2}.
Let Li

S be the connected components of LS . Note that π1
(
Li

S ×S
2n−1) ' π1(Li

S )×
π1(S2n−1). The first factor gets killed in π1

(
CS × S

2n−1); the second is trivial if
n ≥ 2 and gets killed in π1

(
Li

S ×D
2n) if n = 1. Thus LX is simply connected for

n ≥ 1.
The cohomology of LX can be computed from the Mayer–Vietoris sequence.

Using that Hi(LS × D
2n,Z

)
= Hi(LS ,Z

)
and Hi(CS × S

2n−1,Z
)

= Hi(S2n−1,Z
)
,

for H2 the key pieces are

// H1(LS ,Z
)
⊕H1(S2n−1,Z

) σ1 // H1(LS × S
2n−1,Z

)
// H2(LX ,Z

) // H2(LS ,Z
)
⊕H2(S2n−1,Z

) σ2 // H2(LS × S
2n−1,Z

)
.

The Künneth formula gives that theσi are injections and σ1 is an isomorphism
if n ≥ 2. In this case H2(LX ,Z

)
= 0. If n = 1, then

H2(LX ,Z
)
' coker

[
H1(S1,Z

)
→ H0(LS ,Z

)
⊗ H1(S1,Z

)]
' H0(LS ,Z

)
/Z.

(4.40.1)

We have thus proved the following.

Claim 4.40.2 Let f : X → S be a smooth morphism of complex spaces, LX the
link of a point x ∈ X, and s := f (x). Assume that dimx X > dims S ≥ 1.

Then LX is simply connected. Furthermore, H2(LX ,Z) = 0 iff either n ≥ 2
or the link of s ∈ S is connected. �

Next we compute the local Picard groups in more detail in the weakly
normal case.

Theorem 4.41 Let (s ∈ S ) be a local, weakly normal pair (10.74) and f :
X → S a smooth morphism. Let x ∈ Xs be a point. Then,
(4.41.1) if codim(x ∈ Xs) ≥ 2 then Picloc(x, X) = 0, and
(4.41.2) if codim(x ∈ Xs) = 1 then Picloc(x, X) is free of finite rank.

Proof Set d = dim Xs and let π : X → Ad−1
S be a general projection. Then

π is generically quasi-finite along the closure of x. Let (w,W) be the strict
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Henselization of π(x) ∈ Ad−1
S (2.18). By base change, we have a smooth mor-

phism π′ : (x′, X′)→ (w,W) of relative dimension 1, where x′ ∈ X′,w ∈ W are
closed points.

By (2.92.1), Picloc(x, X) ↪→ Picloc(x′, X′), thus it is enough to prove (1–2)
for Picloc(x′, X′).

Every class in Picloc(x′, X′) can be represented by an effective divisor D that
does not contain X′w. Then π′|D : D→ W is finite and flat over W \ {w}.

Let {Wi : i ∈ I} be the connected components of W \ {w}. Then [D] 7→(
rankWi π

′
∗OD : i ∈ I

)
gives a map

Picloc(x′, X′)→ Z|I| → Z|I|/Z(1, . . . , 1).

We claim that it is an injection. Indeed, if π′∗OD has constant rank d then π′|D
is flat by (10.64), hence D is Cartier by (4.20). This proves (2).

If codim(x ∈ Xs) ≥ 2 then g(x) is not the generic point ηs ∈ A
d−1
s . Thus

every irreducible component of Ad−1
S contains ηs, and this continues to hold

after strict Henselization. Thus W \ {w} is connected and we get (1). �

Complement 4.41.3 The proof shows that in case (2) the rank is bounded by
r − 1, where r is the maximum number of connected components of S ′ \ {s′}
for all étale (s′, S ′) → (s, S ). It is ≤ the number of geometric points over s on
the normalization of S .

4.6 Stability Is Representable II

Assumption. In this section we work over a field of characteristic 0.

The main result of this section is the following. Eventually we remove the
reduced assumption by introducing the notion of K-flatness in Chapter 7.

Theorem 4.42 Let f : (X,∆) → S be a projective, well-defined family of
pairs. Then the functor of locally stable pull-backs is represented, for reduced
schemes, by a locally closed partial decomposition ilst : S lst → S .

Since ampleness is an open condition for an R-Cartier divisor (11.54.2),
(4.42) implies the analogous result for stable morphisms.

Corollary 4.43 Let f : (X,∆) → S be a projective, well-defined family
of pairs. Then the functor of stable pull-backs is represented, for reduced
schemes, by a locally closed partial decomposition istab : S stab → S . �
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We start the proof of (4.42), which will be completed in (4.46), with a
weaker version.

Lemma 4.44 Let f : (X,∆) → S be a proper, well-defined family of pairs.
Then there is a finite collection of locally closed subschemes S i ⊂ S such that
(4.44.1) fi : (XS i ,∆S i )→ S i is locally stable for every i, and
(4.44.2) a fiber (Xs,∆s) is slc iff s ∈ ∪iS i.
In particular, {s : (Xs,∆s) is slc} ⊂ S is constructible.

Proof Being demi-normal is an open condition by (10.42) and slc implies
demi-normal by definition. So we may assume that all fibers are demi-normal
and S is irreducible with generic point g. Throughout the proof we use S ◦ ⊂ S
to denote a dense open subset which we shrink whenever necessary.

First, we treat morphisms whose generic fiber Xg is normal.
Case 1: (Xg,∆g) is lc. Then KXg + ∆g is R-Cartier, hence KX/S + ∆ is R-Cartier
over an open neighborhood of g. Next consider a log resolution pg : Yg → Xg.
It extends to a simultaneous log resolution p◦ : Y◦ → X◦ over a suitable
S ◦ ⊂ S . Thus, if E◦ ⊂ Y◦ is any exceptional divisor, then a(Es, Xs,∆s) =

a(E◦, X◦,∆◦) = a(Eg, Xg,∆g). This shows that all fibers over S ◦ are lc.
Case 2: (Xg,∆g) is not lc. Note that the previous argument works if KXg + ∆g

is R-Cartier. Indeed, then there is a divisor E with a(Eg, Xg,∆g) < −1 and
this shows that a(Es, Xs,∆s) < −1 for s ∈ S ◦. However, if KXg + ∆g is not
R-Cartier, then the discrepancy a(Eg, Xg,∆g) is not defined. We could try to
prove that KXs + ∆s is not R-Cartier for s ∈ S ◦, but this is not true in general;
see (4.15).

Thus we use the notion of numerically Cartier divisors (4.48) instead. If
KXg + ∆g is not numerically Cartier, then, by (4.51), KXs + ∆s is also not
numerically Cartier over an open subset S ◦ 3 g. Thus (Xs,∆s) is not lc for
s ∈ S ◦.

If KXg + ∆g is numerically Cartier, then the notion of discrepancy makes
sense (4.48) and, again using (4.51), the arguments show that if (Xg,∆g) is
numerically lc (resp. not numerically lc) then the same holds for (Xs,∆s) for
s in a suitable open subset S ◦ 3 g. We complete Case 2 by noting that being
numerically lc is equivalent to being lc by (4.50).

An alternative approach to the previous case is the following. By (11.30),
the log canonical modification (5.15) πg : (Yg,Θg) → (Xg,∆g) exists and it
extends to a simultaneous log canonical modification π : (Y,Θ) → (X,∆) over
an open subset S ◦ ⊂ S . By the arguments of Case 1, (Ys,Θs) is lc for s ∈ S ◦

and the relative ampleness of the log canonical class is also an open condition.
Thus πs : (Ys,Θs) → (Xs,∆s) is the log canonical modification for s ∈ S ◦. By
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assumption, πg is not an isomorphism, so none of the πs are isomorphisms.
Therefore, none of the fibers over S ◦ are lc.

If Xg is not normal, the proofs mostly work the same using a simultaneous
semi-log-resolution (Kollár, 2013b, Sec.10.4). However, for Case 2 it is more
convenient to use the following argument.

Let πg : X̄g → Xg denote the normalization. Over an open subset S ◦ 3 g it
extends to a simultaneous normalization

(
X̄, D̄+∆̄

)
→ S . If

(
X̄g, D̄g +∆̄g

)
is not

lc then
(
X̄s, D̄s + ∆̄s

)
is not lc for s ∈ S ◦, hence (Xs,∆s) is not slc, essentially

by definition; see Kollár (2013b, 5.10).
Using the already settled normal case, it remains to deal with the situation

when (X̄s, D̄s + ∆̄s) is lc for every s ∈ S ◦. By Kollár (2013b, 5.38), (Xs,∆s) is
slc iff DiffD̄n

s
∆̄s is τs-invariant. The different can be computed on any log reso-

lution as the intersection of the birational transform of D̄s with the discrepancy
divisor. Thus DiffD̄n

s
∆̄s is also locally constant over an open set S ◦. Therefore,

if DiffD̄n
g
∆̄g is not τg-invariant then DiffD̄n

s
∆̄s is also not τs-invariant for s ∈ S ◦.

Hence (Xs,∆s) is not slc for every s ∈ S ◦.
In both cases we complete the proof by Noetherian induction. �

The following consequence of (4.44) is quite useful, though it could have
been proved before it as in (3.39).

Corollary 4.45 Let f : (X,∆) → S be a proper, well-defined family of pairs
such that KX/S + ∆ is R-Cartier. Then {s : (Xs,∆s) is slc } ⊂ S is open.

Proof By (4.44), this set is constructible. A constructible set U ⊂ S is open
iff it is closed under generalization, that is, x ∈ U and x ∈ ȳ implies that y ∈ U.
This follows from (2.3). �

4.46 (Proof of 4.42) Let S i ⊂ S be as in (4.44). We apply (4.29) to the family
f : (X,KX/S + ∆) → S to obtain S rcar → S such that, for every reduced S -
scheme q : T → S satisfying q(T ) ⊂ ∪iS i, the pulled-back divisor KXT /T + ∆T

is R-Cartier iff q factors as q : T → S rcar → S .
Assume now that fT : (XT ,∆T ) → T is slc. Then KXT /T + ∆T is R-Cartier,

hence q factors through S rcar → S . As we observed in (3.23), this implies that
S slc = (S rcar)slc. By definition KXrcar/S rcar + ∆ is R-Cartier, thus (4.45) implies
that S slc = (S rcar)slc is an open subscheme of S rcar. �

We showed in (4.15) that being Q-Cartier or R-Cartier is not a constructi-
ble condition. The next result shows that the situation is better for boundary
divisors of lc pairs.
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Corollary 4.47 Let f : (X,∆) → S be a proper, flat family of pairs with slc
fibers. Let D be an effective divisor on X. Assume that
(4.47.1) either Supp D ⊂ Supp ∆,
(4.47.2) or Supp D does not contain any of the log canonical centers of any of

the fibers (Xs,∆s).
Then {s : Ds is R-Cartier} ⊂ S is constructible.

Proof Over an open subset, we have a simultaneous log resolution of (X,D +

∆). Choose 0 < ε � 1. In the first case, (Xs,∆s − εDs) is slc iff Ds is R-Cartier.
In the second case, (Xs,∆s + εDs) is slc iff Ds is R-Cartier. Thus, in both cases,
(4.44) implies our claim. �

Numerically Cartier Divisors

Definition 4.48 Let g : Y → S be a proper morphism. An R-Cartier divisor
D is called numerically g-trivial if (C · D) = 0 for every curve C ⊂ Y that is
contracted by g.

Let X be a demi-normal scheme. A Mumford R-divisor D on X is called
numerically R-Cartier if there is a proper, birational contraction p : Y → X and
a numerically p-trivial R-Cartier Mumford divisor DY on Y such that p∗(DY ) =

D.
It follows from (11.60) that such a DY is unique. If D is a Q-divisor then

DY is also a Q-divisor since its coefficients are solutions of a linear system of
equations. Such a D is called numerically Q-Cartier.

If p′ : Y ′ → X is a proper, birational contraction and Y ′ is Q-factorial, then
being numerically R-Cartier can be checked on Y ′.

Being numerically R-Cartier is preserved by R-linear equivalence, but the
exceptional part DY − p−1

∗ D depends on D ∈ |D|.
For KX + ∆, we can make a canonical choice. Thus we see that KX + ∆

is numerically R-Cartier iff there is a p-exceptional R-divisor EK+∆ such that
EK+∆ + KY + p−1

∗ ∆ is numerically p-trivial.
If KX + ∆ is numerically R-Cartier, then one can define the discrepancy of

any divisor E over X by

a(E, X,∆) := a(E,Y, EK+∆ + p−1
∗ ∆).

We can thus define when a demi-normal pair (X,∆) is numerically lc or slc.
If g : X → S is proper, then a numerically R-Cartier divisor D is called

numerically g-trivial if DY is numerically (g ◦ p)-trivial on Y .

Examples 4.49 On a normal surface, every divisor is numerically R-Cartier.
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The divisor (x = z = 0) is not numerically R-Cartier on the demi-normal
surface (xy = 0) ⊂ A3.

If X has rational singularities, then a numerically R-Cartier divisor is also
R-Cartier by Kollár and Mori (1992, 12.1.4).

Assume that dim X ≥ 3 and D is Cartier except at a point x ∈ X. There is a
local Picard scheme Picloc(x, X), which is an extension of a finitely generated
local Néron–Severi group with a connected algebraic group Picloc−◦(x, X); see
Boutot (1978) or Kollár (2016a) for details. Then D is numerically R-Cartier iff
[D] ∈ Picloc−τ(x, X) where Picloc−τ(x, X)/Picloc−◦(x, X) is the torsion subgroup
of the local Néron–Severi group.

There are many divisors that are numerically R-Cartier, but not R-Cartier,
however, the next result says that the notion of numerically slc pairs does not
give anything new.

Theorem 4.50 (Hacon and Xu, 2016, 1.4) A numerically slc pair is slc.

Outline of the proof This is surprisingly complicated, using many different
ingredients. We start with the normal, numerically Q-Cartier case.

For clarity, let us concentrate on the very special case when (X,∆) is dlt,
except at a single point x ∈ X. All the key ideas appear in this case, but we
avoid a technical inductive argument.

Starting with a thrifty log resolution (Kollár, 2013b, 2.79), the method of
(Kollár, 2013b, 1.34) gives a Q-factorial, dlt modification f : (Y, E + ∆Y ) →
(X,∆) such that KY + E + ∆Y is numerically f -trivial, where E is the excep-
tional divisor dominating x and ∆Y is the birational transform of ∆. Let ∆E :=
DiffE ∆Y . Then (E,∆E) is a semi-dlt pair such that KE + ∆E is numerically
trivial. Next we need a global version of the theorem.

Claim 4.50.1 Let (E,∆E) be a projective semi-slc pair such that KE + ∆E is
Q-Cartier and numerically trivial. Then KE + ∆E ∼Q 0.

The first general proof is in Gongyo (2013), but special cases go back to
Kawamata (1985) and Fujino (2000). We discuss a very special case: E is
smooth and ∆ = 0. The following argument is from Campana et al. (2012) and
Kawamata (2013).

We assume that OE(KE) ∈ Picτ(E), but after passing to an étale cover of E
we have that OE(KE) ∈ Pic◦(E). Serre duality shows that if [L] ∈ Picτ(E) and
hn(E, L) = 1, then L ' OE(KE).
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Next we use a theorem of Simpson (1993) which says that the cohomology
groups of line bundles in Pic◦ jump precisely along torsion translates of abelian
subvarieties. Thus [KE] is a torsion translate of a trivial abelian subvariety,
hence a torsion element of Pic◦(E). �

It remains to lift information from the exceptional divisor E to the dlt model
Y . To this end consider the exact sequence

0→ OY
(
m(KY + E + ∆Y ) − E

)
→ OY

(
m(KY + E + ∆Y )

)
→ OE

(
m(KE + ∆E)

)
→ 0.

Note that D := m(KY + E + ∆Y ) − E − (KY + ∆Y ) ≡ f 0. We apply (Kollár,
2013b, 10.38.1) or the even stronger (Fujino, 2014, 1.10) to conclude that

R1 f∗
(
OY

(
m(KY + E + ∆Y ) − E

))
= R1 f∗

(
OY (D + KY + ∆Y )

)
= 0.

Hence a nowhere zero global section of OE
(
m(KE + ∆E)

)
lifts back to a global

section of OY
(
m(KY + E + ∆Y )

)
that is nowhere zero near E. Thus OX

(
m(KX +

∆)
)
' f∗OY

(
m(KY + E + ∆Y )

)
is free in a neighborhood of x. Thus completes

the numerically Q-Cartier case.
The R-Cartier case is reduced to the numerically Q-Cartier setting using

(11.47) as follows.
Let f : (Y,∆Y ) → (X,∆) be a log resolution. Pick curves Cm that span

N1(Y/X) and apply (11.47) to (Y,∆Y ). Thus for n � 1 we get KY + ∆Y =∑
j λ j(KY + ∆

j
Y ) where the ∆

j
Y are Q-divisors and (Y,∆ j

Y ) is lc. Also, since(
Cm · (KY + ∆Y )

)
= 0, (11.47.6.a) shows that

(
Cm · (KY + ∆

j
Y )

)
= 0. Thus

each
(
X, f (∆ j

Y )
)

is a numerically Q-Cartier lc pair. They are thus lc and so is
(X,∆) by (11.4.4). The demi-normal case now follows using (11.38). �

The advantage of the concept of numerically R-Cartier divisors is that we
have better behavior in families.

Proposition 4.51 Let f : X → S be a proper morphism with normal fibers
over a field of characteristic 0 and D a generically Cartier family of divisors
on X. Then there is a finite collection of locally closed subschemes S i ⊂ S such
that
(4.51.1) Ds is numerically R-Cartier iff s ∈ ∪iS i, and
(4.51.2) the pull-back of D to X ×S S i is numerically R-Cartier for every i.
In particular, {s ∈ S : Ds is numerically R-Cartier} ⊂ S is constructible.

Proof Let g ∈ S be a generic point. We show that if Dg is numerically R-
Cartier (resp. not numerically R-Cartier) then the same holds for all Ds in an
open neighborhood g ∈ S ◦ ⊂ S . Then we finish by Noetherian induction.
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To see our claim, consider a log resolution pg : Yg → Xg. It extends to a
simultaneous log resolution p◦ : Y◦ → X◦ over a suitable open neighborhood
g ∈ S ◦ ⊂ S .

If Dg is numerically R-Cartier then there is a pg-exceptional R-divisor Eg

such that Eg + (pg)−1
∗ Dg is numerically pg-trivial. This Eg extends to a p-

exceptional R-divisor E and E + p−1
∗ D is numerically p-trivial over an open

neighborhood g ∈ S ◦ ⊂ S by (4.52). Thus Ds is numerically R-Cartier for
s ∈ S ◦.

Assume next that Dg is not numerically R-Cartier. Let Ei
g be the p-

exceptional divisors. Then there are proper curves C j
g ⊂ Yg that are contracted

by pg and such that (pg)−1
∗ Dg, viewed as a linear function on ⊕ jR[C j

g], is lin-
early independent of the Ei

g. Both the divisors Ei
g and the curves C j

g extend to
give divisors Ei

s and curves C j
s over an open neighborhood g ∈ S ◦ ⊂ S . Thus

(ps)−1
∗ Ds, viewed as a linear function on ⊕ jR[C j

s], is linearly independent of
the Ei

s, hence Ds is not numerically R-Cartier for s ∈ S ◦. �

Lemma 4.52 Let p : Y → X be a morphism of proper S -schemes and D an
R-Cartier divisor on Y. Then

S nt := {s ∈ S : Ds is numerically ps-trivial}

is an open subset of S .

Proof We check Nagata’s openness criterion (10.14).
Let us start with the special case when X = S . Pick points s1 ∈ s2 ⊂ S . A

curve C2 ⊂ Ys2 specializes to C1 ⊂ Ys1 and if (Ds1 ·C1) = 0 then (Ds2 ·C2) = 0.
Next assume that Ds2 is numerically ps2 -trivial. By (11.43.2), Ds2 =

∑
aiAi

s2

where the Ai
s2

are numerically ps2 -trivial Q-divisors. Thus each mAi
s2

is alge-
braically equivalent to 0 for some m > 0; see Lazarsfeld (2004, I.4.38). We
can spread out this algebraic equivalence to obtain that there is an open subset
U ⊂ s2 such that mDs is algebraically (and hence numerically) equivalent to 0
on all fibers s ∈ U.

Applying this to Y → X shows that

Xnt := {x ∈ X : Dx is numerically trivial on Yx}

is an open subset of X. Thus S nt = S \πX
(
X \Xnt) is an open subset of S , where

πX : X → S is the structure map. �

4.53 (Warning on intersection numbers) In general, one cannot define inter-
section numbers of numerically R-Cartier divisors with curves. This would
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need the stronger property:
(
Z · DY

)
= 0 for every (not necessarily effective)

1-cycle Z on Y such that p∗[Z] = 0.
To see that this is indeed a stronger requirement, let E ⊂ P2 be a smooth

cubic and S ⊂ P3 the cone over it. For x ∈ E let Lx ⊂ S denote the line over x.
Set X := S × E and consider the divisors D1, swept out by the lines Lx0 × {x}
for some fixed x0 ∈ E, and D2, swept out by the lines Lx × {x} for x ∈ E.
Let p : Y → X be the resolution obtained by blowing up the singular set, with
exceptional divisor F ' E × E. Then p−1

∗ (D1 − D2) shows that D1 − D2 is
numerically Cartier.

Set C := F∩ p−1
∗ (D1−D2). It is a section minus the diagonal on E×E. Thus

p∗[C] = 0, but
(
C · p−1

∗ (D1 − D2)
)

= −2.

4.7 Stable Families over Smooth Base Schemes

All the results of the previous sections apply to families p : (X,∆) → S over
a smooth base scheme, but the smooth case has other interesting features as
well. The following can be viewed as a direct generalization of (2.3).

Theorem 4.54 Let (0 ∈ S ) be a smooth, local scheme and D1 + · · · + Dr ⊂ S
an snc divisor such that D1∩· · ·∩Dr = {0}. Let p : (X,∆)→ (0 ∈ S ) be a pure
dimensional morphism and ∆ an R-divisor on X such that Supp ∆ ∩ Sing X0

has codimension ≥ 2 in X0. The following are equivalent:
(4.54.1) p : (X,∆)→ S is slc.
(4.54.2) KX/S + ∆ is R-Cartier, p is flat and

(
X0,∆0) is slc.

(4.54.3) KX/S + ∆ is R-Cartier, X is S 2 and
(
pure(X0),∆0

)
(10.1) is slc.

(4.54.4)
(
X,∆ + p∗D1 + · · · + p∗Dr

)
is slc.

Proof Note that (1) ⇒ (2) holds by definition and (2) ⇒ (3) since both S
and X0 are S 2 (10.10). If (3) holds, then (10.72) shows that p is flat and X0 is
pure, hence (3)⇒ (2). Next we show that (2)⇔ (4) using induction on r. Both
implications are trivial if r = 0.

Assume (4) and pick a point x ∈ X0. Then KX + ∆ + p∗D1 + · · · + p∗Dr is
R-Cartier at x hence so is KX + ∆. Set DY := p∗Dr. By (11.17),

(
DY ,∆|DY + p∗D1|DY + · · · + p∗Dr−1|DY

)
is slc at x, hence

(
X0,∆0) is slc at x by induction. The local equations of the

p∗Di form a regular sequence at x by (4.58), hence p is flat at x.
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Conversely, assume that (2) holds. By induction,(
DY ,∆|DY + p∗D1|DY + · · · + p∗Dr−1|DY

)
is slc at x, hence inversion of adjunction (11.17) shows that

(
X,∆+ p∗D1 + · · ·+

p∗Dr
)

is slc at x. �

Corollary 4.55 Let S be a smooth scheme and p : (X,∆) → S a morphism.
Then p : (X,∆) → S is locally stable iff the pair (X,∆ + p∗D) is slc for every
snc divisor D ⊂ S . �

Corollary 4.56 Let S be a smooth, irreducible scheme and p : (X,∆) → S a
locally stable morphism. Then every log center of (X,∆) dominates S .

Proof Let E be a divisor over X such that a(E, X,∆) < 0 and let Z ⊂ S denote
the image of E in S . If Z , S then, possibly after replacing S by an open
subset, we may assume that Z is contained in a smooth divisor D ⊂ S . Thus
(X,∆ + p∗D) is slc by (4.55). However, a(E, X,∆ + p∗D) ≤ a(E, X,∆) − 1
< −1, a contradiction. �

Corollary 4.57 Let S be a smooth scheme and p : (X,∆) → S a projective,
locally stable morphism with normal generic fiber. Let pc : (Xc,∆c) → S
denote the canonical model of p : (X,∆) → S and pw : (Xw,∆w) → S a
weak canonical model as in Kollár and Mori (1998, 3.50). Then
(4.57.1) pw : (Xw,∆w)→ S is locally stable and
(4.57.2) pc : (Xc,∆c)→ S is stable.

Warning 4.57.3 As in (2.47.1), the fibers of pc are not necessarily the canonical
models of the fibers of p.

Proof Let D ⊂ S be an snc divisor. By (4.55), (X,∆ + p∗D) is lc and pw :(
Xw,∆w + (p∗D)w)

→ S is also a weak canonical model over S by Kollár
(2013b, 1.28). Thus

(
Xw,∆w + (p∗D)w)

is also slc, where (p∗D)w is the push-
forward of p∗D. Next we claim that (p∗D)w = (pw)∗D. This is clear away from
the exceptional set of (pw)−1 which has codimension ≥ 2 in Xw. Thus (p∗D)w

and (pw)∗D are two divisors that agree outside a codimension ≥ 2 subset, hence
they agree. Now we can use (4.55) again to conclude that pw : (Xw,∆w) → S
is locally stable.

A weak canonical model is a canonical model iff KXw/S + ∆w is pw-ample
and the latter is also what makes a locally stable morphism stable. �
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Lemma 4.58 Let
(
y ∈ Y, ∆ + D1 + · · · + Dr

)
be slc. Assume that the Di are

Cartier divisors with local equations (si = 0). Then the si form a regular
sequence.

Proof We use induction on r. Since Y is S 2, sr is a non-zerodivisor at y. By
adjunction

(
y ∈ Dr,∆|Dr + D1|Dr + · · · + Dr−1|Dr

)
is slc, hence the restric-

tions s1|Dr , . . . , sr−1|Dr form a regular sequence at x. Thus s1, . . . , sr is a regular
sequence at y. �

The following result of Karu (2000) is a generalization of (2.51) from one-
dimensional to higher-dimensional bases.

Theorem 4.59 Let U be a k-variety and fU : (XU ,∆U) → U a stable mor-
phism. Then there is projective, generically finite, dominant morphism π : V →
U and a compactification V ↪→ V̄ such that the pull-back (XU ,∆U) ×U V
extends to a stable morphism fV̄ : (XV̄ ,∆V̄ )→ V̄.

Proof We may assume that U is irreducible with generic point g.
Assume first that the generic fiber of fU is normal and geometrically irreduc-

ible. Let (Yg,∆
Y
g ) → (Xg,∆g) be a log resolution. It extends to a simultaneous

log resolution (YU0 ,∆
Y
U0

) → (XU0 ,∆U0 ) over an open subset U0 ⊂ U. By
Abramovich and Karu (2000) (see also Adiprasito et al. (2019)), there is a
projective, generically finite, dominant morphism π : V0 → U0 and a compact-
ification V0 ↪→ V̄ such that the pull-back (YU0 ,∆

Y
U0

)×U0 V0 extends to a locally
stable morphism gV̄ : (YV̄ ,∆

Y
V̄

)→ V̄ .
We can harmlessly replace V̄ by a resolution of it. Thus we may assume

that V̄ is smooth and there is an open subset V ⊂ V̄ such that the rational map
π̄|V : V d U is a proper morphism.

Since gV̄ is a projective, locally stable morphism, the relative canonical
model fV̄ : (XV̄ ,∆V̄ )→ V̄ of gV̄ : (YV̄ ,∆

Y
V̄

)→ V̄ exists by Hacon and Xu (2013)
and it is stable by (4.57.2).

By construction, (XV̄ ,∆V̄ ) and (XU ,∆U) ×U V are isomorphic over V0 ⊂ V ,
but (11.40) implies that in fact they are isomorphic over V . This completes the
case when the generic fiber of fU is normal.

In general, we can first pull back everything to the Stein factorization of
Xn → U where Xn is the normalization of X. The previous step now gives
fV̄ : (Xn

V̄
,∆n

V̄
) → V̄ . Finally, (4.56) shows that (11.41) applies and we get fV̄ :

(XV̄ ,∆V̄ )→ V̄ . �

Corollary 4.60 Let k be a field of characteristic 0 and assume that the coarse
moduli space of stable pairs SP exists, is separated, and locally of finite type.

Then every irreducible component of SP is proper over k.
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Proof Let M be an irreducible component of SP with generic point gM . By
assumption, there is a field extension K ⊃ k(gM) and a stable K-variety(
XK ,∆K

)
corresponding to gM .

Since it takes only finitely many equations to define a stable pair, we may
also assume that K/k(gM) is finitely generated, hence so is K/k.

By (4.59), there is a smooth, projective k-variety V̄ and a stable family f̄ :(
Ȳ , ∆̄Y

)
→ V̄ such that k(V̄) is a finite field extension of K and the generic fiber

of f̄ is isomorphic to (XK ,∆K)k(V̄).
The image of the corresponding moduli morphism φ : Ȳ → SP contains gM

and it is proper. It is thus the closure of gM , which is M. So M is proper. �

4.8 Mumford Divisors

On a normal variety, our basic objects are Weil divisors. On a nonnormal
variety, we work with Weil divisors whose irreducible components are not
contained in the singular locus. It has been long understood that these give
the correct theory of generalized Jacobians of curves; see Serre (1959). Their
first appearance in the moduli theory of curves may be Mumford’s definition
of pointed stable curves given in Knudsen (1983, Def.1.1).

Here we consider the relative version that is compatible with Cayley–Chow
forms in a very strong way (4.69). This enables us to construct a universal
family of Mumford divisors (4.76), which is a key step in the construction of
the moduli space of stable pairs.

We start by recalling the foundational properties of Chow varieties, as
treated in Kollár (1996, secs.I.3–4), and then discuss the ideal of Chow equa-
tions. We focus on the classical theory, which is over fields. A closer inspection
reveals that the theory works for Mumford divisors over arbitrary bases. The
end result is that the functor of Mumford divisors (4.69) is representable over
reduced bases (4.76).

Definition 4.61 A d-cycle on a scheme X is a finite linear combination Z :=∑
i mi[Vi], where mi ∈ Z and the Vi are d-dimensional irreducible, reduced sub-

schemes. We usually tacitly assume that the Vi are distinct and mi , 0. Then
the Vi are called the irreducible components of Z and the mi the multiplici-
ties. A d-cycle is called effective if mi ≥ 0 for every i and reduced if all its
multiplicities equal 1.

To a subscheme W ⊂ X of dimension ≤ d, we associate a d-cycle, called the
fundamental cycle

[W] :=
∑

i(lengthwi
OW ) · [Wi], (4.61.1)
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where Wi ⊂ W are the d-dimensional irreducible components with generic
points wi ∈ Wi. If W is reduced and pure dimensional then [W] determines W;
we will not always distinguish them clearly. However, if W is nonreduced, then
it carries much more information than [W]. The only exception is when W is a
Mumford divisor.

If X is projective and L is an ample line bundle on X, then the degree of a
d-cycle Z =

∑
i mi[Vi] is defined as degL Z :=

∑
i mi degL Vi =

∑
i mi(Ld · Vi).

Assume that X is a scheme of finite type over a field k and K/k a field exten-
sion. If V ⊂ X is a d-dimensional irreducible, reduced subvariety then VK ⊂ XK

is a d-dimensional subscheme which may be reducible and, if char k > 0, may
be nonreduced. If Z =

∑
miVi is a d-cycle, we set

ZK :=
∑

mi[(Vi)K]. (4.61.2)

Z is called geometrically reduced if Zk̄ is reduced. If char k = 0 then reduced
is the same as geometrically reduced.

Given an embedding X ↪→ Pn, every d-cycle on X is also a d-cycle on Pn.
Thus Cayley–Chow theory focuses primarily on cycles in Pn

4.62 (Cayley–Chow correspondence over fields I) Fix a projective space Pn

over a field k with dual projective space P̌n. Points in P̌n are hyperplanes in Pn.
For d ≤ n − 1 we have an incidence correspondence

I(n,d) :=
{
(p,H0, . . . ,Hd) : p ∈ H0 ∩ · · · ∩ Hd

}
⊂ Pn × (P̌n)d+1, (4.62.1)

which comes with the coordinate projections

Pn π1
←− I(n,d) π2

−→ (P̌n)d+1 σi
−→ (P̌n)d, (4.62.2)

where π1 is a (P̌n−1)d+1-bundle andσi deletes the ith component. The projection
π2 is a Pn−d−1-bundle over a dense open subset. For a closed subscheme Y ⊂ Pn

set I(n,d)
Y := π−1

1 (Y).
Let Z ⊂ Pn be an irreducible, geometrically reduced, closed subvariety of

dimension d. Its Cayley–Chow hypersurface is defined as

Ch(Z) := π2
(
I(n,d)

Z
)

=
{
(H0, . . . ,Hd) ∈ (P̌n)d+1 : Z ∩ H0 ∩ · · · ∩ Hd , ∅

}
.

(4.62.3)

An equation of Ch(Z) is called a Cayley–Chow form. Next note that

I(n,d)
Z ∩ π−1

2 (H0, . . . ,Hd) = Z ∩ H0 ∩ · · · ∩ Hd. (4.62.4)
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In particular, a general H0∩ · · · ∩Hd is disjoint from Z and a general H0∩ · · · ∩

Hd containing a smooth point p ∈ Z meets Z only at p (scheme theoretically).
Thus we see the following.

Claim 4.62.5 Let Z be a geometrically reduced d-cycle. Then π2 : I(n,d)
Z →

Ch(Z) is birational and Ch(Z) is a hypersurface in (P̌n)d+1. �

For any H0, . . . ,Hd−1 the fiber of the coordinate projection σd : Ch(Z) →
(P̌n)d is P̌n if dim(Z∩H0∩· · ·∩Hd−1) ≥ 1; otherwise it is the set of hyperplanes
that contain one of the points of Z ∩H0 ∩ · · · ∩Hd−1. Similarly for all the other
σi. Thus we proved the following.

Claim 4.62.6 Let Z be a geometrically reduced d-cycle of degree r. Then a gen-
eral geometric fiber of any of the projections σi : Ch(Z) → (P̌n)d is the union
of r distinct hyperplanes in P̌n. In particular, the projections are geometrically
reduced and Ch(Z) has multidegree (r, . . . , r). �

For p ∈ Pn, let p̌ denote the set of hyperplanes passing through p. Then
p ∈ Z iff p̌ × · · · × p̌ ⊂ Ch(Z). This leads us to the definition of the inverse of
the map Z 7→ Ch(Z). Let D ⊂ (P̌n)d+1 be a geometrically reduced subscheme.
(In practice, D will always be a hypersurface.) Define

Ch−1
set(D) := {p : p̌ × · · · × p̌ ⊂ D} ⊂ Pn. (4.62.7)

For now we will view Ch−1
set(D) as a reduced subscheme; scheme-theoretic

versions will be discussed in (4.71).
It is easy to see that dim Ch−1

set(D) ≤ d and an irreducible hypersurface D
is of Cayley–Chow type if dim Ch−1

set(D) = d. An arbitrary hypersurface D
is of Cayley–Chow type if all of its irreducible components are. The basic
correspondence of Cayley–Chow theory is the following; see Kollár (1996,
I.3.24.5).

Claim 4.62.8 Fix n, d, r, and a base field k. Then the maps Ch and Ch−1
set provide

a one-to-one correspondence between

{
geometrically reduced

d-cycles of degree r in Pn

}
⇔


geometrically reduced

Cayley–Chow type hypersurfaces of
degree (r, . . . , r) in (P̌n)d+1

 .
Proof We already saw the⇒ part. To see the converse, observe the inclusion
Ch

(
Ch−1

set(D)
)
⊂ D. Thus if Z ⊂ Ch−1

set(D) is any subvariety of dimension d,
then Ch(Z) ⊂ D, hence Ch(Z) is an irreducible component of D. Thus D =

Ch
(
Ch−1

set(D)
)
. �
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Let Z ⊂ Pn be a pure dimensional subscheme or a cycle. The Chow equations
are the “most obvious” equations of Z. They generate a homogeneous ideal
(or an ideal sheaf), which was studied in various forms in Catanese (1992),
Dalbec and Sturmfels (1995), and Kollár (1999). Its relationship with the
scheme-theoretic Ch−1

sch will be given in (4.73).

4.63 (Element-wise power) Let R be a ring, I ⊂ R an ideal, and m ∈ N. Set

I[m] := (rm : r ∈ I).

These ideals have been studied mostly when char k = p > 0 and q is a power of
p; one of the early occurrences is in Kunz (1976). In these cases, I[q] is called
a Frobenius power of I. Other values of the exponent are also interesting. Of
the following properties, (1) is clear and (4.63.2–3) are implied by (4.63.4–5).
We assume for simplicity that R is a k-algebra.
(4.63.1) If I is principal then I[m] = Im.
(4.63.2) If char k = 0 then I[m] = Im.
(4.63.3) If m < char k then I[m] = Im.
(4.63.4) If k is infinite then (r1, . . . , rn)[m] =

(
(
∑

ciri)m : ci ∈ k
)
.

Note that (3) is close to being optimal. For example, if I = (x, y) ⊂ k[x, y] and
char k = p ≥ 3 then (x, y)[p+1] = (xp+1, xpy, xyp, yp+1) ( (x, y)p+1.

Claim 4.63.5 Let k be an infinite field. Then〈
(c1x1 + · · · + cnxn)m : ci ∈ k

〉
=

〈
xi1

1 · · · x
in
n :

(
m

i1...in

)
, 0

〉
.

Here
(

m
i1...in

)
denotes the coefficient of xi1

1 · · · x
in
n in (x1 + · · · + xn)m.

Proof The containment ⊂ is clear. If the two sides are not equal then the left-
hand side is contained in some hyperplane of the form

∑
λI xI = 0, but this

would give a nontrivial polynomial identity
∑(

m
i1...in

)
λIcI = 0 for the ci. �

4.64 (Ideal of Chow equations) Let Z be a d-cycle of degree r in Pn. Let
% : Pn d Pd+1 be a projection that is defined along Z. Then %∗(Z) is a d-cycle in
Pd+1, thus it can be identified with a hypersurface; hence with a homogeneous
polynomial φ(Z, %) of degree r. Its pull-back to Pn is a homogeneous poly-
nomial Φ(Z, %) of degree r. Together they generate the ideal sheaf of Chow
equations Ich(Z) ⊂ OPn .

Over a finite field k there may not be any projections defined along Z. The
definition gives Ich(Z) over k̄ and it is clearly defined over k.

0∗ This is not related to the symbolic power, frequently denoted by I(m).
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The embedded primes of Ich(Z) are quite hard to understand, so frequently
we focus on the Chow hull of the cycle Z:

CHull(Z) := pure
(
Spec OPn/Ich(Z)

)
.

Any Zariski dense set of projections generate Ich(Z). That is, if P ⊂ Gr(n −
d, n + 1) is Zariski dense then Ich(Z) =

(
Φ(Z, %) : % ∈ P

)
. It is enough to show

that this holds in every Artinian quotient σ : OPn � A. Let B ⊂ A be the ideal
generated by σ

(
Φ(Z, %) : % ∈ P

)
. All the σ(Φ(Z, %)) are points of an irreducible

subvariety G ⊂ A obtained as an image of Gr(n − d, n + 1). By assumption,
G ∩ B contains the points σ

(
Φ(Z, %) : % ∈ P

)
, hence it is dense in G. So G ⊂ B,

since B is Zariski closed, if we think of A as a k-vectorspace.

Claim 4.64.1 Let Z be a geometrically reduced cycle. Then Ich(Z) ⊂ IZ and the
two agree along the smooth locus of Z.

Proof Let p ∈ Z be a smooth point and v ∈ TpP
n \ TpZ. A general projection

% : Pn d Pd+1 maps 〈TpZ, v〉 isomorphically onto T%(p)P
d+1. Then dΦ(Z, %) is

nonzero on v. Thus the Φ(Z, %) generate IZ in a neighborhood of p. �

For the nonreduced case, we need a definition.

Definition–Lemma 4.65 Let Z ⊂ Pn be an irreducible, d-dimensional sub-
scheme such that red Z is geometrically reduced. Its width is defined in the
following equivalent ways.
(4.65.1) The projection width of Z is the generic multiplicity of π(Z) for a

general projection π : Pn d Pd+1.
(4.65.2) The power width of Z is the smallest m such that I[m]

red Z · OZ is
generically 0 along Z.

In general, we first take a purely inseparable field extension K/k such that
red(ZK) is geometrically reduced and define the width of Z as the width of ZK .

For example, it is easy to see that the width of Spec k[x, y]/(x, y)m is m and
the width of Spec k[x, y]/(xm, ym) is 2m − 1.

Proof For a general projection π : Pn d Pd+1 let φπ be an equation of π(red Z)
and Φπ its pull-back to Pn. Then Z has projection width m iff Φm

π · OZ is
generically 0 for every π, and m is the smallest such. Since the Φπ generically
generate Ired Z , this holds iff I[m]

red Z · OZ is generically 0 and m is the smallest.
Thus the projection width equals the power width. �

Proposition 4.66 Let Zi ⊂ P
n be distinct, geometrically irreducible cycles of

the same dimension. Then CHull(
∑

miZi) = pure
(
Spec OPn/ ∩i I(Zi)[mi]

)
.

https://doi.org/10.1017/9781009346115.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781009346115.006


4.8 Mumford Divisors 175

Proof The equations of the projections φ(
∑

Zi, %) (as in (4.64)) generate I∑ Z

at its smooth points. So if p ∈ Zi is a smooth point of
∑

Z, then I(Zi)[mi] agrees
with Ich(

∑
miZi) at p by (4.63.4). �

The following consequence of (4.66) is key to our study of Mumford divisors.

Corollary 4.67 Let k be an infinite field, X ⊂ Pn
k a reduced subscheme of

pure dimension d + 1 and D ⊂ X a Mumford divisor, viewed as a divisorial
subscheme. Then pure

(
X ∩ CHull(D)

)
= D.

Proof The containment ⊃ is clear, hence equality can be checked after a field
extension. Write D =

∑
miDi where the Di are geometrically irreducible and

reduced. Then CHull(D) = pure
(
Spec OPn

k
/ ∩i I(Di)[mi]

)
by (4.66). Let gi ∈ Di

be the generic point and Ri its local ring in Pn
k . Let Ji ⊂ Ri be the ideal defining

X and (Ji, hi) the ideal defining Di. The ideal defining the left-hand side of
(4.67.1) is then

(
Ji + (Ji, hi)[mi]

)
/Ji. This is the same as (hi)[mi], as an ideal in

Ri/Ji, which equals (hmi
i ) by (4.63.1). �

Relative Mumford Divisors

Definition 4.68 Let S be a scheme and f : X → S a morphism of pure relative
dimension n that is mostly flat (3.26). A relative Mumford divisor on X is a
relative, generically Cartier divisor D (4.24) such that, for every s ∈ S , the
fiber Xs is smooth at all generic points of Ds.

Let S ′ be another scheme and h : S ′ → S a morphism. Then the pull-back
h[∗]D is again a relative Mumford divisor on X ×S S ′ → S ′. This gives the
functor of Mumford divisors, denoted by

MDiv(X/S)(∗) : {S -schemes} → {sets}. (4.68.1)

We prove in (4.76) that if f is projective, then the functor of effective Mumford
divisors is represented by an S -scheme

Univmd(X/S )→ MDiv(X/S ), (4.68.2)

whose connected components are quasi-projective over S .
We will see that relative, effective Mumford divisors form the right class for

moduli purposes over a reduced base, but not in general. Fixing this problem
leads to the notion of K-flatness in Chapter 7.

The following result – whose proof will be given after (4.76.5) – turns a
relative, effective Mumford divisor into a flat family of Cartier divisors on
another morphism, leading to the existence of MDiv(X/S ) in (4.76).
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Theorem 4.69 Let S be a reduced scheme, f : X → S a projective morphism
that is mostly flat (3.26), and j : X ↪→ PS an embedding into a PN-bundle.
Then the maps Ch and Ch−1

X – to be defined in (4.70) and (4.75.2) – provide a
one-to-one correspondence{

relative Mumford
divisors on X

}
↔

{
flat Cayley–Chow forms of

Mumford divisors on X

}
. (4.69.1)

Comments 4.69.2 There are two remarkable aspects of this equivalence. First,
the left-hand side depends only on X → S , while the right-hand side is defined
in terms of an embedding j : X ↪→ PS .

Second, on the left we have families that are usually not flat, on the right
families of hypersurfaces in a product of projective spaces; these are the
simplest possible flat families.

The correspondence (4.69.1) fails very badly over nonreduced bases. We
see in (7.14) that, in an analogous local setting, the left-hand side is locally
infinite dimensional for S = SpecC[ε], but the right-hand side is locally finite
dimensional. Nonetheless, we will be guided by (4.69.1). The rough plan is
that we declare the right-hand side to give the correct answer and then work
backwards to see what additional conditions this imposes on relative Mumford
divisors. This leads us to the notion of C-flatness (7.37). Independence of the
embedding j : X ↪→ PS then becomes a major issue in Chapter 7.

4.70 (Definition of Ch) In order to construct Chowd,r(Pn
S ), the Chow vari-

ety of degree r cycles of dimension d in Pn
S , we start with the incidence

correspondence as in (4.62)

IncS
(
point, (P̌n)d+1)

σ

vvmmm
mmm

mmm
mm τ

))SSS
SSS

SSS
S

Pn
S (P̌n)d+1

S .

(4.70.1)

Note that here σ = σn,d,r is a (P̌n−1)d+1-bundle. The fibers of τ = τn,d,r are
linear spaces of dimension ≥ n − d − 1 and τ is a Pn−d−1-bundle over a dense
open subset.

Let now D ⊂ Pn
S be a generically flat family of d-dimensional subschemes

(3.26). Assume also that the generic embedding dimension of Ds is ≤ d + 1
for every s ∈ S . (This is satisfied iff each Ds is a Mumford divisor on some
X ⊂ Pn

s ; a more general definition is in (7.46).) Set Ch(D) := τ∗
(
σ−1(D)

)
.

Claim 4.70.2 The map, τ : σ−1(D) → Ch(D) is a local isomorphism on the
preimage of a dense open subset U ⊂ D such that U ∩ Ds is dense in Ds for
every s ∈ S .
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Proof Pick p ∈ Ds such that TDs has dimension d+1 at p. If Ls ⊃ p is a general
linear subspace of dimension n−d−1, then Ls∩Ds = {p}, scheme theoretically.
This is exactly the fiber of τ : σ−1(D) → Ch(D) over any (H0, . . . ,Hd) for
which Ls = H0 ∩ · · · ∩ Hn. �

Corollary 4.70.3 Ch(D) is a generically flat family of Cartier divisors. If S is
reduced, then Ch(D) is flat over S .

Proof By assumption, D is a generically flat family, hence so is σ−1(D) since
σ is smooth. The first part is now immediate from (4.70.2). The second claim
then follows from (4.36). �

4.71 (Definition of Ch−1
sch) Although Ch(D) is not a flat family of Cartier divi-

sor in general, we decide that from now on we are only interested in the cases
when it is flat. Thus let Hcc ⊂ (P̌n

S )d+1 be a relative hypersurface of multidegree
(r, . . . , r). We first define its scheme-theoretic Cayley–Chow inverse, denoted
by Ch−1

sch(Hcc). It is a first approximation of the “correct” Cayley–Chow
inverse.

Working with (4.70.1) consider the restriction of the left-hand projection

σcc :
(
IncS ∩τ

−1(Hcc)
)
→ Pn

S . (4.71.1)

Fix s ∈ S and a point ps ∈ P
n
s . Note that the preimage of ps consists of all

(d + 1)-tuples (H0, . . . ,Hd) such that ps ∈ Hi for every i and (H0, . . . ,Hd) ∈
Hcc

s . In particular, if Z is a d-cycle of degree r on Pn
S and Hcc = Ch(Z) is its

Cayley–Chow hypersurface, then σcc is a (P̌n−1
S )d+1-bundle over Supp Z.

The key observation is that this property alone is enough to define Ch−1
sch and

to construct the Chow variety. So we define Ch−1
sch(Hcc) ⊂ Pn

S as the unique,
largest, closed subscheme over which σcc is a (P̌n−1)d+1-bundle. (Its existence
is a special case of (3.19), but we derive its equations in (4.72.2).)

The set-theoretic behavior of the projection % : Ch−1
sch(Hcc)→ S is described

in (4.62). The fibers have dimension ≤ d and Zs ⊂ P
n
s is a d-dimensional

irreducible component iff Ch(Zs) is an irreducible component of Hcc
s . It is not

hard to see that there is a maximal closed subset S (Hcc) ⊂ S over which Hcc

is the Cayley–Chow hypersurface of a family of d-cycles; see Kollár (1996,
I.3.25.1).

However, we do not yet have the “correct” scheme structure on S (Hcc), since
the scheme structure of the fibers of % : Ch−1

sch(Hcc) → S is not the “correct”
one. Before we move ahead, we need to understand this scheme structure.
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4.72 (Scheme structure of Ch−1
sch(Hcc)) Let S be a scheme and Hcc := (F =

0) ⊂ (P̌n)d+1
S a hypersurface of multidegree (r, . . . , r). We aim to write down

equations for Ch−1
sch(F = 0).

Choose coordinates (x0: · · · :xn) on Pn
S and dual coordinates (x̌0 j: · · · :x̌n j) on

the jth copy of P̌n
S for j = 0, . . . , d. So F = F(x̌i j) is a homogeneous poly-

nomial of multidegree (r, . . . , r). For notational simplicity we compute in the
affine chart An

S = Pn
S \ (x0 = 0).

For (x1, . . . , xn) ∈ An
S , the hyperplanes H in the jth copy of P̌n

S that pass
through (x1, . . . , xn) are all written as

(
−
∑n

i=1xi x̌i j : x̌1 j : · · · : x̌n j
)
.

Let M(x̌i j) be all the monomials in the x̌i j and write

F
(
−
∑n

i=1xi x̌i0 : x̌10 : · · · : x̌n0; · · · ;−
∑n

i=1xi x̌id : x̌1d : · · · : x̌nd
)

=:
∑

MFM(x1, . . . , xn)M(x̌i j).
(4.72.1)

Since the monomials M(x̌i j) are linearly independent, this vanishes for all x̌i j

iff FM = 0 for every M. Equivalently:

Claim 4.72.2 The subscheme Ch−1
sch(F = 0) ∩ An

S is given by the equations
FM(x1, . . . , xn) = 0 for all monomials M, with FM as in (4.72.1). �

Assume that (F = 0) = Ch(Y). If we fix x̌i j = ci j, then these give the matrix
of a linear projection πc : An

S → A
d+1
S . The corresponding Chow equation of Y

is
∑

MFM(x1, . . . , xn)M(ci j) = 0. Thus we proved the following.

Theorem 4.73 Let Z ⊂ Pn
k be a d-cycle of degree r. Then Ch−1

sch
(
Ch(Z)

)
⊂ Pn

k
is the subscheme defined by the ideal of Chow equations Ich(Z). �

Note that we proved a little more. If the residue field of S is infinite,
then Ich(Y)|An

S
is generated by the Chow equations of the linear projections

πc : An
S → A

n+1
S . A priori we would need to use the more general projections

(7.34.4), but this is just a matter of choosing the hyperplane at infinity.
Combining (4.73) and (4.67) gives the following.

Corollary 4.74 Let k be a field, X ⊂ Pn
k a subscheme of pure dimension d + 1,

and D ⊂ X a Mumford divisor. Then pure
(
X ∩ Ch−1

sch(Ch(D))
)

= D. �

4.75 (Construction of MDiv(X/S )) As we noted in (4.69.2), we construct
MDiv(X/S ) by starting on the right-hand side of (4.69.1)

Let S be a scheme, f : X → S a mostly flat, projective morphism of pure
dimension d, and j : X ↪→ Pn

S an embedding.
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We fix the intended degree to be r and let Pn,d,r = |O(P̌n)d+1 (r, . . . , r)| be
the linear system of hypersurfaces of multidegree (r, . . . , r) in (P̌n)d+1, with
universal hypersurface Hcc

n,d,r ⊂ (P̌n)d+1 × Pn,d,r. Thus (4.70.1) extends to

IncS
(
point, (P̌n)d+1) ×S Pn,d,r

σn,d,ruukkkk
kkkk

kkk
τn,d,r **UUU

UUUU
UUU

Pn
S ×S Pn,d,r (P̌n)d+1

S ×S Pn,d,r.

(4.75.1)

As in (4.71), we get Ch−1
sch

(
Hcc

n,d,r
)
⊂ Pn

S ×S Pn,d,r. We are interested in d-cycles
that lie on X, so we should take

Ch−1
X (Hcc

n,d,r) := Ch−1
sch

(
Hcc

n,d,r
)
∩

(
X ×S Pn,d,r

)
⊂ Pn

S ×S Pn,d,r. (4.75.2)

By (4.74), if Ds ⊂ Xs is a Mumford divisor of degree r then the fiber of the
coordinate projection %n,d,r : Ch−1

X (Hcc
n,d,r) → Pn,d,r over [Ch(Ds)] is Ds (aside

from possible embedded points).

This leads us to the following. Recall the difference between mostly flat (in
codimension ≤ 1) and generically flat (in codimension 0) as in (3.26).

Theorem 4.76 Let S be a scheme, f : X → S a mostly flat, projective mor-
phism of pure relative dimension d + 1, and j : X ↪→ Pn

S an embedding. Then
the functor of generically flat families of degree r Mumford divisors on X is
represented by a locally closed subscheme MDivr(X/S ) of Pn,d,r (4.75). Over
MDivr(X) we have
(4.76.1) Univmd

r (X/S ) ⊂ X×S MDivr(X/S ), a universal, generically flat family
of degree r Mumford divisors on X, and

(4.76.2) Hcc
r ⊂ (P̌n)d+1 ×S MDivr(X/S ), a flat family of multidegree (r, . . . , r)

hypersurfaces,
that correspond to each other under Ch and Ch−1

X .

Proof As we noted in (4.62), every fiber of %n,d,r has dimension ≤ d. So{
Hcc

s : dim
(
Sing Xs ∩ Supp Ch−1

X (H cc
s )

)
≤ d − 1

}
defines a closed subset of Pn,d,r; let P◦n,d,r denote its complement. Thus [Hcc

s ] ∈
P◦n,d,r iff the divisorial part of Ch−1

X (Hcc
s ) satisfies the Mumford condition.

Now apply (4.77) to Ch−1
X (Hcc) over P◦n,d,r to get a locally closed decomposi-

tion jflat : Pflat
n,d,r → P◦n,d,r, representing the functor of generically flat pull-backs

of Ch−1
X (Hcc) as in (4.77). Over each connected component of Pflat

n,d,r, the degree
of the d-dimensional part is locally constant. The union of those connected
components where this degree equals r is MDivr(X/S ). �
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Warning 4.76.3 In the nonreduced case the resulting MDiv(X) a priori depends
on the projective embedding j : X ↪→ Pn

S . We write MDiv(X ⊂ Pn
S ) if we

want to emphasize this. In Chapter 7 we construct a subscheme KDiv(X) ⊂
MDiv(X ⊂ Pn

S ), that does not depend on the embedding. The two have the same
underlying reduced structure and a positive answer to Question 7.42 would
imply that in fact MDiv(X ⊂ Pn

S ) = KDiv(X).

We have used the following variant of (3.19).

Proposition 4.77 Let f : X → S be a projective morphisms and F a coher-
ent sheaf on X such that Supp F → S has fiber dimension ≤ d. Then there
is a locally closed decomposition jflat

F : S flat
F → S such that FW is flat at

d-dimensional points of the fibers iff W → S factors through jflat
F .

Proof We may replace X by the scheme-theoretic support SSupp F. The ques-
tion is local on S . By (10.46.1), we may assume that there is a finite morphism
π : X → Pd

S . Note that FW is flat at d-dimensional points iff the same holds
for (πW )∗FW . We may thus assume that X = Pd

S ; the important property is that
now f : X → S is flat with integral geometric fibers. By (3.19.1) we get a
decomposition qiXi → X, where F|Xi is locally free of rank i.

Let Z ⊂ X be a closed subscheme. Applying (3.19) to the projection OZ , we
see that there is a unique largest subscheme S (Z) ⊂ S such that f −1(S (Z)

)
⊂

Z, scheme theoretically. For a locally closed subscheme Z ⊂ X set S (Z) =

S (Z̄) \ S (Z̄ \ Z), where Z̄ denotes the closure of Z. Note that S (Z) is the largest
subscheme T ⊂ S with the following property:
(4.77.1) There is an open subscheme X◦T ⊂ XT that contains the generic point

of Xt for every t ∈ T and X◦T ⊂ Z, scheme theoretically.
We claim that S flat

F = qiS (Xi). One direction is clear. F|Xi is locally free of
rank i, so the restriction of F to S (Xi) ×S X is locally free, hence flat, at the
generic point of every fiber.

Conversely, let W be a connected scheme and q : W → S a morphism such
that FW is generically flat over W the fiber dimension of Supp FW → S is n.
Since Xw is integral, Fw is generically free for every w ∈ W, so FW is locally
free at the generic point of every fiber. Let X◦W ⊂ XW be the open set where FW

is locally free.
By assumption, X◦W contains the generic point of every fiber Xw, so X◦W is

connected. Thus FW has constant rank, say i, on X◦W . Therefore, the restriction
of qX : XW → X to X◦W lifts to q◦X : X◦W → Xi. By (4.77.1), this means that q
factors as q : W → S (Xi)→ S . �
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