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Abstract

The paper presents a proof of the Brylinski conjecture for compact Kähler orbifolds. The result is
a corollary of the foliated version of the Mathieu theorem on symplectic harmonic representations of
de Rham cohomology classes. The proofs are based on the idea of representing an orbifold as the leaf
space of a Riemannian foliation and on the correspondence between foliated and holonomy invariant
objects for foliated manifolds.
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1. Introduction

The goal of this paper is to prove an orbifold version of the Brylinski conjecture [2],
which aimed to establish a symplectic counterpart of the classical Hodge theory
and was concerned with the question whether every cohomology class on compact
symplectic manifolds admits a symplectically harmonic representative. Brylinski
proved that this is the case for some interesting classes of manifolds, most notably
for compact Kähler manifolds, but in general the conjecture does not hold. The first
to present counterexamples were Mathieu [12] and, independently, Fernández et al.
[6]. Moreover, Mathieu gave an equivalent condition, in terms of the cohomological
properties of the symplectic form, for a symplectic manifold (not necessarily compact)
to satisfy the conjecture. The same question about the existence of symplectically
harmonic representatives can be stated for symplectic orbifolds and, in particular, for
compact Kähler orbifolds. The main result of this paper is the following theorem.

T 1. The Brylinski conjecture holds for compact Kähler orbifolds.

The study of the homological properties of singular spaces tends to be more
complicated than that for manifolds. Many properties that prove very useful in the

c© 2011 Australian Mathematical Publishing Association Inc. 1446-7887/2011 $16.00

1

https://doi.org/10.1017/S1446788711001455 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788711001455


2 L. Bak and A. Czarnecki [2]

smooth setting such as Poincaré duality and the finite dimension of homology groups
do not hold in general. These problems have been addressed in different ways. One
approach is to refine the homology theory in question to take singularities into account.
This approach led to the definition of new homology theories, such as Goresky and
MacPherson’s intersection homology and cohomology [8]. For orbifolds, which are of
interest to us in this paper, another method is applicable.

It is well known (see [14]) that the space of leaves of a Riemannian foliation of
a compact manifold with compact leaves is an orbifold. In [7] the converse was proved.

T 2. Every orbifold can be realized as the space of leaves of a Riemannian
foliation.

Their proof is written for complex orbifolds and transversally holomorphic
foliations but it can be adapted to the real case. This construction, despite its usefulness
for research into the properties of orbifolds, has not been fully exploited. The
construction was recently used by Wang and Zaffran [21] to give a simple proof of
the hard Lefschetz theorem for Kähler orbifolds, a fact that will be useful to us.

Prior to [21], only a few other authors took up the similar idea of applying foliated
Riemannian manifolds and their foliated objects to the study of the geometry of the
leaf (closure) space (see [1, 10, 16]). The realization of an orbifold as the space
of leaves of a Riemannian foliation allows us to consider ‘transverse’ objects on a
foliated manifold rather than the corresponding objects on an orbifold. Our next step
is to reformulate the problem again, this time using the well-known correspondence
between ‘transverse’ objects on foliated manifolds and ‘holonomy invariant’ objects
on the corresponding transverse manifolds. We will only sketch this correspondence
in the scope needed for this paper. A more general and exhaustive approach can be
found, for example, in [22]. Eventually we shall see that Theorem 1 is a corollary of
the following theorem.

T 3. Let M be a manifold and let Γ be a pseudogroup of local diffeomorphisms
of M. Let ω be a Γ-invariant symplectic form on M. Then the following conditions are
equivalent.

(1) Every Γ-invariant cohomology class has a harmonic representative.
(2) For each k ∈ {0, 1, . . . , n}, the mapping Lk : Hn−k

Γ
(M)→ Hn+k

Γ
(M), where L[ξ] =

[ω ∧ ξ], is surjective.

In Section 2 we recall some basic constructions concerning the complex of invariant
differential forms and prove Theorem 3. In Section 3 we deduce a foliated version
of Mathieu’s result from Theorem 3. In Section 4 we consider a special structure
that combines a transversally symplectic form and leafwise metric and generalize
Pak’s result [15] about transversally harmonic forms on manifolds with a transversally
symplectic flow. Finally in Section 5 we prove Theorem 1.

2. Invariant forms

In this section we shall consider a smooth manifold M of dimension m together
with a pseudogroup of local diffeomorphisms Γ. From the complex of differential

https://doi.org/10.1017/S1446788711001455 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788711001455


[3] The Brylinski conjecture for orbifolds 3

forms Ω∗(M) we single out the Γ-invariant forms, that is, those ξ ∈Ω∗(M) satisfying
the condition

ξ|U = γ∗(ξ|γ(U)) ∀γ ∈ Γ

where U is the domain of γ. These differential forms form a subcomplex (which we
shall denote by Ω∗

Γ
(M)) with differential d = d|Ω∗

Γ
(M). The homology of this complex

is called Γ-invariant cohomology and is denoted by H∗
Γ
(M). In a similar manner

we can define the Γ-invariant multivector fields to be those X ∈ X∗(M) satisfying the
condition

X|γ(U) = γ∗(X|U) ∀γ ∈ Γ.

We shall use the notation X∗
Γ
(M) to denote the space of γ-invariant multivector fields.

For k < l we have a natural nondegenerate pairing

X
k(M) ×Ωl(M) 3 (X, ξ) 7→ ιXξ ∈Ωl−k(M).

Direct computations show that this pairing restricts to a pairing

X
k
Γ(M) ×Ωl

Γ(M)→Ωl−k
Γ (M).

We may use a Γ-invariant volume form to obtain an isomorphism

X
k
Γ(M) �Ωm−k

Γ (M) (1)

as follows. From now on we shall assume that M is of even dimension m = 2n. Note
that a Γ-invariant symplectic form is just a closed, nondegenerate element ω ∈Ω2

Γ
(M).

From this we may deduce that the form ωn is a Γ-invariant volume form and the
isomorphism (1) follows. On the other hand, we have an isomorphism

XΓ(M) 3 X 7→ ιXω ∈Ω1
Γ(M)

which extends to an algebra isomorphism

X
∗
Γ(M) �Ω∗Γ(M).

Combining these two isomorphisms we obtain an isomorphism

? : Ω∗Γ(M) � X∗Γ(M) �Ω2n−∗
Γ (M)

associated with the symplectic structure ω.

R 4. The isomorphism ? satisfies the condition ?2 = idΩ∗
Γ
(M).

We now consider the codifferential δ given, for any ξ ∈Ωk
Γ
(M), by

δξ = (−1)k ? d ? ξ.

It follows easily from the above properties that δ2 = 0. The central idea in our further
studies will be the notion of a harmonic Γ-invariant form ξ ∈Ω∗

Γ
(M) such that dξ = 0

and δξ = 0. Forms satisfying these conditions constitute a subcomplex of Ω∗
Γ
(M),

which we shall denote by Ω∗
Γ,h(M).
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The proof of Theorem 3 will closely follow Yan’s proof [23] of Mathieu’s result.
We now recall Yan’s method. We omit some calculations that are identical to those
given in [23].

We construct a Lie algebra sl(2)-representation on Ω∗
Γ
(M). We represent the usual

basis of sl(2) given by

X =

[
0 1
0 0

]
, Y =

[
0 0
1 0

]
, H =

[
1 0
0 −1

]
as operators on Ω∗

Γ
(M) (denoted by the same letters) so that the relations [X, Y] = H,

[H, X] = 2X and [H, Y] = −2Y hold. We set

Y {Ωk
Γ(M) 3 ξ 7→ ω ∧ ξ ∈Ωk+2

Γ (M),

X {Ωk
Γ(M) 3 ξ 7→ ?Y ? ξ ∈Ωk−2

Γ (M),

H {Ωk
Γ(M) 3 ξ 7→ (n − k)ξ ∈Ωk

Γ(M).

Observe that the operator L from the statement of Theorem 3 is induced by Y .
Eigenvectors of H from the kernel of X are called primitive. We say that an sl(2)-
representation on some vector space V is of finite H-spectrum if and only if this space
splits into a finite sum of the eigenspaces of the operator H. This is obviously the case
for our representation. The following properties hold for sl(2)-representations of finite
H-spectrum (see [9, 23]).

P 5. Let V be a vector space with an sl(2)-representation of finite H-
spectrum. Let Vλ be the λ-eigenspace of H and let Pλ stand for the set of primitive
elements of Vλ. Then:

(1) all eigenvalues of H are integers;
(2) X|Vk : Vk→ Vk+2, Y |Vk : Vk→ Vk−2 for each k ∈ Z;
(3) Xk|V−k : V−k→ Vk and Yk|Vk : Vk→ V−k are isomorphisms for each k ∈ N;
(4) Pk = {v ∈ Vk | Yk+1v = 0};
(5) every Vk admits a direct sum decomposition of the form Vk = Pk ⊕ Im Y |Vk+2 .

We apply this proposition in our case to obtain the following corollary.

C 6. The operator

Yk : Ωn−k
Γ (M)→Ωn+k

Γ (M)

is an isomorphism.

The next step is to prove that this representation on Ω∗
Γ
(M) induces a representation

on the subspace of Γ-invariant harmonic forms Ω∗
Γ,h(M) or, equivalently, that X, Y and

H preserve the harmonic forms. This follows from the identities

[Y, d] = [X, δ] = 0, [X, d] = −δ, [Y, δ] = −d, [H, d] = [H, δ] = 0.
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C 7. The operator

Yk : Ωn−k
Γ,h (M)→Ωn+k

Γ,h (M)

is an isomorphism.

P  T 3. We are now ready to prove the implication from (1) to (2) of
Theorem 3. The following diagram is clearly commutative

Ωn−k
Γ,h (M) Yk

�
//

��

Ωn+k
Γ,h (M)

��
Hn−k

Γ
(M) Lk

// Hn+k
Γ

(N)

with natural vertical arrows. If we assume the surjectivity of the vertical arrows, then
we obtain the surjectivity of the lower horizontal arrow, as required. We will use the
following lemma, which is a simple corollary of the relation δ = −[X, d] in the proof
of the converse.

L 8. A form ξ ∈Ω∗
Γ
(M) that is closed and primitive must be harmonic.

Now we assume condition (2) of Theorem 3 and proceed with the proof of condition
(1) of Theorem 3 by induction. Each closed 0-form is clearly harmonic. It follows by
Lemma 8 that every closed 1-form is harmonic.

Let k be such that n − k ≥ 2 and Theorem 3(1) holds for every cohomology class
of degree r < n − k. Let ξ ∈Ωn−k

Γ
(M) be a closed form. It suffices to prove that ξ is

cohomologous to some harmonic form. By Theorem 3(2) there exist a closed form
η ∈Ωn−k−2

Γ
(M) and a form θ ∈Ωn+k+1

Γ
(M) such that

ωk+2 ∧ η + dθ = ωk+1 ∧ ξ.

Now η is cohomologous to some harmonic form η̄ ∈Ωn−k−2
Γ,h (M) and so η = η̄ + dλ for

some λ ∈Ωn−k−3
Γ

(M). We know that the map

Yk+1 : Ωn−k−1
Γ (M)→Ωn+k+1

Γ (M)

is surjective and so we can choose ζ ∈Ωn−k−1
Γ

(M) satisfying ωk+1 ∧ ζ = θ. Finally we
may deduce that

ωk+1 ∧ [ξ − d(ζ + ω ∧ λ) − ω ∧ η̄] = 0.

The form ξ̄ = ξ − d(ζ + ω ∧ λ) is cohomologous to ξ. By part (4) of Proposition 5,
ξ̄ − ω ∧ η̄ is primitive. It follows by Lemma 8 that ξ̄ − ω ∧ η̄ is harmonic. However,
ω ∧ η̄ is harmonic. The harmonicity of ξ̄ follows. �
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3. Foliations

Let M be a manifold with a regular foliation F of dimension p and even
codimension 2n. If U ⊂ M is a sufficiently small open set, then there is a submersion
p : U → R2n such that the foliation F restricted to U is given by the fibers of p. Let
{Ui} be an atlas on M consisting of open sets admitting submersions pi : Ui→ R

2n as
above. Using this atlas we can associate the transverse manifold N =

∐
pi(Ui) with

the holonomy pseudogroup Γ generated by the mappings from the associated Haefliger
cocycle (see [13]).

Consider the basic complex Ω∗B(M, F ) consisting of the basic forms ξ, which
satisfy the condition ιTξ =LTξ = 0 for each vector field T tangent to the foliation.
The cohomology of this complex is also called basic and is denoted by H∗B(M, F ).
Intuitively, basic forms are those that are locally pullbacks of forms from the transverse
manifold. This intuitive description is justified by the following observation.

P 9. There is a chain isomorphism Ξ : Ω∗B(M, F )
�
−−→Ω∗

Γ
(N) satisfying

ξ|Ui = p∗i (Ξ(ξ)|pi(Ui))

for every ξ ∈Ω∗B(M, F ). Moreover Ξ is an algebra homomorphism.

Fix a transversally symplectic structure on M, that is, a basic, closed, nondegenerate
2-formω. By Proposition 9, ω induces a Γ-invariant symplectic structure on N, namely
Ξ(ω).

Consider the mapping

X(M) 3 X 7→ ιXω ∈Ω1(M).

To make this mapping an isomorphism we shall restrict it to the basic vector fields,
which are defined as follows. LetD be an arbitrary distribution in T M complementary
to TF . The space of basic vector fields XB(M, F ) is given by

XB(M, F ) = {X ∈ X(D) | [X, T ] ∈ X(F ) ∀T ∈ X(F )}

where X(F ) denotes those vector fields tangent to the foliation and X(D) denotes those
with values inD. It is a simple calculation to check that

XB(M, F ) 3 X 7→ ιXω ∈Ω1
B(M, F )

is a well-defined isomorphism. If we take the subalgebra generated by basic vector
fields in X∗(M) and denote it by X∗B(M, F ), then this isomorphism extends to an
isomorphism X∗B(M, F ) �Ω∗B(M, F ).

On the other hand we can show that

X
∗
B(M, F ) 3 X 7→ ιXω

n ∈Ω2n−∗
B (M, F )

is, again by simple calculations, an isomorphism, and we obtain the transversally
symplectic star operator

?t : Ω∗B(M, F ) � X∗B(M, F ) �Ω2n−∗
B (M, F ).
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Observe that while both of the isomorphisms that we have defined depend on the
choice of a distribution D, their composition does not. Having a star-operator at our
disposal, we proceed in the usual manner. We define a codifferential δtξ = (−1)k ?t d?t

for ξ ∈Ωk
B(M, F ) and consider the forms ξ for which dξ = δtξ = 0, namely the

harmonic forms. The reader should bear in mind that, despite the similar language,
the symplectic setting presented here differs greatly from the foliated Hodge theory
introduced in [5].

The following lemma and the chain isomorphism Ξ permit us to apply Theorem 3
in our investigations of the basic case.

L 10. The following diagram is commutative.

Ω∗B(M, F )
?t //

Ξ

��

Ω2n−∗
B (M, F )

Ξ

��
Ω∗

Γ
(N) ? // Ω2n−∗

Γ
(N)

This assures that Ξ induces a correspondence between the basic harmonic forms on
M and the Γ-invariant harmonic forms on N. Now we can apply Theorem 3 to obtain
the following result.

T 11. The following conditions are equivalent.

(1) Every basic cohomology class has a harmonic representative.
(2) For each k ∈ {0, 1, . . . , n} the mapping

Lk : Hn−k
B (M, F )→ Hn+k

B (M, F )

is surjective.

4. Harmonicity with respect to the metric and symplectic structure

Pak [15] considered the question of the existence of harmonic forms when the
operator ? is defined with respect not only to the transversal structure of a dimension
one foliation but also to some leafwise structure. To avoid confusion we shall denote
this new operator by ?a. This approach seems to be proper if we want to define
harmonicity on the whole manifold and not only on the transverse structure. We shall
now reformulate this problem for foliations of arbitrary dimension.

Recall that M is a manifold with a regular foliation F of dimension p and even
codimension 2n with transversally symplectic structure ω ∈Ω2

B(M, F ). Assume that
the leaves of this foliation are orientable or, equivalently, that M is orientable. Fix a
metric g on M. The tangent bundle T M splits into the direct sum T M = TF ⊕ TF ⊥.
This splitting induces a bigrading of the space of forms

Ω∗(M) =

p+2n⊕
k=0

Ωk(M) =

p+2n⊕
k=0

⊕
r,s≥0,r+s=k

Ωr,s(M, F ).

https://doi.org/10.1017/S1446788711001455 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788711001455


8 L. Bak and A. Czarnecki [8]

Note that ξ ∈Ωr,s(M, F ), that is, ξ is of type (r, s) if and only if

ιX1∧···∧Xr+1ξ = ιY1∧···∧Ys+1ξ = 0

for X1, . . . , Xr+1 ∈ X(F ) and Y1, . . . , Ys+1 ∈ X
⊥(F ). Clearly the basic k-forms are of

type (0, k).
The orientability of leaves allows us to choose a leafwise volume form χ of type

(p, 0) with respect to g. The form ωn ∧ χ is a volume form on M and we have an
isomorphism

X
∗(M) 3 X 7→ ιX(ωn ∧ χ) ∈Ωp+2n−∗(M).

As we have done earlier, we define an isomorphism X(M)→Ω1(M), denoted by [ and
given by

[(X) = ιXvω + g(Xh, ·)

where X = Xh + Xv and Xh, Xv belong to X(F ) and X⊥(F ), respectively. We then
extend our isomorphism to

[ : X∗(M)→Ω∗(M).

The star operator obtained as the usual composition

?a : Ω∗(M) � X∗(M) �Ωp+2n−∗(M) (2)

depends on the choice of the metric g. We will be interested in the behaviour of this
operator restricted to basic forms.

Consider the bigrading X∗,∗(M) such that (r + s)-vector field X is of type (r, s) if and
only if ιXξ = 0 for each (r + s)-form ξ of type other than (r, s). We can now rewrite (2)
as

?a : Ω∗,∗(M, F ) � X∗,∗(M) �Ωp−∗,2n−∗(M).

For a basic k-form ξ we calculate that [−1(ξ) is of type (0, k) and therefore

?aξ = ι[−1(ξ)(ω
n ∧ χ) = ι[−1(ξ)ω

n ∧ χ = ?tξ ∧ χ.

If we consider the codifferential defined for k-forms ξ by δaξ = (−1)k ?a d ?a ξ,
then for a basic k-form we obtain

δaξ = (−1)k ?a d ?a ξ

= (−1)k ?a d(?tξ ∧ χ)

= ?a((−1)kd ?t ξ ∧ χ + ?tξ ∧ dχ)

= ι(−1)k[−1(d?tξ)∧[−1(χ)(ω
n ∧ χ) + ι[−1(?tξ)∧[−1(dχ)(ω

n ∧ χ)

= ι[−1(χ)(δtξ ∧ χ) + ι[−1(dχ)(?
2
t ξ ∧ χ)

= (−1)p(k−1)δtξ + ι[−1(dχ)(ξ ∧ χ).

Observe that the differential d splits into three parts

d = d1,0 + d0,1 + d−1,2
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with respect to the bigrading Ω∗,∗(M). In particular, dχ = d0,1χ + d−1,2χ since d1,0χ
vanishes. In general the summand d−1,2χ does not vanish and thus δaξ is not basic
when ξ is a basic form. Therefore we must redefine the codifferential as

δaξ = (−1)k ?a d0,1 ?a ξ.

Under this definition the codifferential is the adjoint of d0,1 instead of d, but on basic
forms these two operators coincide.

Now if we recall that d0,1χ = κ ∧ χ where κ is the mean curvature form for F and
write T = [−1(κ), then we see that

δaξ = (−1)p(k−1)(δtξ + ιTξ).

So for basic forms to be preserved by the codifferential we must assume that κ is basic.
Foliations with this property are called tense.

We recall the operator Y defined in Section 2 as follows:

Y : Ω∗B(M, F ) 3 ξ 7→ ω ∧ ξ ∈Ω∗B(M, F ).

By Lemma 10 we may deduce that [Y, δt] = −d. We now compute [Y, δa]ξ for a basic
k-form ξ.

[Y, δa]ξ = Yδaξ − δaYξ = (−1)p(k−1)([Y, δt]ξ + YιTξ − ιT Yξ)

= (−1)p(k−1)+1(ιTω ∧ ξ + dξ).

This means that in order to obtain the invariance of basic forms under Y we need to
assume that ιTω = 0. However, the nondegeneracy of ω then implies that the mean
curvature vanishes. In this case the basic forms harmonic with respect to ?a and the
basic forms harmonic with respect to ?t coincide because ?a = ?t. We have now
proved the following theorem.

T 12. Let F be a foliation with vanishing mean curvature form κ. Then the
following conditions are equivalent.

(1) Every basic cohomology class has a harmonic representative with respect to the
operator ?a.

(2) For each k ∈ {0, 1, . . . , n} the mapping

Lk : Hn−k
B (M, F )→ Hn+k

B (M, F )

is surjective.

Using a well-known technique, we can deform the metric along the leaves to change
the mean curvature form inside its cohomology class. In particular, if we can find
a metric on a manifold for which the mean curvature form is exact, then we can find
another metric with vanishing mean curvature. In the case of a tense, transversally
oriented Riemannian foliation on a closed oriented manifold, the exactness of the
mean curvature form is equivalent to the minimalizability of the leaves (see [20]).
The work of [4] enables us to omit the tenseness condition. Recall that we consider
only foliations with orientable leaves. We can now state the following corollary.
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C 13. For a transversally symplectic, minimalizable Riemannian foliation on
a closed manifold there exists a metric for which conditions (1) and (2) of Theorem 12
are equivalent.

Masa [11] proved that for a transversally orientable Riemannian foliation on
a closed, orientable manifold, the minimalizability of leaves is equivalent to the
nontriviality of the highest rank basic cohomology. Thus we obtain another result.

C 14. For a transversally symplectic Riemannian foliation of codimension
2n on a closed manifold such that H2n

B (M, F ) , 0 there exists a Riemannian metric for
which conditions (1) and (2) of Theorem 12 are equivalent.

In addition, Rummler [17] proved that a Riemannian foliation with compact leaves
is minimalizable and so we may deduce the next corollary.

C 15. For a transversally symplectic Riemannian foliation of codimension
2n with compact leaves on a closed manifold there exists a Riemannian metric for
which conditions (1) and (2) of Theorem 12 are equivalent.

5. Orbifolds

The notion of an orbifold is a generalization of the notion of a manifold. While
a manifold locally looks like a Euclidean space, an orbifold locally looks like
a quotient of a Euclidean space under an action of a finite group. The class of orbifolds
includes not only manifolds, but also manifolds with boundary and with corners. The
first definition of an orbifold was given by Satake [18] and referred to as a V-manifold.
Numerous other definitions were given later, among them, by Thurston [19] and by
Moerdijk and Mrčun [13]. In this note we follow the definitions given by Chen and
Ruan [3] using local uniformizing systems.

A section of the bundle of positive, symmetric tensors of type (0, 2) on an orbifold X
plays the role of a Riemannian metric on X and any orbifold X admits such a metric. If
we choose a Riemannian metric on X, then we can consider the bundle of orthonormal
frames. For any uniformizing system {(Vi, Gi, πi)} where Vi is a Riemannian manifold
the group Gi is a finite group acting effectively by isometries on Vi and πi : Vi→ Ui is
a Gi-invariant projection onto some open set Ui ⊂ X, which induces a homeomorphism
between Vi/G and Ui.

The action of Gi lifts in a natural way to a free action on LVi, which is the bundle
of orthonormal frames over Vi. The manifolds LVi/Gi can be glued together to form
a manifold LV on which O(n) acts, giving it the structure of a foliated manifold. The
corresponding space of leaves has a natural orbifold structure, which is isomorphic
to X. For details of this construction see [13]. The basic forms of this foliation are
exactly the forms on the orbifold X. In particular, if we fix a symplectic structure on
X, then we obtain a basic symplectic form on the associated foliated manifold. Other
constructions from Section 3 can also be performed on X and we may deduce the
following corollary of Theorem 11.
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T 16. For a symplectic orbifold X of dimension n the following conditions are
equivalent.

(1) Every cohomology class has a harmonic representative.
(2) For each k ∈ {0, 1, . . . , n} the mapping Lk : Hn−k(X)→ Hn+k(X) is surjective.

This result may be obtained in a more direct way by finding a correspondence of the
type considered in Proposition 9. For a fixed orbifold structure {(Vi, Gi, πi)} on X that
satisfies the condition that the associated coveringU is closed under intersections we
consider the manifold N =

∐
i Vi. Let s̃ be a lift of s : X→

∧k T ∗X, that is a k-form.
Then s̃ corresponds to the form∑

i

s̃|Vi ∈
⊕

i

Ωk(Vi) = Ωk(N).

P 17. The mapping

Ω∗(X) 3 s→
∑

i

s̃|Vi ∈Ωk(N)

is a chain isomorphism onto a subcomplex Ωk
Γ
(N) consisting of forms invariant under

the pseudogroup Γ generated by the injections

(Vi, Gi, πi)→ (V j, G j, π j)

and the action of each Gi on Vi.

Proposition 17 together with Theorem 3 now imply Theorem 16.

R 18. For compact Kähler orbifolds the hard Lefschetz theorem, which is
condition (2) of Theorem 16, was demonstrated in [21]. Hence Theorem 1 follows.
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