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SUMMARY
Interaction between a robot and its environment requires perception about the environment, which
helps the robot in making a clear decision about the object type and its location. After that, the end
effector will be brought to the object’s location for grasping. There are many research studies on the
reaching and grasping of objects using different techniques and mechanisms for increasing accuracy
and robustness during grasping and reaching tasks. Thus, this paper presents an extensive review of
research directions and topics of different approaches such as sensing, learning and gripping, which
have been implemented within the current five years.

KEYWORDS: Cognition; Perception; Reaching and grasping task; Visual servoing; Sensing
approach; Learning approach; Gripping approach.

1. Introduction
Grasping comprises actions of gripping and moving of an object from one place to another. The three
basic elements that must be taken into account during a grasping task are localisation, object and its
environment; all of which require visual accuracy, robust sensing and fine control with consideration
of slippage detection. There are three elementary stages in which a grasping task should accomplish
successfully. The initial grasping is the first stage, consisting of localisation, positioning and picking
up of the object. At this stage, the vision and tactile sensing will be activated. However, the tactile
sensing will be more effective at the second stage for the purpose of slippage detection and provid-
ing a fine gripping force. The second stage of grasping action is where operation and control are
employed for either carrying or manipulating the object based on the perception acquired during the
first stage. Lastly, the final stage is placing or releasing of the object by the gripper, manipulator,
or hand at the targeted location. During interaction with the environment, grasping, or manipulat-
ing tasks is considered one of the most significant actions. Besides that, acquiring perception before
grasping is important for the robot, which is called the precondition of grasping, particularly for a
smart robot facing a complex surrounding with numerous objects.

Perception of the environment is one of the challenges that many researchers have devoted their
effort to and thus sensing plays a significant role. The fact is that the physical properties of robots
and objects can be measured by using sensors and then transform into signals that can be utilised by
a robot controller. Sensors play an essential role in terms of detecting actions in the environment and
the way that a robot should move so that the behaviour of the robot can be learnt as a result. By using
sensors, a robotic system can be flexibly implemented in different workplaces for achieving vari-
ous tasks. The purpose of using sensors such as vision and touch is to provide interaction between
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the robot’s hand and object within the robot’s workspace. There are global and local information
that can be acquired from sensors.1 The global information is provided by vision sensors, and it is
used to determine the location of objects in the environment. The robot controller can exploit the
global information for either avoiding unwanted obstacles, or moving the end effector to its target
successfully. On the other hand, the local information is about the way robot interacts with objects in
the environment, and it is provided by touch sensors. Local information might be used by the robot
controller in terms of manipulating the contacting objects, or exploring and extracting the surface
properties of the objects.2, 3 Vision sensors are mostly applied in robotics using cameras, whereas
force and tactile sensors are implemented in sensing and acquiring the local information and prop-
erties of an object. There are three categories of sensory approach-based-control (i.e. visual control,
force control and tactile control), which are implemented in controlling the robot’s movement dur-
ing reaching and grasping tasks based on the information extracted from these sensors. Under visual
control, a combination of computer vision, image processing and control techniques are employed
in manoeuvring the robot’s end-effector or hand to reach and grasp an object (e.g. extraction of the
visual information from the captured images of cameras). On the other hand, the force control is used
to process the forces and torques as inputs during contacts between robot’s gripper and object, while
the tactile sensor is a more accurate and robust control during an interaction between robot’s gripper
and target objects in the environment as it has the ability to detect various physical properties such as
slippage, deformation, vibrations, pressure, stress, etc.4 Adjusting the contact of the robot’s gripper
with objects for a particular manipulating task is another role that tactile control provides. Therefore,
these three types of controls are exploited to achieve the desired task based on the purpose of the cor-
responding sensors. In the last five years, robotic grasping has attracted many researchers’ attention,
either in developing novel techniques or improving the existing techniques that can help the robot
to perform manipulation tasks successfully. However, the real challenge in the robotic grasping is
in learning, sensing (e.g. controlling the force applied to the object by gripper during grasping) and
gripping approaches such the methodology used for the gripping object.

Numerous reviews have been carried out based on different areas of reaching and grasping. For
instance, under the learning approach, deep learning methods5, 6 and reinforcement learning7 have
been employed. Recently, ref. [8] has reviewed current and future works in deep reinforcement
learning (DRL)-based grasping in clutter. A good review of recent and future works on a cognitive
enabled robot for performing reaching and grasping tasks can be found in ref. [9]. In terms of sens-
ing approach, a significant survey about visual and force/tactile control has been presented in ref. [1].
With the increasing demand for achieving high accuracy in grasping task, tactile sensing among
others is becoming more important in robotic fields, whereby many studies have devoted either to
the development of a sense of touch3 or implementation of tactile sensing on robotic hands.10, 11 In
terms of the gripping approach, some grasping mechanisms are inspired by geckos and spiders using
dry adhesive materials,12 or elastic inflatable actuators.13 These are soft grippers designed based
on advanced materials and soft components such as silicone elastomers, active polymers and gels,
as well as shape-memory materials. Reviews on soft-robotic grippers can be found in refs. [13]–
[15], whereby the researchers have mainly focused on achieving lighter, simpler and more universal
grippers by using the inherent functionality of the materials. In this paper, we highlight the main dif-
ference between this review and the aforementioned, where the latter has mainly concentrated on a
single topic of the grasping task. We intend to provide are view that covers techniques or approaches
that have been used in reaching and grasping tasks. Thus, our contribution is in providing a com-
prehensive review that includes all the aforementioned review papers’ topics. Figure 1 shows an
overview of techniques in object reaching and grasping.

In this review, we exploit the keywords related to our research on object reaching and grasp-
ing. This includes Visual Servoing, Tactile Sensing based Robotic Grasping, Robotic Grasping
with Object Pose Detection and Recognition, Robotic Manipulation, Deep Learning, Reinforcement
Learning, Hand Design and Soft Robotic Grippers. We focus on a certain group of scien-
tific sources/databases for getting the most up-to-date relevant papers, particularly IEEE Xplore,
Sciencedirect, ArXiv and other specific related robotics journals. Section 2 of the paper presents
a discussion on Sensing Approach. Section 3 describes the learning approach, whereas Section 4
presents a gripping approach. Assistive and Warehouse Robots can be found in Section 5. Finally,
the conclusion is presented in Section 6.

https://doi.org/10.1017/S0263574721000023 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721000023


Review on reaching and grasping of objects in robotic 1851

Fig. 1. Overview of techniques in reaching and grasping of objects.

Fig. 2. Sensing approach categories.

2. Sensing Approach
In this section, there are three categories that will be explained and highlighted in this paper: (1)
vision-based reaching, (2) sense of touch and (3) fusion sensor (integrating vision with touch sensors)
as illustrated in Fig. 2.
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Fig. 3. Block diagram of visual servo system (adopted from ref. [1]).

2.1. Visually guided reaching
Implementing vision in the robotic system can significantly assist arm manipulators to accomplish
different object manipulation tasks either in the structured or unstructured workspace. Using vision
as feedback in controlling robot’s motion is simply known as visual servoing. Ref.16 defines visual
servoing as the process of controlling the robot based on visual data that are extracted from either
single or multiple cameras to perform a wanted task (see Fig. 3).

Many research studies on reaching control for manipulating tasks for various size and shape
objects have been reported. For instance, reaching the desired object using gaze control has been
proposed in ref. [17]. The authors exploited the learned hand–eye kinematics based on open-loop
reaching. As a result, the robot has the ability to reach the object in the area of its workspace.
However, learning to reach was slow, and also there was a positioning error after open-loop reaching.
Gaskett et al. implemented a control system to enhance the robot to move towards the wanted object
based on motor–motor mapping by implementing both closed and open loops. The aim of the work
is to correct the positioning error after open-loop reaching,18 in which open-loop controller uses only
sensory data to learn. The method of hand–eye coordination system has been used to achieve reach-
ing task using visual feedback.18, 19 However, the method suffers from the lack of error correction
after the training phase with limited movement range. Algorithm to learn online kinematic parame-
ters of the robot has also been reported20 based on visual data. However, the algorithm is insufficient
in finding the optimal set of robot configurations. Thus, joint space and sensor reading of the cam-
era for the head has been proposed in ref. [21] to improve the learning process based on an active
learning algorithm although the work has its limitation. For instance, learning has been achieved fol-
lowing task during an exploration phase but it did not significantly explore the robot’s workspace.
Jamone et al. proposed a strategy that enhances the robot to autonomously learn to reach an object
through three-dimensional (3D) space based on combining both of exploration and exploitation.22, 23

The approach is heavily dependent on intuition of the designer, which is extracted from human’s per-
ception and thus not suitable for robot learning as robot sensors and end effectors vary significantly
from those of human beings.

Recently, object recognition and detection have been widely achieved based on 3D laser range
point clouds (LRPC). The most familiar technique in 3D LRPC is to use a bottom-up procedure
based on plane and curve locations. For example, the approach is used in locating the most likely
object configurations given the object’s parameterisation and a point cloud by optimising relaxations
of the likelihood function in ref. [24]. Also, extraction of effective features from object recognition
in terms of 3D point cloud data, which is a method of keypoint extraction, has been proposed by
Steder et al.25 and Surmann et al.26 The method has been operated on two-dimensional (2D) images
generated from arbitrary 3D point clouds and has also been used to identify the borders of objects
through foreground to background transition. Besides that, a laser-based indoor scene cognition has
been implemented to operate a mobile robot in a structured indoor environment in ref. [26]. A bearing
angle model has also been used to represent laser-point clouds, whereby a 3D laser scanner has been
used to generate 2D bearing angle images for place recognition in a dynamic indoor environment.27

Additionally, techniques of scale coordination have been proposed in ref. [28] serve as a solution to
the problem of variable object scales in object detection, which can be adopted in each sub-scene
segmented from the whole scene based on the spatial distribution of 3D laser points.
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One of the crucial challenges in reaching and grasping tasks is the capability to reach objects based
on visual feedback due to problems associated with spatial transformation, the complexity of learning
spaces, redundancy and coordination. Lee et al. have presented an interesting approach in ref. [29]
The approach describes the natural development of reaching in children and how the reaching devel-
oped into accumulative learning. The child’s movements in reaching tasks are imitated as a model
for a humanoid robot. Whereas, Chao et al. have proposed an advanced learning approach based on
the hand–eye configuration which is applied in an autonomous robotic system.30 Their method has
been implemented based on building a computational structure in order to control the robot. The
authors exploited the advantage of patterns in children’s behaviour to construct a learning algorithm
for the hand–eye approach. The work has also introduced an approach of developmental learning to
robotic pointing using the interaction between client and server.31 The approach has observed the
developmental process of human infants as an inspiration to train the robot in object reaching that is
out of robot’s workspace. Nevertheless, the limitation of the abilities of infants restricts goal-driven
learning and thus motor babbling becomes a key element in the robot’s early learning. The resolution
of sensor and motor abilities in infants are initially rough and gradually improve with learning over
time. Subsequently, this observation reflects the developmental trajectory in robots too. For instance,
a robot can master initial coarse abilities with further refinement as needed.

Brand et al. have proposed a Reachable Space Map (RSM) to control the position and posture
of the robot before reaching is performed.32 In the approach, the workspace of the robot has been
expanded to reach the unreachable object using a visually guided combination of locomotion and
whole-body movements. Nguyen and Kemo have employed a support vector machine (SVM) by
using a vision sensor as input for predicting whether manipulation manner is successful in accom-
plishing a task or not at a specific 3D location.33 Thus, the authors have enabled a mobile manipulator
to autonomously learn a function by taking red-green-blue (RGB) image and a registered 3D point
cloud as inputs and then returning a 3D location at which manipulation behaviour was likely to suc-
ceed. However, the approach is restricted to perform opening and closing tasks of a cupboard, as
well as switching on and off lights based on active learning. The same application for opening and
closing of a cupboard has also been performed in ref. [34] based on extracting kinematic background
knowledge from interactions (e.g. using task-sensitive relational learning). In addition, vision-based
information and Bayesian estimation techniques have been used to estimate hand position and to cor-
rect the kinematic model of a robot during movements.35 Movement of ideal reaching begins with the
open-loop phase in order to bring the robot’s hand to the surrounding of the object. Once the robot’s
hand is observed by one of its cameras, the filter is fed through a vision-based estimation method for
a 3D pose, which is used to regulate the kinematics parameter of the robot arm. The authors have
devoted to control the motor directly from the images. The moment the robot’s hand becomes closer
to a target object, kinematic errors will be obviously minimised, so that better grasping control might
be performed. Despite the fact that a human is able to acquire 3D position and orientation of a seen
object, a direct map from sight-to-motor command is both inefficient and ineffective. Therefore, the
same methodology has been implemented in ref. [36] by using Graphics Processing Unit (GPU).
GPU improves the real-time robotic arm pose estimation and also reduces the end-effector error near
the objec’svicinity.

In ref. [37], Bhattacharjee et al. have used the supplementary properties of vision and tactile
sensing to acquire thick haptic maps throughout its visible environments using an algorithm. The
algorithm produced two significant simplifications in the job. First, the authors used colour to identify
which places were visually comparable despite extra image features such as texture features that
could possibly be able to improve its performance. Secondly, the authors labelled the objects with
coordinates in 2D image based on haptic labelling and then performed operations with consideration
of the coordinates system of the image. As a result, the proposed algorithm has adequately labelled,
almost 76.02% from all tested objects in a cluttered leafage environment. Enhancement of robotic
hand–eye coordination system has been presented in ref. [38]. The proposed system has the capability
of transmitting stimuli to the hand through eye and vice versa based on a stimulant delivery channel
in two directions by exploiting the “Stop-to-fixate” concept.

Fantacci et al. have proposed a framework based on decoupling the control of translation and
orientation by using marker-less visual servoing, which does not require prior information about
the object’s environment, but based on the image for predicting the unknown object’s position
and 3D shape to be grasped. A particle filter called Sequential Monte Carlo with visual servoing
and gain scheduling method have been implemented in order to prevent the occurrence of oscillation
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Fig. 4. Eye-in-hand and eye-to-hand configuration (adopted from ref. [49]).

and overshooting for end-effector around the desired pose. Also, extraction of the information about
the shape of the end effector has been performed using the histogram of oriented gradients descrip-
tors (HOG) based on images. Besides that, the authors have reported that grasping from the top view
is better for a different small shaped object, or to be gripped from different poses that partly occludes
the hand.39 Recently, Luo et al. have proposed a mechanism for improving the reachability process
as inspired by human infants. In the approach, the authors mimic the reachable mechanism of human
infants based on how the infants learn the reaching for objects during their first four months for all
the phases40 using a neural network to model proprioception. In ref. [41], Sundermeyer et al. have
proposed to improve the deep grasping based on using simulation and feature level based domain
adaptation, which are associated with a tested data-driven and monocular vision. Also, the authors
have proposed a pixel-level-based domain adaptation model, which uses synthetic images produced
by the simulator as input. After that, adapted images are generated, similar to real-world images pro-
duced by a camera mounted on the shoulder of a robot. As a result, both approaches of adaptation
(e.g. feature-level and pixel-level) are complementary and a new method based on a combination
of these two approaches has been presented in ref. [42]. Self-supervision approach has been imple-
mented in ref. [43], where grasp labels are automatically generated by a robot’s trial and error on
a large number of real-world or simulated grasp attempts. Additionally, a visual method based on a
dual camera has been proposed for identifying and localising the scattered rivets for robot grasping.44

Zhong et al. have presented a method based on combining laser-point detection and pose estimation
algorithms to improve the grasping task with the application of assistive robot arm for wheelchair.45

In the approach, a three-stage process to achieve pointing and picking up of object has to be carried
out. First, a colour-depth (RGB-D) camera is used to capture an image as a pre-processing. After that,
the image is processed by a convolutional neural network (CNN) for determining the coordinates
of laser points and objects within the image. Lastly, centroid coordinates of the chosen object are
obtained via depth information. In an indoor environment, image and depth information are usually
acquired by using RGB-D sensors such as Kinect. Currently, most algorithms employ RGB images
or point clouds for object detection. For example, a novel deep learning has been designed based on
visual recognition of object and pose estimation.46 The visual system proposed in the paper includes
four modules: (1) visual perception, (2) pose estimation, (3) data argumentation and (4) controller
of robot manipulator. Neural principles-based reaching and grasping tasks have extensively been
studied in primates. However, only a few studies have developed the experimental apparatus by com-
bining the reaching and grasping approach in 3D space. For instance, a highly flexible device has
been developed by Chen et al. by combining a custom turning table with a 3D translational device.
The setup enhances the robot to move to two positions at the same time and grasping of different
shaped objects is easily done. While hand trajectory and grip types are recorded via optical motion
tracking cameras and touch sensors, respectively in ref. [47].

Eye–hand or hand–eye coordination is the controlling process of both hand and eye, which is
implemented to enhance the robot for achieving reaching and grasping tasks with the use of propri-
oception feature either for hand to guide the eyes or for eyes to guide the hand.48 On the one hand,
the camera is nominated as eye-in-hand once the camera is located or mounted on the end effec-
tor of the robot’s arm so that there is a constant relation between the position of both camera and
end effecter. On the other hand, the camera is nominated as eye-to-hand once the camera is located
or mounted on a fixed place to observe both robot’s hand and its workspace. Hence, eye-in-hand
and eye-to-hand approaches are considered as two configurations for the camera in robotic control
through visual feedback as shown in Fig. 4. Thus, as an analogy, the robot manipulator behaves like
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Fig. 5. Block diagrams of robotic tactile sensing system (adopted from ref. [76]).

a human hand, while the camera acts like the human eye.49 There are a plenty of researches that have
been implemented in visual guidance-based reaching and grasping tasks as summarised in Table I.

2.2. Grasping using sense of touch
The tactile sensor plays a sensitive role in robot’s perception based on the touch concept. It helps
to achieve manipulating tasks in either structured or unstructured environments, particularly in the
independent exploration of robot and manipulator actions. There are six types of exploration proce-
dures as defined by Lederman.75 These six types of exploration are used to control the exploration
action of robots and act as the foundation for performing quick identification. The sense of touch
(e.g. tactile sensors) is associated with a robot that explores its surrounding stimuli through touch.
Also, touch sensing is used to obtain information about the object features (e.g. shape, texture and
material), which helps the robot or manipulator to give commands such as determining location and
slippage detection. As shown in Fig. 5, the process of the tactile sensing passes through three stages:
sensing, perception and action.76 Figure 5 also shows the block diagram which is the structural blocks
for hardware based on each corresponding functional block. Thus, transducing the external stimuli,
such as vibration and pressure into changes on the elements of sensing for tactile sensors is called the
sensing process. After that, these data are obtained, conditioned and processed based on an embedded
data processing unit and then transmitting to the perception level to build the model as well as per-
ceiving the properties of the desired object. At this stage, the sensing tactile can be fused with other
modalities of sense (e.g. vision and auditory perception) as explained in Section 2.3. After sensing
and perception stages, the actuator receives the control commands to achieve the desired actions
based on the controller. The purpose of using tactile sensor for exploration is to collect information
about the environment and to obtain information about objects that will be manipulated or grasped.

The relation between the force that is applied to an object and the deformation of the object has
been studied based on the grasped object in ref. [77]. Object identification and extraction of features
have been achieved in ref. [78] based on analysing data from tactile sensors using machine learning.
In addition, sparse coding of the joint kernel has also been proposed in ref. [79] for solving the prob-
lem of interference of tactile data between dexterous hands with an object during contact. Tactile

https://doi.org/10.1017/S0263574721000023 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721000023


1856
R

eview
on

reaching
and

grasping
ofobjects

in
robotic

Table I. Summary of some visual servoing based reaching and grasping tasks.

Sensor Technique Application References

Eye-in-hand • Combination of a computed closer point (CCP)
approach with an iterative closest point (ICP) with
active laser projection

Roboticbin-picking [50]

Eye-in-hand camera
configuration

• Visual servoing based on image (charge-coupled
device camera)

• Artificial Neural Networks (ANNs)

Controlling the movements of the manipulator
(the 6 DoF PUMA 560)

[51]

Eye-in-Hand stereo
visual

• Feedback based on visual using a stereo head which is
mounted in the wheelchair’s hand of mounted robot
arm on wheel chair

Assistive robotic arm to recognise and grasp
textured ADL objects [ADL=activities of
daily living]

[52]

Eye-hand coordination • The vision to-kinematics mapping Object grasping and tool based on iCub
humanoid robot

[53]

Eye-in-hand stereo visual • Image-based visual servoing algorithm Racking and catching a moving object [54]

Eye-in-hand • Gaze control by integrating multiple sources of
information

Predicting others’ behaviour during reaching
and grasping the object

[55]

Eye-in-hand and
eye-to-hand
configuration

• Multi-camera pose estimation
• Image-based visual servoing (IBVS) controller
• position-based visual servoing (PBVS) controller

Object manipulation [56]
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Table I. Continued.

Sensor Technique Application References

Eye-in-hand • Visual servo control
• Simultaneous localisation and mapping (SLAM)

based on off-the-shelf libraries (Visual Servoing
Platform library (ViSP) and Large Scale Direct SLAM
(LSD-SLAM))

Robotics harvesting in dense vegetation [57]

Eye-to-hand camera • Image-based visual servoing
• Combination of the Jacobian matrix with the

depth-independent matrix

Regulating a 6-DOF mobile manipulator to a
desired pose

[58]

Eye-to-hand camera
configuration

• Adaptive artificial network-based fuzzy interference
system (ANFIS) method

Controlling a robot arm for picking up and placing
the targeted object

[59]

Eye-in-hand
configuration

• Image-based visual servoing using a 6-DOF camera Representing the motion of a tumbling object to be
grasped

[60]

Eye-to-hand camera • Visual feedback Towel grasping [61]

Hybrid visual servoing • Reinforcement learning and finite-time adaptive
Fractional-Oder Sliding-Mode Control (FOSMC)

Reaching the home location using Pioneer P3-DX
robots

[62]

Eye-in-hand and
eye-to-hand
configuration

• Involving a single camera using marker-less model to
track the desired object, as well as a pattern used to track
the end-effector

Humanoid robots-based object manipulation task [63]

Eye-in-hand camera • Teleoperation system based on unified real-time
optimisation controller

Providing robust occlusion avoidance in cluttered
environments using dual-arm robot

[64]

Eye-in-hand camera • Multi-View Picking (MVP) controller using multiple
informative viewpoints

Reaching to grasp an object in clutter and occluded
environment

[65]
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Table I. Continued

Sensor Technique Application References

Eye-in-hand • Moment-based 2 1/2D visual servoing method based on
combining image moment and relative rotation features

Grasping textureless planar parts [66]

Eye-in-hand
configuration

• Image-based visual-impedance control Dual-arm aerial manipulator [67]

Eye-to-hand • Image-based position control Controlling the motion of non-holonomic mobile
robots

[68]

Eye-in-hand vision • Vision-guided control strategy based on six image
features

• A behavioristic image-based look-and-move control
structure

• Exploiting neural-fuzzy controllers

Picking up a work-piece on the station using
manipulator

[69]

Eye-in-hand visual
servoing

• Online Image-Based Visual Servoing (IBVS) controller
• The adaptive Neural Networks (NNs) and
• The Barrier Lyapunov Function (BLF)

Usage of controlling manipulator [70]

Hand-eye calibration • Visual servoing using marker tracking and depth
information provided by an RGB-D camera

Searching for object of interest on the scene [71]
[72]

Eye-to-hand and
stereo-vision

• Position-based visual servoing method using an
edge-based distance transform metric and synthetically
generated images of a robot’s arm-hand internal
computer graphics

Reaching and grasping tasks on the iCub robot [73]

Eye-in-hand • Decomposing the end-to-end system into a vision
module and a closed-loop controller module

Grasping a tiny sphere [74]
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sensing is closely related to the robot controller. For instance, tactile sensors are used in multiple
fingers of a dexterous hand to improve stability control of an object during grasping and to decrease
the possibility of the falling object during gripping tasks.80 Using tactile sensor as feedback with
Bayesian identification technique has been proposed in ref. [81] to perform identification and classi-
fication of different size and shape cylinders by using claw platform of the grasp-reposition-reorient
(GR2) hand. Besides, piezoelectric polymer-based contact sensors are integrated on each finger-pad
of the robot hand to improve the grasping task in an unstructured environment.82 On the other hand,
tactile sensor consisting of three thin sheets built from force-sensitive resistors has been implemented
on the hand of the robot. In this approach, which has been used to trace the edge of the object dur-
ing the welding process, object recognition in three dimensions is realised by considering the shape,
surface and edge of the object.83 Romano et al. presented a novel controller for the robotic grasp. In
their work, the controller processes measurements extracted from pressure sensor arrays on the fin-
gertip of the gripper. The controller then commands the jaw gripper to accurately and stably picked
up and placed unknown objects based on the selected location.84 Moreover, using a tactile sensor as
the feedback has been proposed in ref. [85] to enhance the stability of the robot during the grasping
process under pose uncertainty. This approach has utilised tactile sensing for estimating the grasp
stability based on an algorithm of adjusting hand after pre-grasp is performed. Walker et al. have also
used a tactile sensor as a feedback to improve the performance during the object manipulation.86 In
their work, a haptic system based feedback has been developed to explore the effectiveness of using
the feedback of slip information from vibratory tactile because it can help to grasp objects without
slipping once the visual feedback does not activate. In addition, five tactile feedback conditions (e.g.
vision, pressure, slip, pressure slip and no feedback) have also been investigated in ref. [87] to explore
the effectiveness of the feedback in improving the closed-loop of myoelectric control of prostheses
for object grasping.

In this approach, six types of objects have been studied using weights and stiffness based on a
virtual environment. It has been reported that slip feedback is better than the others in terms of a
quick grasping, grasping accuracy and stability. Moreover, increasing the points in contact based on
haptic control has been implemented in ref. [88] to make rapid exploration for grasping unknown
objects. Also, the approach of multiple points of contact has been developed based on covering the
hand with tactile sensors. As a result, the experiment showed an improvement in the robustness
of the grasp once the objects are enclosed by the robot hand. In addition, the approach of using a
tactile sensor with kinematic information has been proposed in ref. [89] to improve the grasp quality
during manipulation, and also to avoid slipping of the grasped object. In this approach, the tactile
sensor is used to provide the local information of contacting between fingertip and object. Moreover,
solving the effectiveness of an object’s surroundings (e.g. the picking up and placing of an object
in relation to other objects and surfaces) on the perception of the tactile sensor has been addressed
in ref. [90] based on using multimodal tactile sensing by exploiting data-driven such as k-nearest
neighbours (k-NNs), SVMs, hidden Markov models (HMMs), as well as long short-term memory
networks (LSTMs). Besides, Lepora et al. have used the optical biomimetic tactile sensor to improve
robustness of edge perception and contour following by exploiting the deep learning (deep CNN).91

Additionally, different work has been implemented based on using tactile sensors for achieving
various tasks. For example, the algorithm of object exploration has been implemented in ref. [92]
based on using three-axis tactile data. The three-axis tactile sensor has been applied to the two-
fingered hand of a humanoid arm for object grasping. On the other hand, a robot hand with three
fingers using the tactile sensor for learning and recognising objects with different shapes and sizes for
various grasping applications has also been used in ref. [93]. Vezzani et al have used the tactile sensor
to identify an object from a different set of known objects94 and also to improve the perceptive capa-
bilities of autonomous operations for the robot (e.g. the iCub humanoid robot used for experimental
validation). In another work, Iterative Closest Labelled Point (ICLP) algorithm has been proposed
for object recognition based on tactile data and kinaesthetic information.95 The authors have vali-
dated their algorithm experimentally based on using a Phantom Omni device as a robotic arm where
the tactile sensor is attached to robotic arm’s stylus. Besides that, reducing the effort and time, that
are exerted during motion and positioning of a sensor to the appropriate surface of the object, has
been solved in ref. [96]. In the work, the authors simulated the data acquisition procedure in order
to find the best selective data acquisition algorithm, which then allows the recognition of probed
objects based on the acquired tactile data. Funabashi et al. have proposed uSkin tactile sensors (3D
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Fig. 6. Visual/force impedance control system (adopted from ref. [1]).

Tactile Sensors), which have been embedded with a two-fingered robot hand (Allegro Hand).97 They
have also concentrated on the object recognition via distributed forces with the exploitation of deep
learning approach algorithms. Furthermore, the object recognition has been achieved based on using
tactile to enable prosthetic fingers as well as feedback glove. It allows a human operator to control
these artificial appendages while masking user’s natural tactile senses98–101 A number of literatures
of dexterous grasping and object manipulation on haptic sensing, perception, manipulation and more
recently for prosthetics can be found in refs. [10], [102]–[106].

2.3. Multi-sensor control
Combining local and global data, which are produced by using the sense of touch and visual sense
respectively, provides a complete perception of the surrounding environment for the robot to accom-
plish its task successfully. Based on that, the visual data are used to feed the controller of the robotic
system about object’s view such as shape and pose. Whereas, data from touch sensing, such as tactile
and force sensors, are used to feed the controller as specific local features of object such as texture
and materials type. Therefore, both local and global data are needed to achieve a complex object
manipulation task. For example, Fig. 6 shows the block diagram that uses a combine visual/force
using impedance control for improving the reaching and grasping task.

Fusion sensor technique is a combination of many sensors in order to bring together the features
of all sensors. Visual-tactile is the most common fusion sensor that is used and implemented in
the robotic field, particularly in reaching and grasping of objects. The aim of these types of fusion
sensors is to integrate the features of vision-based global information with the tactile sensor based
local information of objects. The local and global data are generally combined in the literatures by
applying two different strategies: neural networks or hybrid control. Many researchers have devoted
their effort to come out with robust and accurate grasping. For instance, a combination of tactile data
and image information has been demonstrated in ref. [107] to develop as a complementary system.
In other words, in case the visual sensor could not distinguish the object, the tactile sensors in the
robot’s fingertips are used to capture the properties of the objects (e.g. texture, friction, roughness,
or compliance). For validation, the fusion technique has been tested on practical dataset of 18 house-
hold objects. Vision-tactile fusion has been developed in ref. [108] to manipulate novel objects from
known categories. Alternative approach using the RGB-D images based vision sensor has been pre-
sented to initially determine the position and shape of desired object, while tactile data are exploited
to improve the planning for better grasping as a complimentary part for vision.109 Another approach
of combining has been achieved based on developing an optical multimodal-sensing skin for fin-
gers of a robotic gripper. The sensor is built based on a combination of transparent skin made from
a marked soft elastic outer layer on a hard layer and internal RGB cameras. The work’s aim is to
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Fig. 7. Block diagram of direct visual servoing (adopted from ref. [1]).

reduce and also to handle errors while cutting vegetables.110 In addition to that, a vision-touch fusion
has been implemented to track objects using RGB-D camera as vision sensor andGelSight contact
sensor as tactile sensor.111

Currently, fusion of vision-tactile has been achieved in building 3D shape for objects112 by
combining features of colour image-based vision (monocular vision) and small number of touch
explorations. In ref. [113], estimation of tactile properties based on visual perception has been mod-
elled, where the data are obtained based on using a webcam and uSkin tactile sensor located at the
Sawyer robot’s end-effector. The purpose of this modality is to increase the perception of the robot
to be more aware of the contacting environment of the object while grasping. For example, the robot
can move slower when in contact with a bad traction, or grasp tighter if the object looks slippery.
Li et al. have used visuo-tactile modality to estimate the tool’s kinematics which are attributed to
robotic interactive manipulation.114 Similarly, vision and touch sensing have been implemented in
contact-rich tasks based on exploiting self-supervised learning of multimodal representations using
DRL.115 Calandra et al. have proposed using vision-tactile modalities to learn grasping and re-
grasping using end-to-end action-conditional model.116 In another work, Deep Maximum Covariance
Analysis (DMCA) method has been implemented to learn a joint latent space for sharing features
through vision and tactile sensing as an application for texture recognition of clothes.117

3. Learning Approach (Computational Techniques)
Computational intelligence techniques provide a significant function in several advanced grasping
mechanisms. Sorting and degradation techniques play an important role in analysing and offering
semantic value to signal extracted from a range of sensors.

3.1. Computer vision
Computer vision in particular has provided enormous benefits in the field of the industrial grasping
mechanism. Many research studies have exploited computer vision for improving the techniques of
grasping. Visual servoing control-based computer vision plays a significant role in robotics, which
consists in controlling the motion of a robot from the feedback of an image as illustrated in Fig. 7.
Mostly, Visual servoing control exploits to detect the objects within the workspace to perform manip-
ulating tasks. Many different techniques of object detection for grasping or manipulation have been
used to perform various tasks based on solving the problem of grasping of objects in a cluttered envi-
ronment, grasping of the object in the case of physical support relation, or grasping of a single object
by considering its shape and size. In this section, we will discuss two types of detection actions that
researchers have deeply worked on, that are grasping in a cluttered environment and grasping when
there is physical support relation between objects.

3.1.1. Grasping in cluttered environment. During grasping in a cluttered environment, a robot must
be able to understand and recognise its surroundings and objects alike and perform a sequence
of actions on the objects. Several studies focused on grasping or grasp-pose detection in cluttered
scenes. For instance, grasping an unknown object in a cluttered scene based on a point cloud from
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a single depth camera has been introduced in ref. [118]. In ref. [119], the authors proposed an algo-
rithm based on a CNN to improve the precision detection for grasping in a dense clutter using a depth
sensor. Another equally important approach that extracts target objects from the difficult environment
due to occlusion between camera and objects based on three-dimensional object segmentation has
been implemented in ref. [120]. The approach comprises two steps: (1) object probabilistic predic-
tion of the input image with convolutional networks and (2) generation of a voxel grid map designed
for object segmentation. Mahler et al.121 proposed a method to find deep-learnt policies and select
objects from clutter. They achieved a grasp detection accuracy of 92.4% by using a transfer learn-
ing technique. When they tested their learnt policies on robotic grasping with five trials for each of
the 20 objects of the test dataset, they achieved a success rate of 70%. The work of ref. [120] was
then extended in ref. [122] by considering a multi-object manipulation. Even though the 3D object
segmentation improves grasping efficiency, notably in cluttered place, there are still failures due to
picking motion. In a separate work, multi-object manipulation was tackled by modelling the problem
as a partially observable Markov decision process (POMDP).123 A deep learning-based approach to
eye-hand coordination for robotic grasping has been proposed in ref. [124]. Making use of monocu-
lar camera images (independent of camera calibration), the network predicted the probability of the
gripper being able to accomplish the grasping tasks successfully. Some researchers have concentrated
on grasping or grasp-pose detection using point clouds,125 while others have used a template-based
learning approach.126, 127 In the latter method, the target object was roughly segmented from the
background, and a convex hull was constructed around the segmented points. At the same time,
a template-based approach that used a bounding box around the object has also been adopted in
ref. [128]. In addition, deep learning has been extensively used in detecting an object in a cluttered
scene. For example, the implementation of two-stream CNNs in ref. [129] has improved the accuracy
and reliability of grasping of novel objects in a cluttered environment.

3.1.2. A physical support relations between objects. To manipulate an object of interest in a clutter
safely, the physical interaction between the surrounding objects in the scene must be considered.
The idea of physical support relations between objects in clutter has been examined in refs. [130,
131]. The pairwise support relation between objects was inferred and used to predict the order in
which these objects need to be removed for the access to the target object. The approach depends
heavily on the accuracy of the structure class classifier and hand-crafted rules. In ref. [132], a 3D
visual perception module was used to extract the shape and pose of the detected objects, and the
support relations between objects were inferred from a configuration of geometrical computation and
static equilibrium analysis, and machine learning methods depending on whether the objects were
partially or fully seen. A safe manipulation strategy based on the spatial relationship between objects
in the uncertain scenario has been proposed in ref. [133], in which its purpose is to avoid falling
objects during grasping. The existing CNN-based techniques for objects grasping did not consider
manipulation relationship between the objects on top of each other. To overcome this limitation, a
new CNN architecture called Visual Manipulation Relationship Network (VMRN) has been proposed
in ref. [134], which aims to ensure robot can accomplish grasping tasks in robust and accurate way.
Relationships of object pairs, such as “inside” or “behind” or “on top” afford certain means-end
actions such as pulling a container or tool to retrieve the desired object either inside, behind or on
top of the other. In ref. [135], the concept of bootstrapping, which uses past knowledge to speed up
the learning process, has been applied to the learning of relational affordances of object pairs. The
work uses random forest-based affordance predictors learned from visual inputs and integrates two
approaches for bootstrapping.

3.2. Deep learning
Deep learning is considered a part of the machine learning algorithms, which is also known as deep
structured learning or hierarchical learning. Deep learning can be either supervised to be totally
controlled by a human, sim-supervised where human or client can be part of the control process as
semi-automatic learning, or unsupervised where the machine automatically learns or trains. Shallow
neural networks (SNNs) are constructed with one or two hidden layers (see Fig. 8). SNNs require
a perfect characteristics extractor which leads to a solution of selectivity-invariance such that the
learning systems are changeless or constant to some features of an object (such as texture, shape and
pose) and also not selective.136 For achieving a high accuracy, developers exploited generic nonlinear
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Fig. 8. Shallow neural networks.

Fig. 9. Deep neural network.

features for the pose estimation of objects, which can be extracted from input image data, but generic
characteristics do not help learners generalise fully from training data. Besides that, for the learning
of high-level feature representation, deep learning exploits multilayer structures (see Fig. 9). There is
no standard number of hidden layers used for deep structured learning, but it is generally determined
based on trial and error.137

Deep learning is used to train large artificial neural networks. Over the last decade, deep learning
has attracted many researchers and led to advanced research in the application of robotics in many
fields. The various algorithm in deep learning have also been developed and implemented in object
manipulation and grasping. Hundreds of millions of parameters can be included in deep neural net-
works (DNNs).138, 139 Deep learning continuously provides significant and technological facilities
for innovative applications and techniques. In specific, a lot of researchers’ efforts have been con-
centrated to employ the convolution neural networks (CNNs) for developing sensor interpretation
and control algorithms based on actual data during grasping action. For instance, re-grasping is the
ability to change the grasping attitude to improve the stability of the grasp. The idea of using large-
scale data for training visuomotor controllers has been studied by Levine et al.124 The authors have
applied DRL for robotic manipulation using model-based training techniques. Meanwhile Pinto and
Gupta have trained a convolutional network to predict grasp success for diverse sets of objects using
a large dataset with more than 50 thousands of grasp attempts collected from multiple robots in a
self-supervised setting.140 In ref. [141], a deep learning method has also been applied to an adapt-
able task-performing based humanoid robot operating in an uncertain environment. In the approach,
two-phase deep learning models have been utilised, one is a deep convolutional auto-encoder aimed
to extract image features and reconstruct images, and the second is a deep time-delay neural network
that learns task process based on features and motion angle signals of the extracted image. In addi-
tion, Hossain et al. presented teaching systems that enable non-expert operators to pick up a specific
object and place it at a target location.142 A deep belief neural network (DBNN)-based approach
which uses a captured image as its input has been proposed in ref. [143]. The DBNN extracts object
features from the intermediate layers. The developed system allows users to select an object via a
graphical user interface in which a snapshot is captured using a USB camera and fed into the DBNN
for recognition. The same authors have also proposed in a subsequent paper, a non-dominated sort-
ing genetic algorithm (NSGA-II) to optimise DBNN for object recognition. In addition, robotic grasp
detection using deep CNNs has been introduced in ref. [144]. Meanwhile, teaching a robot to accom-
plish picking up and placing tasks based on using Recurrent Neural Network has been proposed
in ref. [145]. Another approach, an evolutionary algorithm integrated with DBNN has been imple-
mented to optimise the structures of the network for robot grasping tasks.146 In ref. [147], the authors
have implemented DBNN for object recognition. However, there were some limitations, like limited
angle orientation as well as robustness due to lighting conditions.
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The technique for multi-task learning from demonstration has been presented in ref. [148]. It is
used to train the controller of a low-cost robotic arm using DBNN in order to perform several complex
pick-and-place tasks and non-prehensile manipulation. The learning process consists of three stages:
(1) collection of a set of demonstrations, (2) training of a single deep recurrent neural network to
emulate the user’s behaviour and (3) deployment of the system. Meanwhile, the trained controller
converts raw camera perception into commands, which are then send to the robot to perform the tasks.
Moreover, a novel deep learning-based visual recognition of object and pose estimation system has
been designed based on Deep Semantic Segmentation Network.46 On the other hand, multimodal-
sensing models that learn from raw visuo-tactile data have been explored in refs. [116, 149]. The
frameworks process visual and tactile data with CNNs and the extracted features are concatenated
and fed into a fully connected network for the grasp outcome prediction.

CNNs have been used to predict graspable points in a cluttered environment based on using
RGB-D data.150, 151 A fully convolution network (FCN) based method for robotic grasp detection
has been proposed by Park et al.152 Making use of high-resolution RGB-D images, Wang et al. have
also proposed an FCN model that generates robotic grasp actions.153 A real-time approach for mul-
tiple grasping poses prediction for a parallel-plate robotic gripper based on FCN has been proposed
in ref. [154]. In ref. [155], Zhang et al. have introduced a robotic grasp detection algorithm based
on the region of interest (ROI). The proposed ROI-GD method used multiple convolutional layers to
generate object bounding box proposals which are the ROIs for the grasp detector. The robot then
detected objects within the ROIs instead of the whole scene. On the other hand, the region-based
object recognition (RBOR) method proposed in ref. [156] performed colour segmentation using a
simplified pulse-coupled neural network (SPCNN). In this approach, the target must be visible and
graspable. If the target is hidden or located under other things, the grasping process will be more
challenging for the robot. A multi-task CNN for robotic perception, reasoning and grasping (RPRG)
has been proposed in ref. [157], which can support and ease the robot in finding the target and making
grasp planning. In ref. [158], a CNN has been used to extract discriminative features from RGB-D
images. The framework exploited an architecture of hierarchical cascaded forests, computed and
fused probabilities of object-class and grasp-pose obtained at various levels of an image hierarchy to
deduce the class and the grasp of hidden objects. Another work on robotic grasp detection based on
using RGB-D images implemented on a parallel-plate robotic gripper has been reported in ref. [159].
In the model, a deep convolutional neural network (DCNN) has been used to extract features from
the RGB-D images. The grasp configuration of the predicted target is learned using a CNN.

Several recent approaches160–163 have employed CNNs for detection of the best grasp pose of a
robotic gripper. Furthermore, a multisensor-based approach using vision and laser sensors has been
proposed in ref. [164] to generate features of the image such as RGB, depth and intensity (RGB-DI).
A fully convolution network (FCN) with deep layers was designed to perform semantic segmenta-
tion of RGB-DI images. A three-dimensional CNN (3D CNN) has been trained to predict optimal
grasping poses and wrist orientations for soft-hands which might experience unpredictable deforma-
tions during grasping.165 In ref. [166, 167], CNNs have also been trained to learn and generalise tool
affordances based on their 3D geometry. The framework considered grasping points of tools (such
as hammer, rack, hoe etc.) and predicted the effect of different actions using these tools. While most
of the existing robotic grasping models were trained on large-scale datasets collected in laboratory
settings, Gupta et al. collected and trained their models on a dataset of about 28K grasps in people’s
homes with different environmental conditions.168 The experiment was carried out by using a low
cost off-the-shelf mobile robot module. Aiming to improve robustness and reduce the training time
of a CNN model for grasping, a learning strategy based on a single demonstration has also been
proposed in ref. [169]. While many CNN implementations for robotic grasping have been reported
in the literature, it is believed that new possibilities and innovative solutions of such models will
continuously be sought.

3.3. Reinforcement learning
Reinforcement learning (RL) is an active area of machine learning that is related to how software
agents should take actions in an environment such that some notion of cumulative reward is max-
imised. Recently, there is a surge of interest in implementing RL in robotics field, particularly in
reaching and grasping of objects. In an RL framework, an agent interacts with its environment and
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Fig. 10. General schematic of deep RL methods.172

learns the best policy that maximise its long-term reward via the trial-and-error strategy. In ref. [170],
for instance, the RL algorithm has been implemented to perform co-operative manipulation of objects
by a mobile dual-arm robot. The robot completed a pick-and-place task by dividing the tasks into
a sequence of motion primitives such as reaching, grasping and co-operative manipulation of the
grasped object by dual arms. To mitigate the issue of delayed reward, Krishnan et al. proposed
a three-phase algorithm called sequential windowed inverse reinforcement learning (SWIRL) that
learns a policy for sequential robot tasks from a series of demonstrations.171

Combining deep learning with reinforcement learning creates a new approach called DRL. A gen-
eral schema of the various components that can be found in most deep RL algorithms is illustrated in
Fig. 10. Furthermore, robot manipulation in human environments requires an additional knowledge-
based reasoning component to make inferences and decisions while performing various daily tasks.
DRL has been implemented to perform various robot manipulation tasks such as reaching, grasping
and placing.173–176 Soft robotic structures provide more flexibility and adaptability for accomplish-
ing tasks and safer human-robot interaction.177, 178 Recently, the contribution of technologies of soft
robotics that integrated with deep learning techniques has become a pivotal role in providing accurate
and acceptable results in robot manipulation tasks.179 With the increased advancements in grasping
capacities aided by vision sensing, researchers have utilized such models in various complex intel-
ligent robot applications. Taking advantage of the robust structure of soft robots and power the DL
and DRL algorithms, different techniques have been applied in the detection of robotic grasp6 and
control for grasping of dedicated objects in various size, shape and structure.180 To deal with the
issues of complex action space, Gualtieri and Platt implemented a DRL strategy with attention focus
that trained a 6-DoF robot to perform grasping and placing tasks in both cluttered and uncertain
workspaces.181 Using a hierarchical sampling process, the robot reached for the target object by
learning a sequence of gazes to focus attention on the task-relevant parts of the scene. In the latest
research, DRL has been developed to be a self-supervised such that robot farms can be operated
autonomously for months. Striving to achieve a broad generalization to unseen objects, an off-policy
DRL approach has been proposed to learn closed-loop dynamic visual grasping strategies, using self-
supervised data collected from a monocular RGB camera located over the shoulder of the robot.182

However, the method suffers some limitations that are associated with the experimental setting such
as the optimal policy. Ref. [183] has presented a grasp-to-place framework that has the capability of
grasping objects in sparse and cluttered environments using Q-learning that trains on fully connected
DenseNet (FCN).

4. Gripping Approach (Grasping Mechanisms)
In this section, the gripping approach is classified on the basis of two categories as the main two
factors in the gripping task that may be commonly involved in performing a certain task, namely,
mechanism and gripper categories. The mechanism category is the way to control the gripper to

https://doi.org/10.1017/S0263574721000023 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721000023


1866 Review on reaching and grasping of objects in robotic

Fig. 11. Hierarchical structure of the grasping mechanism based on the gripping approach.

perform the task. The gripping mechanism can be grouped on the basis of a mechanism that involves
to actuate either soft or rigid robotic grippers. Meanwhile, the gripper category is concerned about
designing the gripper to be more efficient in performing a certain task. The gripper category can be
grouped on the basis of designing that involves to determine the type of grippers (e.g. rigid or soft
grippers) and the methodology of gripping (Fig. 11).

The mechanism is the first category grouped on the basis of soft and rigid robotic grippers. In
terms of the soft gripper, three types of the mechanism are implemented in gripping an object: (1)
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controlled stiffness such as granular jamming,184 electrorheological and magnetorheological fluid185

and shape-memory polymers,186 (2) controlled adhesion such as electro and gecko adhesion,12, 187–189

and (3) actuation such as a passive structure with external motors,190 fluidic elastomer actuators191

and electro-active polymers such as dielectric elastomer actuators.192 In terms of rigid grippers, con-
trol and actuation are the two mechanisms being considered. The gripper is the second category that
is divided into two parts: (1) gripper type, which is categorised on the basis of the types of grip-
pers(either the number of fingers as in rigid grippers or types of fingers and hands as in soft grippers
and (2) methodology used, which is the way of grasping, such as fingers, hook, scoop and adhe-
sive or sticky fingers. Thus, manipulating an object is considered a basic fundamental function that
can be accomplished by robotic systems, such as non-mobile or mobile robots, to provide beneficial
roles in various workspaces for structured and unstructured environments, such as houses, industrial
areas, seas and spaces. Some of the researchers focused on designing grippers according to specific
actuators based on the needed task and requirements.

The purpose of the gripper is to provide a solution for a variety of grasping problems. Various
approaches have been presented to improve the grasp gripper with objects of different shapes and
sizes. The algorithm for computing the forced closure on 2D and 3D objects with three hard fingers
and a point contact with friction is developed.193 An alternative approach to find the forced closure
without friction has been presented.194 A solution has been provided to lift objects even in the absence
of the form closure,195 where the proposed solution has depended on using microscopic hair-like fea-
tures to exploit van der Waals forces. Furthermore, lateral grasping has been proposed196 and inspired
by the human grasping of flat-shaped objects, such as dishes and plates, by considering hooked fin-
gers to increase the robustness of grasping. However, it is restrictive to the thickness of the object.
The end effector of the gripper for handling specific food industry tasks, such as grasping sliced fruits
and vegetables, has been designed on the basis of the Bernoulli principle.197 Some researchers devel-
oped a gripper by using a spatula-like device (e.g. designing end effectors with spatula-like devices
to slide under the object and lift from the ground).198 The approach is also restricted in terms of the
size and shape of an object by considering the spatula-like device space. Another approach has used
push grasping techniques, such as a push grasping mechanism based on generating a trajectory of the
object, to select an object from the floor and take advantage of its dynamics.199 Conversely, a pushing
grasp based on sliding adjusts the object in the environment before grasping,200 which depends on the
environment more than the designing of the fingers (e.g. sliding the object to the edge of the table to
grasp). Furthermore, a flip-and-pinch task has been presented on the basis of the under-actuated fin-
ger design for grasping a small object from a flat surface.201, 202 They used a flip-and-pinch task where
the hand picks up thin objects from the surface of a table by flipping them into a stable configuration,
but this approach is almost limited by the type and size of objects. Suction cup grasping is a common
approach that has been utilised to pick up various types of objects. In ref. [203], a universal jamming
gripper has been proposed on the basis of vacuum with a combination of the positive and negative
pressure consisting of a membrane containing granular materials. Although the approach proposed
a grasping mechanism that involves using a suction cup, it is restrictive to some objects that are not
flat and nonfragile. Kessens and Jaydev204 designed a self-sealing suction cup array grasp; however,
the suction force is only exerted when suction cups are physically in contact with another object.

Catalano et al.205 designed Pisa-IIT Soft Hand by using adaptive synergy. The idea is adopted from
an under-actuated hand design, so the approach uses pattern recognition tools. Another hand design
(iRobot-Harvard-Yale [iHY] hand) has been introduced,206 and it is an under-actuated hand-driven
on the basis of five actuators to increase the wide of grasping for objects with different shapes and
sizes. As reported, the approach shows the capability of power and fingertip grasping based on the
compliant mechanics of the fingers. The design is activated on the basis of the electric motor inside
the gripper. Additionally, Valois et al.207 developed a simple closed-loop hybrid grasping controller
that mimics an interactive contact-rich strategy based on position-force, pre-grasp and landing strate-
gies for finger placement. Although the approach involves a compliant control of the hand during the
grasping and releasing of objects to preserve the safety of target objects, it has been implemented to
grasp a specific small object by generating the trajectory of that object and taking the advantages of
its dynamic and adjacent features, such as a hard surface or a table, to achieve grasps. Furthermore, a
gripper that consists of two fingers has been developed;208 in this gripper, each finger consists of two
links actuated by a single actuator. Even though the approach varies in the grasping type, including
parallel grasping, enveloping and fingertip grasping of objects with different shapes, it suffers from
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picking up a flat object from a flat surface. A robotic hand with inherent abilities has been designed
by exploiting environmental constraints.209 The author focused on cases in which the gripper can
utilise environmental constraints to bring an object to its target place.

In the area of micro- and nano-grippers, studies have focused on the gripper design to perform a
specific task. For instance, picking micro- and nano-objects needs an appropriate gripper to deal with
a task. Shi et al.210 designed micro- and nano-grippers to pickup and place down micro-objects with
size scales of 100 microns and less. For grasping micro-objects, the author also proposed a differ-
ent gripper design by using piezoelectric actuators.211 Ref. [212] has presented piezoelectric (PZT)
actuated micro-grippers, however it has focused on the independent control of position and grasp-
ing force, which cannot meet the requirements of the precision operation. Another gripper design
for micro-object grasping in biomedical applications has been proposed.213 These kinds of micro-
grippers are designed from specific materials, such as hydrogel. Micro-grippers have a star-like shape
and can perform dexterous postures to grasp living tissues. An image processing-based optimisation
process has been applied to determine localisation. For example, particle swarm optimisation has
been implemented to estimate the current gripper configuration from image segmentation. Hence,
studies on micro-grippers have offered many opportunities for improvement in terms of accuracy
and robustness in micro-gripper controllers.214 Because of the advantages of fast response, large
output force and small size, piezoelectric actuator is widely adopted as the micro-grippers’ actua-
tors. Generally, micro-grippers as the manipulator of the micromanipulation system are adopted to
contact the tiny objects directly and achieve grasp-transmit-release micromanipulation. Hence, the
micro-grippers’ performance has a direct influence on the quality and precision of micromanipu-
lation. In addition, taking the small and easily broken characteristics of micro-objects into account,
therefore, a high-performance control algorithm needs to be introduced to precisely control the entire
manipulation process of grasping-transfer-release.

Using conventional grippers to pick up small and flat objects (e.g. coins and sheets of paper) from a
surface is a difficult task to accomplish. Thus, different types of gripper designs have been developed
to improve grasping tasks, such as using a suction cup. Although suction cups have been used in
various practical tasks, they fail to deal with lightweight and fragile objects.215 Hasegawa et al.216

proposed suction with a pinching hand, which is used to grasp objects in a cluttered narrow space.
It has two under-actuated fingers with one extendable and foldable suction finger whose fingertip
has a suction cup.216 Thus, some researchers employed suction and pinch grasp motions in which an
end-effector grasps an object with a pinching system to fix the pose while suctioning the object with
a vacuum gripper. However, during suctioning, the object may change its pose because the suction
cup is too soft to stably fix the pose of the object. The unstableness of a vacuum gripper increases the
probability of dropping the object as air can leak from an open space between the suction cup and
the object. A three-fingered hand-based approach has been developed217 on the basis of the suction
mechanism at each fingertip. The hand with GRIPP 4, which has three fingers and two servomotors,
is designed to grasp objects by using power and precision grasps. In this approach, the combination
of the grasp mechanism and vacuum pads allows iGRIPP 4 to grasp objects steadily. Even though
the suction mechanism at the fingertips enhances grasp stability and enables the hand to hold large
objects, iGRIPP 4 has a robot hand with low degrees of freedom because a vacuum pad is present at
each fingertip and the hand is too big to enter a narrow place. Lévesque et al.218 proposed a scooping
grasp with two fingers; in the design, one finger is bent from the tip finger to function as a spatula-
like grasp. The same strategy has been implemented219 with different finger designs; in particular,
a quasistatic method is proposed to design a gripper by considering a passive thumb to compensate
the manipulator positioning error. They aimed to grasp thin and small objects from hard surfaces.
Babin et al.220 proposed a passive and epicycle mechanism to pick up a flat object from a smooth
hard surface by sliding the thumb finger under the object. Soft pneumatic grippers have also been
proposed to achieve successful grasps for a flat and flexible object.221 They are built on the basis of
the combination of the benefits of electro-adhesive and soft pneumatic grippers.

A bio-inspired approach (e.g. a gecko-like gripper) has been developed to enhance grippers for
grasping a wide range of objects with various shapes and sizes and control friction force at the contact
points of the hand. For instance, an under-actuated Gecko Adhesive Gripper has been presented in
ref. [222] for simple and versatile grasping. In the approach, their purpose is to grasp a wide range
of curved surfaces using a single actuator through a simple tendon-driven mechanism that attaches
and adheres in one step. Therefore, with the tactile sensor, the contact area can be estimated, where a
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force/torque sensor provides the overall measurement of the force and moment. However, during the
release of the object from the end effector, a shaking operation is needed in the approach to detach the
adhered object. Ngo et al.223 modelled a gripper with an embedded compliant bistable mechanism
(BM) to detach the adhered object from the end effector during the picking and releasing of objects
and avoid the issue of a shaking operation or detaching the object from the end effector. The adhered
object is released from the gripper by inducing the vibration of the end effector by an impact pestle
adjacent to the shuttle mass of the BM. In addition, Huh et al.224 introduced an active sensing based
on inspired gecko adhesives to offer good contact on the surface that can be useful for grasping
an object in space. Their active sensing approach involves Lamb waves in thin bilayers, which are
excited and detected by piezoelectric strips. In another study,225 sensing has been proposed to grasp
an object of various shapes and textures based on a capacity sensor by using a thin film of gecko-
inspired adhesives. This type of sensor is useful because films adhere more tightly to the surfaces
of an object when the weight of the object increases as the capacitance locally increases at contact
areas. With high weighted objects, adhesion force might be failed to tightly hold the object during
grasping that causes the object to fall down due to an insufficient adhesion force, so that gecko-based
a gripper design is presented using shear force.226 The aim of the work is to increase the pressure of
the gripper for grasping an object that is larger than that of the gripper.

Most studies have focused on designing robot hands, which have been considered one of the
hottest research topics since the early beginning of the robotics field because of its fundamental role
as a complementary task in different control robotic systems. Thus, it is the way to accomplish grasp-
ing and manipulating in various industrial tasks.227 In ref. [228], a pneumatic tactile sensor is used
with different robot hand designs, which are constructed and applied to the robot hand’s fingertip to
recognise some features associated with grasping, such as force, slippage and vibration as the pres-
sure of the air bladder changes. As such, the design of fingers of the hand resembles the shape of an
arched curve, and a pressure tactile sensor is attached to the curved surface to increase the ability of
the hand to grasp and handle fragile objects because of the inherent compliance of the air bladder. In
ref. [229], a novel tendon-driven bio-inspired robotic hand has been designed for in-hand manipula-
tion. A soft hand has been developed and implemented to grasp unknown objects by using a 3D deep
CNN.165 Integrating actuators and sensors in a pneumatic gripper design has been proposed230 to
improve adaptive grasping and size recognition. The control system of the soft pneumatic gripper is
built on the basis of the two types of sensors: one is a pressure sensor, which is used to detect the force
grasp, and the other is a bending sensor implemented to recognise the grasping position. In ref. [231],
a grasping mechanism is proposed on the basis of a multi-fingered robot hand to solve the problem
of uncertainty of an object pose. This mechanism is attributed to the uncertainty of the object pose
that leads to a great impact on the stability of grasping. Thus, the control method is dependent on
the function of a finger state. In ref. [232], modifying the configuration of hands and joints (because
the fingertip is considered spherical, which restricts the grasping task in a certain shape of objects)
has been proposed to achieve a desired grasp based on the stiffness features by considering stability
during a grasping task. The modification is accomplished by using a novel controller and tested on
two shapes of objects, such as cuboids and spheres. However, the lack of sensory data in the method
leads to finding the intersection between the spherical fingertip and the new cylindrical object. The
approach of using a human-inspired robotic grasping has been studied and implemented;233 in this
approach, a hand with two fingers can be beneficial to grasping flat objects. Based on the mechanism,
the work aims to exploit environmental constraints for supporting the surface, such as setting a com-
plaint contact with the support surface. In this work, the authors intended to increase the robustness
against geometrical uncertainties of the object and estimate the pose error based on the perception
system. For example, different mechanisms have been used (Table II).

Designing simpler and universal grippers is increasingly studied on the basis of advanced soft
materials and components regarding the soft-robotic gripper. The advantage of using a soft gripper
is to avoid making damage on the target object that possibly happens once the rigid gripper uses
to grasp fragile objects. Thus, compliant materials as a partial solution in a robotic end effector are
commonly added to create a simpler and lighter gripper that can safely grip objects. Many studies
have been devoted to designing a soft-robotic gripper. Table III shows different grasping mechanisms
based on different soft-robotic hands and grippers that have been developed to perform a specific
grasping task.
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Table II. Grasping mechanism of picking up an object.

Technology of Mechanism Gripper Application References

Behaviour of a
tendon-driven robotic
gripper performing parallel,
enveloping and grasping
with fingertips. The gripper
consists of two fingers, and
each has two links and is
actuated using a single
active tendon

Enveloping grasps of a
large range of objects
and applying it to a set
of common household
objects

[208]

The scooping grasp with
two fingers by using a
commercial gripper; in the
design, one finger is bent
from the tip finger to
function a spatula-like grasp

Picking thin objects on
a flat surface

[218]

Using passive and epicyclic
mechanisms based on the
consideration of a finger
making a contact with the
top of the object while the
thumb of the gripper is
being forced between the
object and the surface

Picking up large thin
objects lying on
smooth hard surfaces

[219]

Using quasistatic methods,
such as scooping with a
passive thumb. Considering
a finger standing behind the
object while the thumb of
the gripper is being forced
between the object and the
surface

Picking, grasping or
scooping small objects
lying on flat surfaces

[220]

Integration of actuating and
sensing the soft pneumatic
gripper

Grasping a large range
of objects

[230]

Human-inspired framework
for grasping

Grasping domestic flat
objects on support
surfaces

[233]

5. Assistive and Warehouse Robots
The needs of assistive robotic purposely designed and controlled for helping the elderly carry out
everyday tasks are increasing.244 Assistive robots are used to allow grasping safely in daily tasks.
The most crucial challenge faced by researchers is how to make the robot’s hand more stable and
robust during the grasping of an object. Some studies have focused on controlling the stability and
robustness of hand motion while it is grasping. For example, a computer vision has been used to
enhance the wrist control by using the robotised exoskeleton hands in achieving an assistive robotic
grasp.245 Although an improvement has been made in terms of control, natural reaching and grasping
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Table III. Some types of soft-robotic grippers.

Technology of mechanism Gripper Application References

Bio−inspired hand (the RBO
Hand 2) which is
• pneumatically actuated and
• made of a silicone rubber,

polyester fibers and a
polyamide scaffold

For dexterous grasping
capabilities based on
achieving 31 grasp
postures from a
state-of-the-art human
grasp taxonomy

[234]

Actuated using a passive
structure with external motors

Picking up a wide
range of objects,
including tissues, cups,
needles and pins

[235]–[237]

Jamming gripper-based
control by means of pressure

Picking up familiar
and unfamiliar objects
of widely varying
shapes and surface
properties

[184]

Actuated based on combining
air-pump actuation with
superimposed curvatures and
pressure sensors

Grasping different
objects

[238] [239]

Controller adhesion inspired
by gecko (fluidic elastomer
actuators) combination of
fluidic elastomer actuators
and gecko-inspired adhesives

Grasping large
objects and achieving
high-strength grasps

[240] [189]

Fluidic elastomer actuators
(self−healing polymers)

Picking up a wide
range of objects

[241]
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Table III. Continued.

Technology of mechanism Gripper Application References

Controller adhesion inspired
by a gecko. A UR-5 robot arm
was equipped with
• an FT-300 force/torque

sensing in the wrist.
• each finger having a 7-by-4

tactile sensor array and a
patterned skin of directional
adhesive

Improving the ability
of robots to grasp
delicate objects, such
as rotten tomatoes and
acrylic sheets

[242]

Gecko adhesion dry
multi-fingered gripper in
which each finger is made of
a liquid crystal polymer
(LCP), with a gecko-adhesive
pad placed on the fingertip

Grasping different
items by an elastomer
membrane with
mushroom−shaped
microfibers

[243]

motion is yet to be achieved. In the same field of assistive robots, some studies have been performed
to design soft hands. For instance, a soft hand with pneumatically enhanced muscles246 and soft
gloves247 has been designed to be driven with a custom 3D-printed cable that can perform flexion
and extension. A supernumerary hand with an additional force has been designed for grasping to
decrease the stress on the upper limbs.248

An assistive robot is a warehouse robot that is yet to be able to pick up and place objects in
cluttered areas or shelves. Grasping techniques can provide a solution for particular problems, such
as using CNNs based on an eye-in-hand approach for object recognition and conventional grippers
(for example, hybrid pinch and suction gripper). On the basis of the challenge of amazon robotics,
Corbato et al.249 discussed some lessons learned from such challenges; for instance, task conditions
must be the basis for choosing a solution, and an individual solution is required for integration and
problem solving based on using the hierarchical structure of automation levels. As such, some robotic
solutions for grasping tasks are associated with human hands.250 Thus, the real challenge in robots is
when a robot gripper needs to plan and navigate extremely cluttered environments.251 For instance, in
contrast to storing, kitting needs to prepare products or tools quickly, and it needs to pick up an object
from a cluttered place and to put down an object in cluttered environments via real-time planning,
which can exceed the complexity of objects and detect the issues of collision.252

6. Conclusion
This paper presents a comprehensive review devoted to the techniques related to reaching and grasp-
ing of objects in different workplaces. In this paper, different robotic techniques are highlighted to
provide a clear view on how the researchers dedicated their efforts through time for the robotic devel-
opment of either mobile, non-mobile robots or industrial manipulators. There is no doubt that in this
fast-paced world, advanced novel robotic techniques are needed to achieve high accuracy and preci-
sion for reaching and grasping tasks. This motivation has thus spurred many research studies in the
field of robotic reaching and grasping using various techniques and approaches.

By using a vision sensor to guide the robotic arm to the target, many research studies have con-
centrated on developing and improving the techniques that help the arm in target detection (e.g.
exploration) and path generation to reach and grasp. Using vision only as a technique for object
recognition and pose estimation is prone to error that will definitely affect the robotic arm and tar-
get object alike during grasping and manipulating task. Alternatively, object localisation based on
using tactile sensors will be a significant and advanced approach that helps to ease object grasping.
However, in the same vein, using a tactile sensor only is also prone to error. Thus, the tactile sensor
can be fused with a vision sensor to complement each other. Over the last five years, tactile sensors
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have taken over a wide area in robotic applications. Advanced development in tactile sensors such
as meticulous devices and skins has brought about the huge benefits and opportunities to be applied
in numerous robotics applications such as object recognition, object localisation, slippage detection,
perception and so on. Meanwhile, it has also brought about many challenges due to its effectiveness
in implementing haptic data in robotic applications. For example, the properties of objects in object
recognition tasks such as texture, shape and material can be known through haptic feedback; and esti-
mation of object localisation has become a crucial challenge for successful robotic applications in
reaching, manipulating and grasping tasks. Recently, localisation based on haptic using single point
contact sensor has attracted a lot of attention and interest from researchers. However, using single
point contact sensor is associated with a limited information as the single point contact sensor needs
a multi-contact. Thus, using a tactile array sensor is a solution for identifying contact patterns. As a
result, there are many challenges that are open to further investigations such as (1) the mapping of the
points of contact on the sensor pad into 3D space; (2) the technique of combining data points observed
from a sense of vision and touch alike; (3) the determination of the priority structure once the data
of various sensors are in conflict. As a consequent, computational solutions have been proposed for
the development of either control or sensing systems that are extremely flexible and universal such
that conversion from one application to another can be done with less effort. While the development
time can also be reduced to accomplish fast implementation. Different solutions have been imple-
mented to perform a quick implementation. However, the recent solutions that researchers dedicate
their efforts and attention on are deep learning approaches, which require a significant amount of
training and tuning.

One of the most important challenges in grasping task is the gripper’s design. However, to really
achieve a flexible, robust and adaptive hand or gripper is still subject to further studies and devel-
opment. Until then, soft gripper design is currently one of the hot topics that captivate some of
researchers’ attention. A well-designed gripper could significantly be implemented in industrial
applications as well as assistive robotics for achieving specific tasks. The gripper is the basis for the
mechanism and grasping approach especially when robots serve as intelligent autonomous agents.
Thus, in the future, gripper design can be more focused on the type of materials, architectures, dis-
tribution of the sensors, control techniques and the processing of local information. All of these are
still big pending challenges, which can smoothen the way for achieving wide and tremendous appli-
cations based on either hard or soft-robotic grippers such as in manufacturing workplace, haptics and
object manipulation within robot’s workspace. We hope that this comprehensive review will encour-
age more new researchers to be interested in the field of robotics as well as stimulate more research
studies, not only limited to reaching and grasping of objects.
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