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Abstract

In this paper we present formulae for contact distributions of a Voronoi tessellation
generated by ahomogeneous Poisson point process in the d-dimensional Euclidean space.
Expressions are given for the probability density functions and moments of the linear and
spherical contact distributions. They are double and simple integral formulae, which
are tractable for numerical evaluation and for large d. The special cases d = 2 and
d = 3 are investigated in detail, while, for d = 3, the moments of the spherical contact
distribution function are expressed by standard functions. Also, the closely related chord
length distribution functions are considered.
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1. Introduction

The Voronoi tessellation is a popular stochastic geometrical model applied in many fields
of science and engineering; see, e.g. [9]. A commonly used special case is that of complete
randomness in which the generating point pattern is a homogeneous Poisson point process. This
so-called Poisson—Voronoi tessellation has been studied by many researchers, both analytically
and by means of simulation.

Contact distributions are important random set summary characteristics. They describe the
size of pores or porous space; see, e.g. [4] and [5]. In the context of a tessellation they can be
used to characterize the size and the shape of cells; the random set of interest is then the union
of all cell boundaries.

A first analytical approach to the linear contact distribution function of the planar and spatial
Poisson—Voronoi tessellations is given by Gilbert [2], while Serra [11, p. 527] presented a
formula for the spherical contact distribution function for the spatial Poisson—Voronoi tessel-
lation. Muche and Stoyan [8] provided a unified method to calculate linear and spherical
contact distribution functions of the planar and spatial Poisson—Voronoi tessellations. This
paper also gave an analytical expression for the chord length distribution function, using the
close relationship to the linear contact distribution function. Furthermore, the problem of
calculation of chord length distribution functions in higher dimensions d was mentioned there.

Other analytical approaches to investigate the chord length distribution function in higher
dimensions are given in Schlather [10] and Muche [7]. In these papers formulae are presented
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for the probability density function in double integral form, which are tractable for numerical
calculations.

Alishahi and Sharifitabar [1] studied the linear contact and chord length distribution functions
of the Poisson—Voronoi tessellation for large d. The limiting functions of both characteristics
HpP°(r) and L*°(r) (for d — o0) were given in terms of standard functions. The value of the
density function of L°°(r) for r = 0 was given explicitly. Plots of the density function for
various d were obtained by simulation.

In further papers, contact and chord length distribution functions are studied for some
modificated Voronoi tessellations; cf. [3] and [6].

In the present paper we investigate the contact and chord length distribution functions of the
Poisson—Voronoi tessellation of arbitrary dimension d. These calculations are mainly based
on the methods provided in Muche and Stoyan [8] and Muche [7]. The probability density
functions Ay, (r) and f;,(r) (the notation is explained in Section 2) of both characteristics and
their moments are given in double integral form, tractable for an efficient numerical evaluation
and for large dimension d. Expressions are given for £, (0) explicitly and for f;,(0) in simple
integral form for arbitrary d. A new approach is used to determine the spherical contact
distribution function in higher dimensions. Probability density functions and moments are
given in simple integral form, tractable for numerical calculations and for large d. For the
special case d = 3, the moments of the spherical contact distribution functions are given by
standard functions. A simple relationship between linear and spherical contact distribution
functions is presented.

The paper is organized as follows. In Section 2 we introduce the notation, give the definitions
of the contact and chord length distribution functions, and sketch a means to calculate them.
The main results are given in Sections 3 and 4. In Section 5 the spherical contact distribution
functions are investigated in particular for the special cases d = 2 and d = 3. Section 6 gives
the proofs of all the results.

2. Fundamentals

Let & denote a homogeneous Poisson point process of intensity A in the d-dimensional
Euclidean space R, 2 < d < oo. Let 20, 21, 22, - . . be its points, also called centres,
neighbours, seeds, or atoms. Let #, be any section subspace of dimensionn (1 < n < d)
through R?. Let u, x, and y denote elements of R?, and let ||x — y| denote the Euclidean
distance (norm) between two of them. Let V be the Voronoi tessellation generated by &.
The cells of 'V are d-dimensional bounded open convex polytopes. Let Cp denote that cell
containing the origin o, and let zo denote the generating point of Cq. Let us denote by E the
set of all cell boundaries (vertices, edges, . .., (d — 1)-dimensional cell faces), or, equivalently,
the set of all elements not inside a cell. Since ® is stationary and isotropic, sois Z. Let s(x, r)
be the line segment of given direction (positive x-axis) of length r starting in x, let b(x, r)
be the ball of radius r centred in x, and let db(x, r) be its boundary; rs(x, 1) and rb(x, 1)
are the same as s(x, r) and b(x, r), respectively. Furthermore, let £4-1 — ob(o, 1) be the
(d — 1)-dimensional unit sphere, and let o and w be elements of 891 Let wy denote the
volume of the d-dimensional unit ball b(o, 1),

7d/2

“ T Tan+)

where I'(¢) is Euler’s I"-function.
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The contact distribution function Hpg(r) is defined as

P(ENTrB = 2)

Hp(r) =1 — :
5(r) 1—Poecg)

r=0,
where B is a specified fest set or structuring element, a subset of R? with 0 € B. In other
words, Hp(r) is the probability that r B intersects &, conditional on E not containing o. For a
definition, further representations, and basic properties, see [12, p. 71ff.].

Two important cases are

o the linear contact distribution function H;(r), where B = s(o, 1) is the unit segment,
e the spherical contact distribution function Hy(r), where B = b(o, 1) is the unit ball.

The chord length distribution function F;(r) of a random tessellation is the distribution
function of the interval lengths formed by the intersections of E with a fixed line; cf. [12,
p. 82]. Furthermore, there is the close relationship between H;(r) and Fj(r):

l r
H(r) = H/o (I = Fy(r))dr (D

(cf. [12, p. 208]), where E L is the mean chord length.
Following the results given in Muche and Stoyan [8], the contact distribution function can
be written in general form as

Hp(r)=1- /0. /;d_l exp{—Ava (U p,o \ b0, p))} fp(p) fx(0) do dp, @)

with polar coordinates (p,0), 0 < p <ooando € $4-1 d-volume vg(+), and

Urpo = | b0x. lI(p. o) = x]D).

xerB

The exponential expression in (2) describes the probability that the test set » B is completely
included in the origin cell Cy under the condition that its generating point is zo = (o, o). The
distance between o and zg is characterized by the well-known nearest-neighbour distribution
function. Its density function is

fp(p) = rdwapexp(—dwap?}). 0 < p < oo 3)

Let ¥ denote the ray emanating from o and passing through zo. Based on the isotropy of V, &
is uniformly distributed on 89!, i.e. its density function is

fxlo) = dL “
wq
For further investigations, the d-volume of two overlapping (or truncated) balls is needed.
Following Muche [7, Equations (8), (9), and (10)], the d-volume of two overlapping balls with
midpoint distance r and radii rsin ¢ /sin(« + ) and rsin 8/sin(« + 8) (as p and o, and o and
B, are random variables, called intersection longitudes) is given by

d sin? B 4721 sin? & 472]
va(r, o, B) = wgr <m ; ai(a) + m ; ai(ﬂ)), @)
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where |0 | denotes the greatest integer smaller than 6 and

4

1—-—, d even,
ap(y) = T
cos> %1//, d odd,
INE ; 6
cos F(,+i/2)sin2’1 ¥, d even, ©)
ai(p) = ’ i=1....|5d]

ra@+1/2 .
Zﬁ @+ /)Sinzl

., dodd,
G+1) 4 °

Alternatively, with midpoint distance r and radii p and \/ r2 4+ p2 — 2rp cos a, the d-volume is

Ld/2]

vy (r, o, B(r, p. @) = wg (pd > ai@)
i=0
L4721 r—pcosa
+ (r2 + ,o2 — 2rp cos a)d/2 Z a; (arccot —)) (7)
= psina
Both expressions (5) and (7) are related by the formulae
— pcos
B = arccot r,o.—oz (8)
p sina
and in
7 sin
__rsmp 9
P~ Sint + p) ®
and the corresponding partial derivatives
B r sin o
dp  r24p2—2rpcosa’
3 .
p _ _ rsina (10)

8 sin2(a+p)

The first derivative of v(r, o, ) with respect to r transformed according to (9), elaborated in
detail in Muche [7, p. 293], is

/ rsino d—1 L(d-1)/2]
vy(r e, B) = dwd(m> ;} bi (). (1)
with
(mr — ) cosy + sinyr J even
bo(¥r) = b4 ’ ’
cos? %w, d odd,
rda Y (12)
) 1 F(z+§/2) ginZit+1 Y, deven, - Ll(d 1)J
i = —— . ) rL=1,...,|5 - .
v | BCZ12) Gy aa, ’
ri+1
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In the same way, the second derivative with respect to r is given by

. d—2 Ld—=3)/2]
1 = dwy (ﬂ) Z ci(B)
vd(r’avﬂ) Sin(a+ﬁ) 1 )

i=0
with
d—1 1 d_zs'nzdf ( Y) + sinyr cos ¥ d even
—_— — i T — i , ven,
co)=1 = d—1
T +cosy)(1+ (d —2) cos ), d odd,
r'a .
#(d —2i —2)sin? ! ycosy, deven,
T AT
avm |TO=172) o D sin® yeosy.  dodd,
LG@+1)
fori=1,. L (d —3)]. Furthermore, knowledge of the density function of one of the

angles o and B occurring in (5) and (7) is necessary. Consider an element o € $4-1 and an

n-dimensional section subspace J, (1 < n < d), o € #,. Let o’ be the projection of o on
H,, and let Ay, be the angle Z(coo’). If o is uniformly distributed on § d=1 the probability
density function of Ay, is

f (@) = 2F(d/2) Sind—n—l O{COSn_l o 0<aq < z (13)
A = P /2)T((d — n)/2) ’ =%

as is shown in Section 6.

The assumptions used to calculate the contact and chord length distribution functions in
arbitrary dimension d are now complete. Henceforth, let H;, () and Fj, (r) be the linear contact
distribution and the chord length distribution functions of 'V in R, respectively. Let Hj dn (r)
be the spherical contact distribution function of an n-dimensional section through V in R9.
Furthermore, let Ay, (r), fi,(r), and h, , (r) be the corresponding density functions, and let
E; R’Cj, E Ls, and E; R’;’n, k=0,1,2,..., be the corresponding moments.

3. The linear contact distribution function and the chord length distribution function

This section contains the main results of this paper. All numbered equations represent new
results that are valid for all dimensions d, 2 < d < oo. These formulae are proved in Section 6.

The integral evaluations in this section and the next section were made using MATHE-
MATICA®. To evaluate the probability density curves and moments for d — oo, the obtained
numerical results for large d were fitted by smooth auxiliary functions of d, which were then
extrapolated to d — oo.

The probability density function of the linear contact distribution function is given by

ZJT(d 1)/2)\'2 d
i, (r) = / / 02 0 (B, . ))

I(d-1)/2)
x exp{—Avg(r, o, B(r, p, )} dadp, (14)
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or, equivalently, in terms of the angles @ and S,

2d7d=1,2 2d- 1(sm asm,B)d 1
,’lld(r) F(d—]) f f 51n2d(a+/3)

Ld=1)/2]
x Y bi(B)expl—ivg(r.a, f)}dBda. (1)

i=0

Its value for r = 0 is

2 (AT (2 — 1/d){T((d 4 2)/2)}>~1/d\1/d

hy, (0) = . 2<d<oo, 16
O dT2((d + 1)/2T'(d — 1/2) =d=00 (16)
with the limit
lim hy,(0) = v/2e ~ 2.331 644. (17)
d—o00

See Figure 1. The moments corresponding to H;, are

2{C((d 4+ 2)/2)}' /41 (2 + k/d)
(k+1)/21'*((d 1)/2))Lk/d
/” /”_‘" (sin®  sin B)?~ ! sinf (o + B) ZL(d h/2) b (B)
X
(sin? B Y17 4y (@) + sin o« LY ap(B))2 /4

E RS =

(18)

fork=0,1,2,.... See Table 1.

FIGURE 1: The probability density function of the linear contact distribution of the Poisson—Voronoi
tessellation in ]Rd, d =12,3,5,8,12,17,23,30, co. For all figures in this paper, the intensity of the
generating Poisson point process is 1.
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TABLE 1: Moments E; Rk of the linear contact distribution function of the Poisson—Voronoi tessellation
inRY, d =2,3,5,8, 12 17, 23, 30, co. For all the tables in this paper, the intensity of the generating
Poisson point process is 1.

k
d
1 2 3 4 5

2 0.513166 0.407493 0.405319 0.468526 0.606279
3 0.459153 0323650 0.281473 0.279760 0.306 145
5 0418703 0.273142 0.220661 0.203466  0.205787
8 0.394841 0.247698 0.194712 0.176027 0.175422
12 0.380181 0.233204 0.181214 0.163290 0.163265
17 0.370603 0.224011 0.172956  0.155899 0.156814
23 0.364012 0.217743 0.167374 0.150967 0.152633
30 0.359283 0.213249 0.163360 0.147400 0.149588

— 00 033816  0.19262  0.14400  0.12876 0.13136

The probability density function of the chord length distribution function is given by

d*(d — DHr?=12I(d — 1/2)T((d + 1)/2)a>"1/4
M2 = 1/d){T((d +2)/2))3~1/4

/ /” o 2s1n2”l_3oesin”l_l,3
sin®®~! (@ + B)
rsina Ld—1)/2] 2 l@-3)/2]
(s Grams) (2 mw) = % o)

i=0 i=0
x exp{—Avg(r,a, B)} dB de, (19)

fld(r) =

and its value for r = 0 is
d(d — 1)Jal((d + 1)/ (d — 1/2)T 2 —2/d)r"/4
2I(@)T (2 — 1/d){I'((d +2)/2)}1+1/d

Ld—1)/2] 2
D ' B r'id+1)/2)
x <2(d—1) fo sin a< ?ZO bl(a)> da ﬁ—r((d+2)/2)). (20)

fld (0) =

See Figure 2. The moments corresponding to Fj, are

d(d —1)I'(d —1/2T(d + 1)/)T R+ (k — 1)/d)x?~1/2

ELK = d
2F(d)F(2 — l/d){r((d +2)/2)}3-1/dk/d
/ /”  sin2d=3 @ sin? =1 B
sin? ! + B)
— dj2 gnd Ld—1)/2]
x( (2d.+k D /% sin o ( Z b(,B))
I'((d +2)/2)sin?(a + B)(va(1, &, B))3+*k=D/d
Y s

T (a(l, @, B2+ 1)/a’> dp de. (21)

See Table 2.
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FIGURE 2: The probability density function of the chord length distribution of the Poisson—Voronoi
tessellation in R?, d = 2, 3,5, 8, 12, 17, 23, 30, oo.

TABLE 2: Moments E L’; of the chord length distribution function of the Poisson—Voronoi tessellation in
R?, d =2,3,5,8,12, 17,23, 30, co.

k
d
1 2 3 4 5

2 0.785398 0.806079 0960132 1.273348 1.839899

3 0.687182 0.631044 0.667220 0.773694 0.961232

5 0.599056 0.501653 0.490882 0.528752  0.609437

8 0.544325 0.429844 0.404484 0.423948 0.479079
12 0.511349 0.388810 0.357746  0.370655 0.417491
17 0.490587 0.363626 0.329690 0.339400 0.382409
23 0476813 0347131 0311468 0.319224 0.359914
30 0.467239 0335742 0.298915 0.305312 0.344355

— 00 0.428 88 0.290 06 0.247 83 0.24704 0.276 12

The last three formulae extend the results given in Muche and Stoyan [8], where formulae
for fi,(r), d = 2,3, and numerical results for f;,(r), 2 < d < 7, were given. They are
alternative representations of the known general results given by Schlather [10, Equation (1.1)],
and Muche [7, Equations (17)-(20)], where formulae for the length of the typical edge in an
n-dimensional section for arbitrary d were given (n = 1 represents chord lengths). Alishahi
and Sharifitabar [1] presented an analytical expression for the limiting distribution function
Fy (r) and the value f;_(0), whereas their curves for f;,(r), 2 < d < 100, were obtained by
simulation only.

4. Spherical contact distribution functions

In this section we present a new approach to investigate the spherical contact distribution
function Hj,, for 2 < d < oo. All numbered formulae given here are new results in this
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generality. Earlier results were for the special cases d = 2 and d = 3 only; cf. [8]. Here the
cases n = 1 (linear section) and n = d (complete tessellation V) are investigated.

Case n = 1. For n = 1 (linear section), the test set B is a centred line segment of length 2.
Consequently, U, , ¢ is the union of two overlapping balls with midpoint distance 2r centred at
the endpoints —r and +r of the straight line. Let the angles between zg and B at the endpoints
of ¥ B be

B1 = L(z0,r,0) and By = L(z0, -1, 0).
The probability density function of the spherical contact distribution Hj, , is given by
2d+1 d—l}\2
Td-1)

/”/2/ (22! (sin By sin B)? !
B2 sin?? (81 + B2)

Ld—-1)/2] Ld—-1)/2]
><<Sind_l,32 Y by +sin’l g Y bi(ﬁz))

i=0 i=0
x exp{—Ava(2r, B1, f2)} dB1 dpa. (22)

hsd‘1 (r) =

There are close relationships between Hj, , (r) and Hj, (r):
1
Hy, ()= H,(2r),  hg, (1) =2h,(2r),  E¢Ry = 5 Ei R (23)

Case n = d. Forn = d, B is the d-dimensional unit ball B = b(o, 1) and U, , , is the
set of all balls centred at b(o, r) with the point zo = (p, o) on their boundaries. Let v;(r, p)
denote the d-volume of U, ,, . Its rotational symmetry with respect to the straight line passing
through zg and o ensures that vy (r, p) does not depend on o. The set U, , » can be described
by the radius vector length

I(r,p,9) = llzo — ull,

where u € U, , o and ¢ = £L(uzp0):

2 , 0<g@ <o*,
I pogy = {20 TR0 0=0=¢h (24)
0, p* <@ <m,
with
A p=r,
v= m — arccos(r/p), p >r.

Note that in the special case d = 2 the curve describing the boundary dUj,. ,,  is concordant to
the well-known limacon (snail) of Pascal. If p < r, it is the complete curve, otherwise it is the
outer part; see Figure 3. In the case d > 2 the corresponding object is the (d — 1)-dimensional
surface obtained by rotation of U, , , for d = 2 around its symmetry axis (line passing through
zo and o).

Finally, vy (r, p) is given by

d
Vd(r,p)ﬂdz(l.) o' a2 (0), (25)
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[(r,p,)

Uipo

FIGURE 3: The curve describing 0U,. , » in the planar case for p < r (left) and p > r (right).

where
2d+1(d=1)/2

AT d -2y

and

¥
Tem () = / cos ¢ sin™ ¢ dt, k,m > 0.
0

Its derivative with respect to r is

d-1
d—1\ , . .
Vt/i(r’P)ZdeZ( ; )rd 'l aa (). (26)
i=0

The probability density function of the spherical contact distribution is given by

[o)0]
gy () = deog?? /O 700 ) exp(—ava(r, p)) dp. @7)

Its value for r = 0 is

29410 (2 — 1/d){T((d + 2)/2))>~1/dp1/d

104 (0) = drd —1/2) ’ (28)
with
Jim h‘”jz(o) =2/em. (29)
See Figure 4. The moments corresponding to Hj, , are
b, RS, = 2TC KD 0°° (5:(—1%:)()1% Dodn k=0L2... (0
See Table 3.
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30 A

d=123

25 1

FIGURE 4: The probability density function corresponding to the spherical contact distribution function
Hj, , of the Poisson—Voronoi tessellation in R4, d=23,5,8,12,17,23,30.

TABLE 3: Moments E; R(’; 4 Of the spherical contact distribution function Hj, , of the Poisson—Voronoi
tessellation in RY, d = 5,8,12, 17,23, 30.

k
1 2 3 4 5

5 0.0915484 0.0141676  0.0028525  6.771 x 107*  1.803 x 10~4
8 0.0689896 0.0084292  0.0013861  2.756 x 10~*  6.266 x 107
12 0.0546238 0.0054648 7.561 x 10~% 1.294 x 10~% 2.579 x 107
17 0.0449399 0.0037841 4.494x 10~* 6.715x 107> 1.187 x 1073
23 0.0380617 0.0027568 2.856 x 10~% 3.769 x 107> 5.952 x 107°
30 0.0329601 0.0020898 1.914 x 10™% 2254 x 1075 3.204 x 1070

5. Special cases

In the following, the spherical contact distribution function Hj, ,(r) is investigated for the
important cases d = 2 and d = 3. The distribution functions Hy, , and Hj; ; have already been
investigated in [8]. Here the probability density functions and moments for these two cases are
given.

Planar case, d = 2. The probability density function is given by

hsy5 (r) = 4mhr (exp{—4mr?) — exp{—6mAr?})

o
+ 1671)3/ ,o(r(n — arccos i) +Vp?— r2>
; p

x exp{ — M@r? + 2p2)(n — arccos i) t6rV/o? =12 rz)} dp.
P
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The corresponding moments are

k 1 1
E,RE,=T(=+1 -
$ 722 <2+ )(2(4n,\)k/2 3(6m)k/2>

2nT(k/2+2) (! k(¢ (r — arccos 1) + /1 —12)
(2M)k/2 0 ((2¢2 + 1)(7r — arccost) + 3t+/1 — £2)2+k/2

fork =0,1,2,.... See Figure 5 and Table 4.
Spatial case, d = 3. The probability density function is given by

64 2)\2 5 1 32
hyy5(r) = %f <2t2(3 + tz)exp{ - Aan3(1 + t2)}
0

(1+1)3 4o r? 4

0.0 T T T T 1
0.0 0.2 04 0.6 0.8 1.0

FIGURE 5: The probability density function corresponding to the spherical contact distribution function
Hy, ., s = 1, 2, of the Poisson—Voronoi tessellation in R2.

TABLE 4: Moments E; R’; o 1<s< d, of the spherical contact distribution function Hy, of the Poisson—
Voronoi tessellation in R? and R3.

k

1 2 3 4 5

0.256583 0.101873 0.050665 0.029283  0.018 946
0.174241 0.048046 0.016761 0.006829 0.003 122
0.229576 0.080912 0.035183 0.017485 0.009 567
0.158322 0.039811 0.012571 0.004583  0.001 852
0.127957 0.026363 0.006872 0.002078  0.000 698

W W W NN
W N = N =
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The corresponding moments are

k/3
B R = () r 2+§
$T33 7T g\ 327 3

9 k13 3 2kH+3k!
X ? Y A A _1 - /3 + &
2(k + 3) 3272 2k/3 (k + 3) Ty k/3 4+ 4+1i)
ko 22k/3—i+1

ST k34 +4)

i|, k=0,1,2,..., (32)
with the hypergeometrical function

Fentn= -8 /1 71— 0f (1 - o€ dr, (33)
rmre —n Jo
also known as the Gauss series or Kummer series,

FEnl)=Fm82¢1)

L e EE+D - EFi—Dn+ D +i— D)
e ECHD G- D) o

i=1

In the special case k = 3m (for integer valued m) the moments can be given explicitly:

1/ 3 \"
Es R} = —(—) (m +2)

s\ 3272
3 MR+ /@2y Mo 1
X Z J - +7-[ —
8(m + )\ &= 2i—1; Sl 2m(m + 1)
23m+5 3m)! 3m 3m)! 22m—i+l
o om —Z(.,) — . } m=1,2...;
[[Zym+i+4 = i [[Lm+j+d
(34)

in particular,

B Rl 0 N 279
$T33 7 0048 T 358407
. 3 27

N

33 = 246472 T 655367
B R, = 81(139.652 + 450457)
, 41984983 04073
81(591472 + 1889557)
563580239 87274

12 _
ES R3’3 -

See Figure 6 and Table 4.
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FIGURE 6: The probability density function corresponding to the spherical contact distribution function
Hy,,, 1 <s <3, of the Poisson—Voronoi tessellation in R3.

6. Proofs
Before starting the proofs, some integrals often used in the following are the generalized
I'-function,
00 1 1 1 (p+1)/0
/ 1P exp{—qt®}dr = —T rrl) (1L , p.q,0 >0, (€R)
0 6 6 q

and the trigonometric integral,

12
Lim(Y) = / cosk tsin™ rdr  for integer valued k, m > O andreal y, 0 < ¢ <,
0

by < Sy R Tk Dm0 o
kn(¥) = —— £ T((k+m+2)/2)0(k—2i+1)/2) " 4
T((k + 1)/2)T((m +2)/2) (36)
AT ATk rmry lomh). keven,
0, k odd,
with
I —JJ«m+Dﬂ“WM- >0 37
o) = VTS gaxn—w, m >0, 37)

where |0 | denotes the greatest integer smaller or equal to 6.
Formulae (36) and (37) can be obtained by integration by parts and recursion. In the particular
cases of ¥ = m /2 and 7, they simplify to

/2
/ cosk 1 sin™ 1 dr = 1T((k+ D/2DI((m + 1)/2) (38)
) 2 T((k+tm+2)/2)
and " C((m + 1)/2)
. m _ m
/(; sin” rdr = ﬁ—l“((m 2/ (39)
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Furthermore, summation formulae for I'-terms are
dgl L) ((m +2i + 1)/2)
CGE+3/2)T((m+2i +2)/2)
8 I'(m+3)/2) 4 TW/2) T(d+m+1)/2)

= ﬁm '((m+42)/2) _EF((CZ—‘FI)/Z) T((d +m)/2) , deven,d > 2,

i=1

d—1/2 (40)
Z I'G—1/2T((m+2i)/2)
— TG+ DI(m+2i +1)/2)
2/ (m/2) 4 TW/2) TWd+m+1)/2) 4 odd
= _ — . O ,
C(m+1)/2) mI(d+1)/2) T{d+m)/2)
for m > 0; see [7, Equation (30)], and Legendre’s duplication theorem for I'-terms is
1 JT
I‘(p)F(p + E) = 5251 r2p). 41
The relationship between Cartesian (1, &2, .. ., &) and polar coordinates (7, ¢1, ¢2, .. .,
Om—1) in R is
§1 =rcosyy,
i—1
éizrcosgo,-l_[sinwj, i=2,...,m—1,
j=1
m—1 . (42)

m m—1 '
[]d&=r""dr []Gin" """ g de),
i=1

i=1

where0 < g; <m,i=1,...,m—2,and 0 < ¢, < 2m.

Let s(x, rw) be the line segment in R of length r with endpoints x and x + rw, and let
z0 = (p,0)and o, w € $9=1 Then s(x, rw) belongs to the origin cell Cy if and only if the
union b(x, ||x — zol|) Ub(x +rw, ||x + rw — zo||) does not contain any other point of ®. The
convexity of Cp implies that each further point y = x + purw, 0 < p < 1, of the segment is
also inside Cy. Therefore,

U b(y, lly —zol) = b(x, llx — z0ll) Ub(x +rw, [lx +rw — zolD), (43)

yes(x,rw)

and, consequently, for each compact convex set ¥ C RY,

U o0ty =20l = | 66 11y = zol- (44)

yeYy yeadY

See Figure 7.
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X1

FIGURE 7: A line segment and two overlapping balls centred at its endpoints, the ball b(ur, ||ur — zol|)
(dashed line) and its orthogonal distance f, (¢) of the point with x-coordinate #; see (43). Here 0 := x,
r:=x4rw,and ur :=y € s[x, rw].

Proof of (13). Leto = (o1, ..., 04) be a point of $9=1 and let #, be the n-dimensional
section subspace given by x,4+1 = --- = x4 = 0. Consequently, the projection ¢’ on ¥, is
o' = (o1,...,0,,0,...,0). Denote that part of $~! where Ag.n = Looo’ does not exceed a

given value o, 0 < & < 7/2, by 84!, Forall o € 8¢, the inequality Y"¢_, | 07 < sin’«

is true. Then the distribution function of the angle A, , can be expressed as a ratio of (d — 1)-
volumes as follows:

va—1(8¢71h
Fa,, (@) = —2—=.
¢ va—1(8471)
For the sake of simplicity, consider only the first quadrant of 89-1 where 01, 09, . . ., og > 0.

Then Fy, , () can be written as

2d
Fa,,(a) = doy

/d—n /n—l 1
0<0n+1,..s ad;Z?:nH aizfsinza 0<o0,< /I—Z?ZHI 0/2, i=2,...n 1— Zfl ) 0_2
V =2"%i
d
x H(do,-).
i=2

To calculate the (n — 1)-dimensional inner integral, the formula

fg(ez _pynia gy = YT D +2)/2)
0 2 T(m+3/2)

is used, which follows from the substitution ¢ = 6 sin ¢ and the use of (39). We obtain

/2 d n/2—1
210 (n/2) (1 s “"2> '
i=n+1

The (d — n)-dimensional outer integral is solved by transformation to polar coordinates. If
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n<d—1l,useof(42)form =d —nando,4; =&,i=1,...,d —n, gives
2d7n1—'(d/2) d—n-2 /2 ; sina dn )
— . —n— )
FAd,n (@) = —n(d*")/zF(n/Z) i|:0| </0 Sin g0dg0> [) r V1—r dr.

Using (39) d — n — 1 times allows us to determine the distribution function of the angle A, ,:

_ 2I'(d/2) Sl 2
Fran® = v r@—mm by " bmr

It can be shown that this result is also correct for n = d — 1. Differentiation with respect to «
yields (13).

Proofs of (14) and (15). The test set B is the line segment of unit length starting at o, B =
s(o, 1). Here Hg(r) = Hy,(r) is the probability that rs (o, 1) = s(o, r) is not completely inside
the origin cell Cy. Using (43), U, » is the union of the two balls centred at the endpoints of
s(o,r) with zg = (p, o) on their boundaries. Using (3) and (7), replacing (4) by (13), and
respecting the fact that 0 < o < m gives

d-1/2;
H,(r) = F(jzd /) / / sin? aexp{—kvd(r, o, B(r, p,a))}dadp, (45)

or by using (5) and the transformation formulae (9) and (10) we obtain

2 @d=1/2) /‘ /” @ pd (sin o sin B)4 1

) =1=- @2 sin* (o + B)

exp{—Avq(r,a, B)}dB da. (46)
Differentiation of (45) with respect to r leads to (14). Differentiation of (46) with respect to r
by use of (11), (12), and (41) gives (15).

Proofs of (16) and (17). Starting with (14), transform (5) and (11) by (8), and insert the
limits v4 (0, @, B(0, p, @)) and lim, o (dvg(r, o, B(r, p, &)/ dr). Use of (35), (39), and (40)
form = d — 1 leads to (16).

To investigate h;,(0) for large d, we use two well-known asymptotical properties of the

I'-function:
F'(p+1/2)

m
p—~oo  /pI'(p)

and Stirling’s formula

p
'p+1) = ,/an(g) e(®/12p), 0<6<1.

This gives (17).
Proof of (18). Use of (15), (35), and (41) gives (18).

Proof of (19). Two-fold differentiation of (1) with respect to r gives

d
filr) = —ELd—(hz(r))
r
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with the mean chord length

_ d{I'((d + 1)/2)}’T'(d — 1/2) .
T 2T 2 — 1/d){T((d + 2)/2)}2—1/d)1/d”

cf. also [2, Equation (9)]. Differentiation of (14) with respect to » and insertion of (9) and (10)
lead to (19).

Proofs of (20) and (21). We obtain (20) analogously to the proof of (16). Use of (35)
gives (21).

Proof of (22). Analogously to the proof of (14), we obtain

47 @d=1)/2),
CT((d-1)/2)

oo pm/2
X / / ,od_1 sin 2 o
0 0

x exp{—Avq(b(—r, ||(p, o) + 1) Ub(+r, [|(p, ) — rl))}dadp.

Hy, () =1

The d-volume in the exponent is equal to vy (27, By, B2). Its derivative with respect to r is
calculated analogously to (11), respecting the fact that the set occurring in the exponent increases
with r in two directions, where +r denotes these points with coordinates £r on the xj-axis.
Use of the transformation formulae

rv/2(sin? B| + sin® Ba) — sin(B) + Ba) sin(1 — Ba)

p = y o = arccot ———
2 sin B sin B>

sin(B1 + B2)

the Jacobian

‘ d(a, p)
9(B1, B2)

sin B sin 52
’ sin2(B1 + B2)v/2sin? 1 + 2sin® B — sin2(B1 + Ba)
and (41) leads to (22). Application of symmetry arguments in (15) gives (23).
Proof of (24). Following (43) and (44), we have to determine

Urpo = |J berw, lrw—zl),

wegd—1
with w = (wq, wy, ..., wy) in Cartesian coordinates and the constraint Zflzl wl.2 = 1. For
the sake of simplicity, we assume that zo = (p, 0, ..., 0). We construct a function I(r, p, ¢)

describing the distance between zo and the element u of 90U, ,, , that satisfies ¢ = Z(uzp0), 0 <
¢ < m. Rotational symmetry enables us to assume that u is in the (x1, xp)-plane, i.e. u =
(p —lcosg,lsing,0,...,0), where [ = I(r, p, ¢). The value of I(r, p, ¢) is found via
maximization of the distance [, = ||uy, — zo|| for points u,, € db(rw, ||[rw — zo||). Itis clearly
lrw —uy| = |l[rw —zoll, i.e. the distance ||uy, — 2ol is I(w) = 2((p —rw1) cos ¢ +rw; sin )
for fixed ¢. The wanted u is the point u,, that maximizes /(w); see Figure 8. Replacing

wp ==4,/1— w% in /(w), an elementary extreme value determination leads to (24), where the
necessary inequality /(r, p, ¢) > 0 leads to ¢*.
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FIGURE 8: The point u,, for various w and fixed ¢ with distance /(w) = |luy, — zo||. Its maximum is the
wanted function [(r, p, ) = |lu — zo]|.

Proofs of (25) and (26). Use of polar coordinates (42) gives the d-dimensional integral

d d—1
wtrop) = [ 17 [sin =1 gy d)
i=1

with0 <[ < 2(0r 4+ pcose)), 0 < ¢ < ¢*,0 < ¢ < 7w, i =2,3,...,d —2, and
0 < @4—1 < 2m. Repeated use of (39) leads to the d-volume of U, , 5,

d

(p*
va(r, p) = Kd/ (r + pcos (p)d sin? 2 ¢de,
0

where ¢* is given in (24), and its derivative with respect to r,

(p*
vy(r, p) = def (r + pcos ) sin? 2 g dg.
0
Using (36) and (37), we obtain (25) and (26).

Proof of (27). Insert (3) and (25) into (2). Differentiation with respect to r and insertion of
(26) gives (27).

Proof of (28). Let r = 0. Inserting (25) and (26) into (27), and using (38) and (35) leads
to (28). Analogously to the proof of (17), by additional use of (41) we obtain (29).

Proof of (30). Substitution of p = tr into (25), (26), and (27), and use of (35) leads to (30).
For the special cases d = 2 and d = 3, we obtain

2
JT<r2 + %), p<Tr,
va(r, p) =4 2
<r2 +

r 3
p )(n — arccos —) + Er\/pz -2, p>v,
P

2

https://doi.org/10.1239/aap/1269611143 Published online by Cambridge University Press


https://doi.org/10.1239/aap/1269611143

Poisson—Voronoi tessellation in high dimensions

SGSA e 67
27r, p<r,
,0) =4
va2(rs £) 2r<n — arccos i) +2Vp2 =12, p>v,
0
16 2r(,02 + r2), p<r,
r.p) = —- 4 (47)
v, p 3 (p + r) 0> r
4p b — 9
167 [26Gr7+0D. p<r,
Vé(”,P)ZT (r+p)? o7 (48)
p b p— 9

and, thus, we obtain the expressions for &y, , (r) and &g ;(r)
Proofs of (32) and (34). Inserting (47) and (48) into (27) and applying (35) gives

1/ 3 \!3 k U 23412 ik
EsR\,=-(——) r(2+= — 4 25“‘/ S —
$ %33 8(3%) ( +3)<./0 G+ T2

1+ t)5+4k/3

Integration by parts gives the recursion formulae

1 k . 1 k—i
t -1 k— 1 t
/ = — i a4, i=1,2,
) (Lt 2 — 1) 2 m—1) Jy (1 +syn—t

1 1 1 2m—3 (! 1
dr = + dr,
o (1+12)m 2mm—1)  2m—2Jy (1+42)m-1
1 1 1 1
dt = 1— ,
o (I4+0)m (m—1) 2m-1

for k, m > 1, which leads to

/l s dr = K K 1
o U+ 3T (k3 +a+i) o i 2T/ 4 +4)

Use of the substitution / = '’ and (33) gives

/1 G +1%) e 3 k13
o (14 12)2+k/3 77 2k/3(k+3) 2(k+3) 3722 ’

13 STSA@I+D/Qj+2) 7 20—
f(’"’a’a"l) y 1 T Tyl =l
i=1 i=1
and, thus, we obtain (32) and (34).
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