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CONTACT AND CHORD LENGTH DISTRIBUTION
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Abstract

In this paper we present formulae for contact distributions of a Voronoi tessellation
generated by a homogeneous Poisson point process in the d-dimensional Euclidean space.
Expressions are given for the probability density functions and moments of the linear and
spherical contact distributions. They are double and simple integral formulae, which
are tractable for numerical evaluation and for large d. The special cases d = 2 and
d = 3 are investigated in detail, while, for d = 3, the moments of the spherical contact
distribution function are expressed by standard functions. Also, the closely related chord
length distribution functions are considered.
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1. Introduction

The Voronoi tessellation is a popular stochastic geometrical model applied in many fields
of science and engineering; see, e.g. [9]. A commonly used special case is that of complete
randomness in which the generating point pattern is a homogeneous Poisson point process. This
so-called Poisson–Voronoi tessellation has been studied by many researchers, both analytically
and by means of simulation.

Contact distributions are important random set summary characteristics. They describe the
size of pores or porous space; see, e.g. [4] and [5]. In the context of a tessellation they can be
used to characterize the size and the shape of cells; the random set of interest is then the union
of all cell boundaries.

A first analytical approach to the linear contact distribution function of the planar and spatial
Poisson–Voronoi tessellations is given by Gilbert [2], while Serra [11, p. 527] presented a
formula for the spherical contact distribution function for the spatial Poisson–Voronoi tessel-
lation. Muche and Stoyan [8] provided a unified method to calculate linear and spherical
contact distribution functions of the planar and spatial Poisson–Voronoi tessellations. This
paper also gave an analytical expression for the chord length distribution function, using the
close relationship to the linear contact distribution function. Furthermore, the problem of
calculation of chord length distribution functions in higher dimensions d was mentioned there.

Other analytical approaches to investigate the chord length distribution function in higher
dimensions are given in Schlather [10] and Muche [7]. In these papers formulae are presented
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for the probability density function in double integral form, which are tractable for numerical
calculations.

Alishahi and Sharifitabar [1] studied the linear contact and chord length distribution functions
of the Poisson–Voronoi tessellation for large d. The limiting functions of both characteristics
H∞
l (r) and L∞(r) (for d → ∞) were given in terms of standard functions. The value of the

density function of L∞(r) for r = 0 was given explicitly. Plots of the density function for
various d were obtained by simulation.

In further papers, contact and chord length distribution functions are studied for some
modificated Voronoi tessellations; cf. [3] and [6].

In the present paper we investigate the contact and chord length distribution functions of the
Poisson–Voronoi tessellation of arbitrary dimension d. These calculations are mainly based
on the methods provided in Muche and Stoyan [8] and Muche [7]. The probability density
functions hld (r) and fld (r) (the notation is explained in Section 2) of both characteristics and
their moments are given in double integral form, tractable for an efficient numerical evaluation
and for large dimension d . Expressions are given for hld (0) explicitly and for fld (0) in simple
integral form for arbitrary d . A new approach is used to determine the spherical contact
distribution function in higher dimensions. Probability density functions and moments are
given in simple integral form, tractable for numerical calculations and for large d. For the
special case d = 3, the moments of the spherical contact distribution functions are given by
standard functions. A simple relationship between linear and spherical contact distribution
functions is presented.

The paper is organized as follows. In Section 2 we introduce the notation, give the definitions
of the contact and chord length distribution functions, and sketch a means to calculate them.
The main results are given in Sections 3 and 4. In Section 5 the spherical contact distribution
functions are investigated in particular for the special cases d = 2 and d = 3. Section 6 gives
the proofs of all the results.

2. Fundamentals

Let � denote a homogeneous Poisson point process of intensity λ in the d-dimensional
Euclidean space R

d , 2 ≤ d < ∞. Let z0, z1, z2, . . . be its points, also called centres,
neighbours, seeds, or atoms. Let Hn be any section subspace of dimension n (1 ≤ n < d)

through R
d . Let u, x, and y denote elements of R

d , and let ‖x − y‖ denote the Euclidean
distance (norm) between two of them. Let V be the Voronoi tessellation generated by �.
The cells of V are d-dimensional bounded open convex polytopes. Let C0 denote that cell
containing the origin o, and let z0 denote the generating point of C0. Let us denote by � the
set of all cell boundaries (vertices, edges, . . . , (d− 1)-dimensional cell faces), or, equivalently,
the set of all elements not inside a cell. Since� is stationary and isotropic, so is�. Let s(x, r)
be the line segment of given direction (positive x1-axis) of length r starting in x, let b(x, r)
be the ball of radius r centred in x, and let ∂b(x, r) be its boundary; rs(x, 1) and rb(x, 1)
are the same as s(x, r) and b(x, r), respectively. Furthermore, let Sd−1 = ∂b(o, 1) be the
(d − 1)-dimensional unit sphere, and let σ and w be elements of Sd−1. Let ωd denote the
volume of the d-dimensional unit ball b(o, 1),

ωd = πd/2

�
(
d/2 + 1

) ,
where �(t) is Euler’s �-function.
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The contact distribution function HB(r) is defined as

HB(r) = 1 − P(� ∩ rB = ∅)

1 − P(o ∈ �) , r ≥ 0,

where B is a specified test set or structuring element, a subset of R
d with o ∈ B. In other

words, HB(r) is the probability that rB intersects �, conditional on � not containing o. For a
definition, further representations, and basic properties, see [12, p. 71ff.].

Two important cases are

• the linear contact distribution function Hl(r), where B = s(o, 1) is the unit segment,

• the spherical contact distribution function Hs(r), where B = b(o, 1) is the unit ball.

The chord length distribution function Fl(r) of a random tessellation is the distribution
function of the interval lengths formed by the intersections of � with a fixed line; cf. [12,
p. 82]. Furthermore, there is the close relationship between Hl(r) and Fl(r):

Hl(r) = 1

EL

∫ r

0
(1 − Fl(t)) dt (1)

(cf. [12, p. 208]), where EL is the mean chord length.
Following the results given in Muche and Stoyan [8], the contact distribution function can

be written in general form as

HB(r) = 1 −
∫ ∞

0

∫
Sd−1

exp{−λνd(Ur,ρ,σ \ b(o, ρ))}fP (ρ)f�(σ ) dσ dρ, (2)

with polar coordinates (ρ, σ ), 0 ≤ ρ < ∞ and σ ∈ Sd−1, d-volume vd(·), and

Ur,ρ,σ =
⋃
x∈rB

b(x, ‖(ρ, σ )− x‖).

The exponential expression in (2) describes the probability that the test set rB is completely
included in the origin cell C0 under the condition that its generating point is z0 = (ρ, σ ). The
distance between o and z0 is characterized by the well-known nearest-neighbour distribution
function. Its density function is

fP (ρ) = λdωdρ
d−1 exp{−λωdρd}, 0 ≤ ρ < ∞. (3)

Let � denote the ray emanating from o and passing through z0. Based on the isotropy of V, �
is uniformly distributed on Sd−1, i.e. its density function is

f�(σ) = 1

dωd
. (4)

For further investigations, the d-volume of two overlapping (or truncated) balls is needed.
Following Muche [7, Equations (8), (9), and (10)], the d-volume of two overlapping balls with
midpoint distance r and radii rsin α/sin(α + β) and rsin β/sin(α + β) (as ρ and σ , and α and
β, are random variables, called intersection longitudes) is given by

νd(r, α, β) = ωdr
d

(
sind β

sind(α + β)

	d/2
∑
i=0

ai(α)+ sind α

sind(α + β)

	d/2
∑
i=0

ai(β)

)
, (5)
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where 	θ
 denotes the greatest integer smaller than θ and

a0(ψ) =
⎧⎨
⎩1 − ψ

π
, d even,

cos2 1
2ψ, d odd,

ai(ψ) = cosψ

2
√
π

⎧⎪⎪⎨
⎪⎪⎩

�(i)

�(i + 1/2)
sin2i−1 ψ, d even,

�(i + 1/2)

�(i + 1)
sin2i ψ, d odd,

i = 1, . . . ,
⌊ 1

2d
⌋
.

(6)

Alternatively, with midpoint distance r and radii ρ and
√
r2 + ρ2 − 2rρ cosα, the d-volume is

νd(r, α, β(r, ρ, α)) = ωd

(
ρd

	d/2
∑
i=0

ai(α)

+ (r2 + ρ2 − 2rρ cosα)d/2
	d/2
∑
i=0

ai

(
arccot

r − ρ cosα

ρ sin α

))
. (7)

Both expressions (5) and (7) are related by the formulae

β = arccot
r − ρ cosα

ρ sin α
(8)

and

ρ = r sin β

sin(α + β)
, (9)

and the corresponding partial derivatives

∂β

∂ρ
= r sin α

r2 + ρ2 − 2rρ cosα
,

∂ρ

∂β
= r sin α

sin2(α + β)
. (10)

The first derivative of ν(r, α, β) with respect to r transformed according to (9), elaborated in
detail in Muche [7, p. 293], is

ν′
d(r, α, β) = dωd

(
r sin α

sin(α + β)

)d−1 	(d−1)/2
∑
i=0

bi(β), (11)

with

b0(ψ) =
⎧⎨
⎩
(π − ψ) cosψ + sinψ

π
, d even,

cos2 1
2ψ, d odd,

bi(ψ) = − 1

4
√
π

⎧⎪⎪⎨
⎪⎪⎩

�(i)

�(i + 3/2)
sin2i+1 ψ, d even,

�(i − 1/2)

�(i + 1)
sin2i ψ, d odd,

i = 1, . . . ,
⌊ 1

2 (d − 1)
⌋
.

(12)
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In the same way, the second derivative with respect to r is given by

ν′′
d (r, α, β) = dωd

(
r sin α

sin(α + β)

)d−2 	(d−3)/2
∑
i=0

ci(β),

with

c0(ψ) =
⎧⎨
⎩
d − 1

π

((
1 − d − 2

d − 1
sin2 ψ

)
(π − ψ)+ sinψ cosψ

)
, d even,

1
2 (1 + cosψ)(1 + (d − 2) cosψ), d odd,

ci(ψ) = − 1

4
√
π

⎧⎪⎪⎨
⎪⎪⎩

�(i)

�(i + 3/2)
(d − 2i − 2) sin2i+1 ψ cosψ, d even,

�(i − 1/2)

�(i + 1)
(d − 2i − 1) sin2i ψ cosψ, d odd,

for i = 1, . . . ,	 1
2 (d − 3)
. Furthermore, knowledge of the density function of one of the

angles α and β occurring in (5) and (7) is necessary. Consider an element σ ∈ Sd−1 and an
n-dimensional section subspace Hn (1 ≤ n < d), o ∈ Hn. Let σ ′ be the projection of σ on
Hn, and let Ad,n be the angle 
 (σoσ ′). If σ is uniformly distributed on Sd−1, the probability
density function of Ad,n is

fAd,n(α) = 2�(d/2)

�(n/2)�((d − n)/2)
sind−n−1 α cosn−1 α, 0 ≤ α <

π

2
, (13)

as is shown in Section 6.
The assumptions used to calculate the contact and chord length distribution functions in

arbitrary dimension d are now complete. Henceforth, letHld (r) and Fld (r) be the linear contact
distribution and the chord length distribution functions of V in R

d , respectively. Let Hsd,n(r)
be the spherical contact distribution function of an n-dimensional section through V in R

d .
Furthermore, let hld (r), fld (r), and hsd,n(r) be the corresponding density functions, and let
El Rkd , ELkd , and Es Rkd,n, k = 0, 1, 2, . . . , be the corresponding moments.

3. The linear contact distribution function and the chord length distribution function

This section contains the main results of this paper. All numbered equations represent new
results that are valid for all dimensions d, 2 ≤ d < ∞. These formulae are proved in Section 6.

The integral evaluations in this section and the next section were made using MATHE-
MATICA®. To evaluate the probability density curves and moments for d → ∞, the obtained
numerical results for large d were fitted by smooth auxiliary functions of d, which were then
extrapolated to d → ∞.

The probability density function of the linear contact distribution function is given by

hld (r) = 2π(d−1)/2λ2

�((d − 1)/2)

∫ ∞

0

∫ π

0
ρd−1 sind−2 α

d

dr
(νd(r, α, β(r, ρ, α)))

× exp{−λνd(r, α, β(r, ρ, α))} dα dρ, (14)
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or, equivalently, in terms of the angles α and β,

hld (r) = 2dπd−1λ2

�(d − 1)

∫ π

0

∫ π−α

0
r2d−1 (sin2 α sin β)d−1

sin2d(α + β)

×
	(d−1)/2
∑
i=0

bi(β) exp{−λνd(r, α, β)} dβ dα. (15)

Its value for r = 0 is

hld (0) = 2�(d)�(2 − 1/d){�((d + 2)/2)}2−1/dλ1/d

d�2((d + 1)/2)�(d − 1/2)
, 2 ≤ d < ∞, (16)

with the limit

lim
d→∞hld (0) = √

2e ≈ 2.331 644. (17)

See Figure 1. The moments corresponding to Hld are

El R
k
d = 2{�((d + 2)/2)}1+k/d�(2 + k/d)

π(k+1)/2�((d − 1)/2)λk/d

×
∫ π

0

∫ π−α

0

(sin2 α sin β)d−1 sink(α + β)
∑	(d−1)/2

i=0 bi(β)

{sind β
∑	d/2

i=0 ai(α)+ sind α

∑	d/2

i=0 ai(β)}2+k/d dβ dα (18)

for k = 0, 1, 2, . . . . See Table 1.

d → ∞
d = 30
d = 23
d = 17
d = 12
d = 8
d = 5
d = 3
d = 2
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Figure 1: The probability density function of the linear contact distribution of the Poisson–Voronoi
tessellation in R

d , d = 2, 3, 5, 8, 12, 17, 23, 30,∞. For all figures in this paper, the intensity of the
generating Poisson point process is 1.
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Table 1: Moments El Rkd of the linear contact distribution function of the Poisson–Voronoi tessellation
in R

d , d = 2, 3, 5, 8, 12, 17, 23, 30,∞. For all the tables in this paper, the intensity of the generating
Poisson point process is 1.

k
d

1 2 3 4 5

2 0.513 166 0.407 493 0.405 319 0.468 526 0.606 279
3 0.459 153 0.323 650 0.281 473 0.279 760 0.306 145
5 0.418 703 0.273 142 0.220 661 0.203 466 0.205 787
8 0.394 841 0.247 698 0.194 712 0.176 027 0.175 422

12 0.380 181 0.233 204 0.181 214 0.163 290 0.163 265
17 0.370 603 0.224 011 0.172 956 0.155 899 0.156 814
23 0.364 012 0.217 743 0.167 374 0.150 967 0.152 633
30 0.359 283 0.213 249 0.163 360 0.147 400 0.149 588

→ ∞ 0.338 16 0.192 62 0.144 00 0.128 76 0.131 36

The probability density function of the chord length distribution function is given by

fld (r) = d2(d − 1)πd−1/2�(d − 1/2)�((d + 1)/2)λ2−1/d

2�(d)�(2 − 1/d){�((d + 2)/2)}3−1/d

×
∫ π

0

∫ π−α

0
r2d−2 sin2d−3 α sind−1 β

sin2d−1(α + β)

×
(
λdωd

(
r sin α

sin(α + β)

)d(	(d−1)/2
∑
i=0

bi(β)

)2

−
	(d−3)/2
∑
i=0

ci(β)

)

× exp{−λνd(r, α, β)} dβ dα, (19)

and its value for r = 0 is

fld (0) = d(d − 1)
√
π�((d + 1)/2)�(d − 1/2)�(2 − 2/d)λ1/d

2�(d)�(2 − 1/d){�((d + 2)/2)}1+1/d

×
(

2(d − 1)
∫ π

0
sind−2 α

(	(d−1)/2
∑
i=0

bi(α)

)2

dα − √
π
�((d + 1)/2)

�((d + 2)/2)

)
. (20)

See Figure 2. The moments corresponding to Fld are

ELkd = d(d − 1)�(d − 1/2)�((d + 1)/2)�(2 + (k − 1)/d)πd−1/2

2�(d)�(2 − 1/d){�((d + 2)/2)}3−1/dλk/d

×
∫ π

0

∫ π−α

0

sin2d−3 α sind−1 β

sin2d−1(α + β)

×
(

(2d + k − 1)πd/2 sind α

�((d + 2)/2) sind(α + β)(νd(1, α, β))3+(k−1)/d

(	(d−1)/2
∑
i=0

bi(β)

)2

−
∑	(d−3)/2

i=0 ci(β)

(νd(1, α, β))2+(k−1)/d

)
dβ dα. (21)

See Table 2.
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d = 3
d = 2

d → ∞
d = 30
d = 23
d = 17
d = 12
d = 8
d = 5
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Figure 2: The probability density function of the chord length distribution of the Poisson–Voronoi
tessellation in R

d , d = 2, 3, 5, 8, 12, 17, 23, 30,∞.

Table 2: Moments ELkd of the chord length distribution function of the Poisson–Voronoi tessellation in
R
d , d = 2, 3, 5, 8, 12, 17, 23, 30,∞.

k
d

1 2 3 4 5

2 0.785 398 0.806 079 0.960 132 1.273 348 1.839 899
3 0.687 182 0.631 044 0.667 220 0.773 694 0.961 232
5 0.599 056 0.501 653 0.490 882 0.528 752 0.609 437
8 0.544 325 0.429 844 0.404 484 0.423 948 0.479 079

12 0.511 349 0.388 810 0.357 746 0.370 655 0.417 491
17 0.490 587 0.363 626 0.329 690 0.339 400 0.382 409
23 0.476 813 0.347 131 0.311 468 0.319 224 0.359 914
30 0.467 239 0.335 742 0.298 915 0.305 312 0.344 355

→ ∞ 0.428 88 0.290 06 0.247 83 0.247 04 0.276 12

The last three formulae extend the results given in Muche and Stoyan [8], where formulae
for fld (r), d = 2, 3, and numerical results for fld (r), 2 ≤ d ≤ 7, were given. They are
alternative representations of the known general results given by Schlather [10, Equation (1.1)],
and Muche [7, Equations (17)–(20)], where formulae for the length of the typical edge in an
n-dimensional section for arbitrary d were given (n = 1 represents chord lengths). Alishahi
and Sharifitabar [1] presented an analytical expression for the limiting distribution function
Fl∞(r) and the value fl∞(0), whereas their curves for fld (r), 2 ≤ d ≤ 100, were obtained by
simulation only.

4. Spherical contact distribution functions

In this section we present a new approach to investigate the spherical contact distribution
function Hsd,n for 2 ≤ d < ∞. All numbered formulae given here are new results in this
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generality. Earlier results were for the special cases d = 2 and d = 3 only; cf. [8]. Here the
cases n = 1 (linear section) and n = d (complete tessellation V) are investigated.

Case n = 1. For n = 1 (linear section), the test set B is a centred line segment of length 2.
Consequently, Ur,ρ,σ is the union of two overlapping balls with midpoint distance 2r centred at
the endpoints −r and +r of the straight line. Let the angles between z0 and rB at the endpoints
of rB be

β1 = 
 (z0, r, o) and β2 = 
 (z0,−r, o).
The probability density function of the spherical contact distribution Hsd,1 is given by

hsd,1(r) = 2d+1πd−1λ2

�(d − 1)

×
∫ π/2

0

∫ π−β2

β2

(2r)2d−1 (sin β1 sin β2)
d−1

sin2d(β1 + β2)

×
(

sind−1 β2

	(d−1)/2
∑
i=0

bi(β1)+ sind−1 β1

	(d−1)/2
∑
i=0

bi(β2)

)

× exp{−λνd(2r, β1, β2)} dβ1 dβ2. (22)

There are close relationships between Hsd,1(r) and Hld (r):

Hsd,1(r) = Hld (2r), hsd,1(r) = 2hld (2r), Es R
k
d,1 = 1

2k
El R

k
d . (23)

Case n = d . For n = d , B is the d-dimensional unit ball B = b(o, 1) and Ur,ρ,σ is the
set of all balls centred at b(o, r) with the point z0 = (ρ, σ ) on their boundaries. Let νd(r, ρ)
denote the d-volume of Ur,ρ,σ . Its rotational symmetry with respect to the straight line passing
through z0 and o ensures that νd(r, ρ) does not depend on σ . The set Ur,ρ,σ can be described
by the radius vector length

l(r, ρ, ϕ) = ‖z0 − u‖,
where u ∈ ∂Ur,ρ,σ and ϕ = 
 (uz0o):

l(r, ρ, ϕ) =
{

2(r + ρ cosϕ), 0 ≤ ϕ ≤ ϕ∗,
0, ϕ∗ ≤ ϕ ≤ π,

0 ≤ r, ρ < ∞, (24)

with

ϕ∗ =
{
π, ρ ≤ r,

π − arccos(r/ρ), ρ > r.

Note that in the special case d = 2 the curve describing the boundary ∂Ur,ρ,σ is concordant to
the well-known limacon (snail) of Pascal. If ρ ≤ r , it is the complete curve, otherwise it is the
outer part; see Figure 3. In the case d > 2 the corresponding object is the (d − 1)-dimensional
surface obtained by rotation ofUr,ρ,σ for d = 2 around its symmetry axis (line passing through
z0 and o).

Finally, νd(r, ρ) is given by

νd(r, ρ) = κd

d∑
i=0

(
d

i

)
rd−iρiIi,d−2(ϕ

∗), (25)
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u

l(r,ρ,ϕ)

Ur,ρ,σ

ρ

r

o

ϕ

z0

rB

u

l(r,ρ,ϕ)

Ur,ρ,σ

ρ

r

o
ϕ

z0

rB

Figure 3: The curve describing ∂Ur,ρ,σ in the planar case for ρ < r (left) and ρ > r (right).

where

κd = 2d+1π(d−1)/2

d�((d − 1)/2)
,

and

Ik,m(ψ) =
∫ ψ

0
cosk t sinm t dt, k,m ≥ 0.

Its derivative with respect to r is

ν′
d(r, ρ) = dκd

d−1∑
i=0

(
d − 1

i

)
rd−i−1ρiIi,d−2(ϕ

∗). (26)

The probability density function of the spherical contact distribution is given by

hsd,d (r) = dωdλ
2
∫ ∞

0
ρd−1ν′

d(r, ρ) exp{−λνd(r, ρ)} dρ. (27)

Its value for r = 0 is

hsd,d (0) = 2d+1�(2 − 1/d){�((d + 2)/2)}2−1/dλ1/d

d�(d − 1/2)
, (28)

with

lim
d→∞

hsd,d (0)√
d

= 2
√

eπ. (29)

See Figure 4. The moments corresponding to Hsd,d are

Es R
k
d,d = ωd�(2 + k/d)

λk/d

∫ ∞

0

τd−1ν′
d(1, τ )

(νd(1, τ ))2+k/d dτ, k = 0, 1, 2, . . . . (30)

See Table 3.
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Figure 4: The probability density function corresponding to the spherical contact distribution function
Hsd,d of the Poisson–Voronoi tessellation in R

d , d = 2, 3, 5, 8, 12, 17, 23, 30.

Table 3: Moments Es Rkd,d of the spherical contact distribution function Hsd,d of the Poisson–Voronoi
tessellation in R

d , d = 5, 8, 12, 17, 23, 30.

k
d

1 2 3 4 5

5 0.091 548 4 0.014 167 6 0.002 852 5 6.771 × 10−4 1.803 × 10−4

8 0.068 989 6 0.008 429 2 0.001 386 1 2.756 × 10−4 6.266 × 10−5

12 0.054 623 8 0.005 464 8 7.561 × 10−4 1.294 × 10−4 2.579 × 10−5

17 0.044 939 9 0.003 784 1 4.494 × 10−4 6.715 × 10−5 1.187 × 10−5

23 0.038 061 7 0.002 756 8 2.856 × 10−4 3.769 × 10−5 5.952 × 10−6

30 0.032 960 1 0.002 089 8 1.914 × 10−4 2.254 × 10−5 3.204 × 10−6

5. Special cases

In the following, the spherical contact distribution function Hsd,d (r) is investigated for the
important cases d = 2 and d = 3. The distribution functionsHs2,2 andHs3,3 have already been
investigated in [8]. Here the probability density functions and moments for these two cases are
given.

Planar case, d = 2. The probability density function is given by

hs2,2(r) = 4πλr(exp{−4πλr2} − exp{−6πλr2})
+ 16πλ2

∫ ∞

r

ρ

(
r

(
π − arccos

r

ρ

)
+

√
ρ2 − r2

)

× exp

{
− λ((4r2 + 2ρ2)

(
π − arccos

r

ρ

)
+ 6r

√
ρ2 − r2)

}
dρ.
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The corresponding moments are

Es R
k
2,2 = �

(
k

2
+ 1

)(
1

2(4πλ)k/2
− 1

3(6πλ)k/2

)

+ 2π�(k/2 + 2)

(2λ)k/2

∫ 1

0

tk(t (π − arccos t)+ √
1 − t2)

((2t2 + 1)(π − arccos t)+ 3t
√

1 − t2)2+k/2 dt

for k = 0, 1, 2, . . . . See Figure 5 and Table 4.

Spatial case, d = 3. The probability density function is given by

hs3,3(r) = 64π2λ2r5

3

∫ 1

0

(
2t2(3 + t2) exp

{
− λ

32π

3
r3(1 + t2)

}

+ (1 + t)3

t6
exp

{
− 4πλ

3

r3

t3
(1 + t)4

})
dt. (31)

s = 2

s = 1

0.0 0.2 0.4 0.6 1.00.8
0.0
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4.0

3.5
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Figure 5: The probability density function corresponding to the spherical contact distribution function
Hsd,s , s = 1, 2, of the Poisson–Voronoi tessellation in R

2.

Table 4: Moments Es Rkd,s , 1 ≤ s ≤ d, of the spherical contact distribution functionHsd,s of the Poisson–
Voronoi tessellation in R

2 and R
3.

k
d s

1 2 3 4 5

2 1 0.256 583 0.101 873 0.050 665 0.029 283 0.018 946
2 2 0.174 241 0.048 046 0.016 761 0.006 829 0.003 122
3 1 0.229 576 0.080 912 0.035 183 0.017 485 0.009 567
3 2 0.158 322 0.039 811 0.012 571 0.004 583 0.001 852
3 3 0.127 957 0.026 363 0.006 872 0.002 078 0.000 698
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The corresponding moments are

Es R
k
3,3 = 1

8

(
3

32πλ

)k/3
�

(
2 + k

3

)

×
[

9

2(k + 3)
F

(
k

3
,

1

2
,

3

2
,−1

)
− 3

2k/3(k + 3)
+ 2k+5k!∏k

i=0(k/3 + 4 + i)

−
k∑
i=0

k!
i!

22k/3−i+1∏k
j=i (k/3 + j + 4)

]
, k = 0, 1, 2, . . . , (32)

with the hypergeometrical function

F (ξ, η, ζ, τ ) = �(ζ )

�(η)�(ζ − η)

∫ 1

0
tη−1(1 − t)ζ−η−1(1 − τ t)−ξ dt, (33)

also known as the Gauss series or Kummer series,

F (ξ, η, ζ, τ ) = F (η, ξ, ζ, τ )

= 1 +
∞∑
i=1

ξ(ξ + 1) · · · (ξ + i − 1)η(η + 1) · · · (η + i − 1)

i! ζ(ζ + 1) · · · (ζ + i − 1)
τ i .

In the special case k = 3m (for integer valued m) the moments can be given explicitly:

Es R
3m
3,3 = 1

8

(
3

32πλ

)m
�(m+ 2)

×
[

3

8(m+ 1)

(m−1∑
i=1

∏m−2
j=i ((2j + 1)/(2j + 2))

2i−1i
+ π

m−1∏
i=1

2i − 1

2i

)
− 1

2m(m+ 1)

+ 23m+5(3m)!∏3m
i=0(m+ i + 4)

−
3m∑
i=0

(3m)!
i!

22m−i+1∏3m
j=i (m+ j + 4)

]
, m = 1, 2, . . . ;

(34)

in particular,

Es R
3
3,3 = 9

2048
+ 279

35840π
,

Es R
6
3,3 = 3

2464π2 + 27

65536π
,

Es R
9
3,3 = 81(139 652 + 45045π)

41 984 983 040π3 ,

Es R
12
3,3 = 81(591 472 + 188 955π)

563 580 239 872π4 .

See Figure 6 and Table 4.
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Figure 6: The probability density function corresponding to the spherical contact distribution function
Hsd,s , 1 ≤ s ≤ 3, of the Poisson–Voronoi tessellation in R

3.

6. Proofs

Before starting the proofs, some integrals often used in the following are the generalized
�-function, ∫ ∞

0
tp exp{−qtθ } dt = 1

θ
�

(
p + 1

θ

)(
1

q

)(p+1)/θ

, p, q, θ > 0, (35)

and the trigonometric integral,

Ik,m(ψ) =
∫ ψ

0
cosk t sinm t dt for integer valued k, m ≥ 0 and real ψ, 0 ≤ ψ ≤ π,

Ik,m(ψ) = sinm+1 ψ

2

	(k−1)/2
∑
i=0

�((k + 1)/2)�((k +m− 2i)/2)

�((k +m+ 2)/2)�((k − 2i + 1)/2)
cosk−2i−1 ψ

+
⎧⎨
⎩
�((k + 1)/2)�((m+ 2)/2)√

π�((k +m+ 2)/2)
I0,m(ψ), k even,

0, k odd,

(36)

with

I0,m(ψ) = √
π
�((m+ 1)/2)

�((m+ 2)/2)

	m/2
∑
i=0

ai(π − ψ), m ≥ 0, (37)

where 	θ
 denotes the greatest integer smaller or equal to θ .
Formulae (36) and (37) can be obtained by integration by parts and recursion. In the particular

cases of ψ = π/2 and π , they simplify to∫ π/2

0
cosk t sinm t dt = 1

2

�((k + 1)/2)�((m+ 1)/2)

�((k +m+ 2)/2)
(38)

and ∫ π

0
sinm t dt = √

π
�((m+ 1)/2)

�((m+ 2)/2)
. (39)
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Furthermore, summation formulae for �-terms are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d/2−1∑
i=1

�(i)�((m+ 2i + 1)/2)

�(i + 3/2)�((m+ 2i + 2)/2)

= 8√
πm

�((m+ 3)/2)

�((m+ 2)/2)
− 4

m

�(d/2)

�((d + 1)/2)

�((d +m+ 1)/2)

�((d +m)/2)
, d even, d > 2,

d−1/2∑
i=1

�(i − 1/2)�((m+ 2i)/2)

�(i + 1)�((m+ 2i + 1)/2)

= 2
√
π�(m/2)

�((m+ 1)/2)
− 4

m

�(d/2)

�((d + 1)/2)

�((d +m+ 1)/2)

�((d +m)/2)
, d odd,

(40)

for m > 0; see [7, Equation (30)], and Legendre’s duplication theorem for �-terms is

�(p)�

(
p + 1

2

)
=

√
π

22p−1�(2p). (41)

The relationship between Cartesian (ξ1, ξ2, . . . , ξm) and polar coordinates (r, ϕ1, ϕ2, . . . ,

ϕm−1) in R
m is

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ1 = r cosϕ1,

ξi = r cosϕi

i−1∏
j=1

sin ϕj , i = 2, . . . , m− 1,

ξm = r

m−1∏
i=1

sin ϕi,

m∏
i=1

dξi = rm−1 dr
m−1∏
i=1

(sinm−i−1 ϕi dϕi),

(42)

where 0 ≤ ϕi ≤ π, i = 1, . . . , m− 2, and 0 ≤ ϕm−1 ≤ 2π .
Let s(x, rw) be the line segment in R

d of length r with endpoints x and x + rw, and let
z0 = (ρ, σ ) and σ,w ∈ Sd−1. Then s(x, rw) belongs to the origin cell C0 if and only if the
union b(x, ‖x − z0‖)∪ b(x + rw, ‖x + rw− z0‖) does not contain any other point of�. The
convexity of C0 implies that each further point y = x + µrw, 0 ≤ µ ≤ 1, of the segment is
also inside C0. Therefore,⋃

y∈s(x,rw)
b(y, ‖y − z0‖) = b(x, ‖x − z0‖) ∪ b(x + rw, ‖x + rw − z0‖), (43)

and, consequently, for each compact convex set Y ⊂ R
d ,

⋃
y∈Y

b(y, ‖y − z0‖) =
⋃
y∈∂Y

b(y, ‖y − z0‖). (44)

See Figure 7.
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z0

fµ(t)

s(o,r)
o µr t r x1

Figure 7: A line segment and two overlapping balls centred at its endpoints, the ball b(µr, ‖µr − z0‖)
(dashed line) and its orthogonal distance fµ(t) of the point with x1-coordinate t ; see (43). Here o := x,

r := x + rw, and µr := y ∈ s[x, rw].

Proof of (13). Let σ = (σ1, . . . , σd) be a point of Sd−1, and let Hn be the n-dimensional
section subspace given by xn+1 = · · · = xd = 0. Consequently, the projection σ ′ on Hn is
σ ′ = (σ1, . . . , σn, 0, . . . , 0). Denote that part of Sd−1 whereAd,n = 
 σoσ ′ does not exceed a
given value α, 0 ≤ α ≤ π/2, by Sd−1

α . For all σ ∈ Sd−1
α , the inequality

∑d
i=n+1 σ

2
i < sin2 α

is true. Then the distribution function of the angle Ad,n can be expressed as a ratio of (d − 1)-
volumes as follows:

FAd,n(α) = νd−1(S
d−1
α )

νd−1(Sd−1)
.

For the sake of simplicity, consider only the first quadrant of Sd−1, where σ1, σ2, . . . , σd ≥ 0.
Then FAd,n(α) can be written as

FAd,n(α) = 2d

dωd

=
∫ d−n

0≤σn+1,...,σd ;∑d
i=n+1 σ

2
i ≤sin2 α

∫ n−1

0≤σi<
√

1−∑d
j=i+1 σ

2
j , i=2,...,n

1√
1 − ∑d

i=2 σ
2
i

×
d∏
i=2

( dσi).

To calculate the (n− 1)-dimensional inner integral, the formula

∫ θ

0
(θ2 − t2)m/2 dt =

√
πθm+1

2

�((m+ 2)/2)

�((m+ 3)/2)

is used, which follows from the substitution t = θ sinψ and the use of (39). We obtain

πn/2

2n−1�(n/2)

(
1 −

d∑
i=n+1

σ 2
i

)n/2−1

.

The (d − n)-dimensional outer integral is solved by transformation to polar coordinates. If
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n < d − 1, use of (42) for m = d − n and σn+i = ξi, i = 1, . . . , d − n, gives

FAd,n(α) = 2d−n�(d/2)
π(d−n)/2�(n/2)

d−n−2∏
i=0

(∫ π/2

0
sini ϕ dϕ

) ∫ sin α

0
rd−n−1

√
1 − r2

n−2
dr.

Using (39) d − n− 1 times allows us to determine the distribution function of the angle Ad,n:

FAd,n(α) = 2�(d/2)

�(n/2)�((d − n)/2)

∫ sin α

0
rd−n−1

√
1 − r2

n−2
dr.

It can be shown that this result is also correct for n = d − 1. Differentiation with respect to α
yields (13).

Proofs of (14) and (15). The test set B is the line segment of unit length starting at o, B =
s(o, 1). HereHB(r) = Hld (r) is the probability that rs(o, 1) = s(o, r) is not completely inside
the origin cell C0. Using (43), Ur,ρ,σ is the union of the two balls centred at the endpoints of
s(o, r) with z0 = (ρ, σ ) on their boundaries. Using (3) and (7), replacing (4) by (13), and
respecting the fact that 0 ≤ α ≤ π gives

Hld (r) = 1− 2π(d−1)/2λ

�((d − 1)/2)

∫ ∞

0

∫ π

0
ρd−1 sind−2 α exp{−λνd(r, α, β(r, ρ, α))} dα dρ, (45)

or by using (5) and the transformation formulae (9) and (10) we obtain

Hld (r) = 1 − 2π(d−1)/2λ

�((d − 1)/2)

∫ π

0

∫ π−α

0

rd(sin α sin β)d−1

sind+1(α + β)
exp{−λνd(r, α, β)} dβ dα. (46)

Differentiation of (45) with respect to r leads to (14). Differentiation of (46) with respect to r
by use of (11), (12), and (41) gives (15).

Proofs of (16) and (17). Starting with (14), transform (5) and (11) by (8), and insert the
limits νd(0, α, β(0, ρ, α)) and limr↓0( dνd(r, α, β(r, ρ, α))/ dr). Use of (35), (39), and (40)
for m = d − 1 leads to (16).

To investigate hld (0) for large d , we use two well-known asymptotical properties of the
�-function:

lim
p→∞

�(p + 1/2)√
p�(p)

= 1

and Stirling’s formula

�(p + 1) = √
2πp

(
p

e

)p
e(�/12p), 0 < θ < 1.

This gives (17).

Proof of (18). Use of (15), (35), and (41) gives (18).

Proof of (19). Two-fold differentiation of (1) with respect to r gives

fl(r) = − EL
d

dr
(hl(r))
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with the mean chord length

EL = d{�((d + 1)/2)}2�(d − 1/2)

2�(d)�(2 − 1/d){�((d + 2)/2)}2−1/dλ1/d ;

cf. also [2, Equation (9)]. Differentiation of (14) with respect to r and insertion of (9) and (10)
lead to (19).

Proofs of (20) and (21). We obtain (20) analogously to the proof of (16). Use of (35)
gives (21).

Proof of (22). Analogously to the proof of (14), we obtain

Hsd,1(r) = 1 − 4π(d−1)/2λ

�((d − 1)/2)

×
∫ ∞

0

∫ π/2

0
ρd−1 sind−2 α

× exp{−λνd(b(−r, ‖(ρ, α)+ r‖) ∪ b(+r, ‖(ρ, α)− r‖))} dα dρ.

The d-volume in the exponent is equal to νd(2r, β1, β2). Its derivative with respect to r is
calculated analogously to (11), respecting the fact that the set occurring in the exponent increases
with r in two directions, where ±r denotes these points with coordinates ±r on the x1-axis.
Use of the transformation formulae

ρ = r
√

2(sin2 β1 + sin2 β2)− sin2(β1 + β2)

sin(β1 + β2)
, α = arccot

sin(β1 − β2)

2 sin β1 sin β2
,

the Jacobian∣∣∣∣ ∂(α, ρ)∂(β1, β2)

∣∣∣∣ = 4r
sin β1 sin β2

sin2(β1 + β2)
√

2 sin2 β1 + 2 sin2 β2 − sin2(β1 + β2)
,

and (41) leads to (22). Application of symmetry arguments in (15) gives (23).

Proof of (24). Following (43) and (44), we have to determine

Ur,ρ,σ =
⋃

w∈Sd−1

b(rw, ‖rw − z0‖),

with w = (w1, w2, . . . , wd) in Cartesian coordinates and the constraint
∑d
i=1w

2
i = 1. For

the sake of simplicity, we assume that z0 = (ρ, 0, . . . , 0). We construct a function l(r, ρ, ϕ)
describing the distance between z0 and the element u of ∂Ur,ρ,σ that satisfies ϕ = 
 (uz0o), 0 ≤
ϕ ≤ π . Rotational symmetry enables us to assume that u is in the (x1, x2)-plane, i.e. u =
(ρ − l cosϕ, l sin ϕ, 0, . . . , 0), where l = l(r, ρ, ϕ). The value of l(r, ρ, ϕ) is found via
maximization of the distance lw = ‖uw − z0‖ for points uw ∈ ∂b(rw, ‖rw− z0‖). It is clearly
‖rw−uw‖ = ‖rw−z0‖, i.e. the distance ‖uw−z0‖ is l(w) = 2((ρ− rw1) cosϕ+ rw2 sin ϕ)
for fixed ϕ. The wanted u is the point uw that maximizes l(w); see Figure 8. Replacing

w1 = ±
√

1 − w2
2 in l(w), an elementary extreme value determination leads to (24), where the

necessary inequality l(r, ρ, ϕ) ≥ 0 leads to ϕ∗.
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z0ρo

ϕ

rw

l(w)

l(r,ρ,ϕ)
uw

u

Figure 8: The point uw for various w and fixed ϕ with distance l(w) = ‖uw − z0‖. Its maximum is the
wanted function l(r, ρ, ϕ) = ‖u− z0‖.

Proofs of (25) and (26). Use of polar coordinates (42) gives the d-dimensional integral

νd(r, ρ) =
∫ d

ld−1 dl
d−1∏
i=1

(sind−i−1 ϕi dϕi)

with 0 ≤ l ≤ 2(r + ρ cosϕ1), 0 ≤ ϕ1 ≤ ϕ∗, 0 ≤ ϕi ≤ π, i = 2, 3, . . . , d − 2, and
0 ≤ ϕd−1 ≤ 2π . Repeated use of (39) leads to the d-volume of Ur,ρ,σ ,

νd(r, ρ) = κd

∫ ϕ∗

0
(r + ρ cosϕ)d sind−2 ϕ dϕ,

where ϕ∗ is given in (24), and its derivative with respect to r ,

ν′
d(r, ρ) = dκd

∫ ϕ∗

0
(r + ρ cosϕ)d−1 sind−2 ϕ dϕ.

Using (36) and (37), we obtain (25) and (26).

Proof of (27). Insert (3) and (25) into (2). Differentiation with respect to r and insertion of
(26) gives (27).

Proof of (28). Let r = 0. Inserting (25) and (26) into (27), and using (38) and (35) leads
to (28). Analogously to the proof of (17), by additional use of (41) we obtain (29).

Proof of (30). Substitution of ρ = τr into (25), (26), and (27), and use of (35) leads to (30).
For the special cases d = 2 and d = 3, we obtain

ν2(r, ρ) = 4

⎧⎪⎪⎨
⎪⎪⎩
π

(
r2 + ρ2

2

)
, ρ < r,(

r2 + ρ2

2

)(
π − arccos

r

ρ

)
+ 3

2
r
√
ρ2 − r2, ρ ≥ r,
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ν′
2(r, ρ) = 4

⎧⎨
⎩

2πr, ρ < r,

2r

(
π − arccos

r

ρ

)
+ 2

√
ρ2 − r2, ρ ≥ r,

ν3(r, ρ) = 16π

3

⎧⎨
⎩

2r(ρ2 + r2), ρ < r,

(ρ + r)4

4ρ
, ρ ≥ r,

(47)

ν′
3(r, ρ) = 16π

3

⎧⎨
⎩

2(3r2 + ρ2), ρ < r,

(r + ρ)3

ρ
, ρ ≥ r,

(48)

and, thus, we obtain the expressions for hs2,2(r) and hs3,3(r).

Proofs of (32) and (34). Inserting (47) and (48) into (27) and applying (35) gives

ES R
k
3,3 = 1

8

(
3

32πλ

)k/3
�

(
2 + k

3

)(∫ 1

0

t2(3 + t2)

(1 + t2)2+k/3 dt + 25+k
∫ 1

0

tk

(1 + t)5+4k/3
dt

)
.

Integration by parts gives the recursion formulae

∫ 1

0

tk

(1 + t i )m
dt = −1

2m+i−2(m− 1)
+ k − i + 1

2i−1(m− 1)

∫ 1

0

tk−i

(1 + t i )m−1 dt, i = 1, 2,

∫ 1

0

1

(1 + t2)m
dt = 1

2m(m− 1)
+ 2m− 3

2m− 2

∫ 1

0

1

(1 + t2)m−1 dt,

∫ 1

0

1

(1 + t)m
dt = 1

(m− 1)

(
1 − 1

2m−1

)
,

for k,m > 1, which leads to

∫ 1

0

tk

(1 + t)5+4k/3
dt = k!∏k

i=0(k/3 + 4 + i)
−

k∑
i=0

k!
i!

1

2k/3+i+4
∏k
j=i (k/3 + j + 4)

.

Use of the substitution t = t ′2 and (33) gives

∫ 1

0

t2(3 + t2)

(1 + t2)2+k/3 dt = − 3

2k/3(k + 3)
+ 9

2(k + 3)
F

(
k

3
,

1

2
,

3

2
,−1

)
,

F

(
m,

1

2
,

3

2
,−1

)
=
m−1∑
i=1

∏m−2
j=i ((2j + 1)/(2j + 2))

i · 2i+1 + π

4

m−1∏
i=1

2i − 1

2i
, m > 0,

and, thus, we obtain (32) and (34).
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