
INDUCTIVE EXTENSION OF A VECTOR MEASURE 
UNDER A CONVERGENCE CONDITION 
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1. I n t r o d u c t i o n . Let /z be a vector measure (countably addi t ive set 
function with values in a Banach space) on a field. If JJL is of bounded variat ion, 
it extends to a vector measure on the generated o--field (2; 5; 8) . Arsène and 
Stra t i la (1) have obtained a result, which when specialized somewhat in form 
and context , reads as follows: ilA vector measure on a field, majorized in norm 
by a positive, finite, subaddi t ive increasing set function defined on the 
generated o--field, extends to a vector measure on the generated cr-field". 
Th is includes the bounded variat ion case, for it suffices to take the to ta l 
variat ion (extended) as the majorizing positive set function. Such results 
may be looked upon as possible steps toward the a t t a i n m e n t of a vector 
measure extension theorem wi thout any condition, if this is possible, or with a 
proven minimum condition, if not . In this paper we prove, by an intui t ively 
simple induction, another such extension, under a convergence condition which 
is sufficient (as is to be proved) and also necessary (as will be obvious) . I t will 
include the bounded variat ion case. T h e intervals of Euclidean space const i tu te 
the simplest class on which it is na tura l to introduce a measure. Abstract ion 
gives rise to the "semi-field" (semi-ring (6) of ring context ) . Accordingly, we 
begin with a vector measure defined on a semi-field. 

2. T e r m i n o l o g y a n d n o t a t i o n . As in (3), generalized sequence means 
Moore-Smith sequence, and "sequence" retains its e lementary meaning. 
Unless the context indicates otherwise, a set is a subset of a fixed set S\ the 
null set is denoted 0. As in (6), a set of sets (subsets of S) is called a class. 
T h e members of a class T are T sets; a sequence of T sets is called a T sequence. 
In the context of sequences, or of generalized sequences, of sets, convergence 
means set-theoretical convergence. T h e convergence of a sequence of sets {En\ 
to a set E is denoted (as is convergence in other contex ts ) : limw En = E, or 
En—*E; if, further, the sequence increases: En Ç E7l+1 (decreases: En 3 En+i), 
the notat ion En\ E (En j E) may be employed. Wi th reference to a class T, 
I \ (T5) is the notat ion for the class of countable (including finite) unions 
(intersections) of r sets. T h e nota t ion E\ + E2 + . . . ÇE,En) may be employed 
to denote the disjoint union Ei VJ E2 VJ . . . (UEn); in this case the union is 
referred to as a sum. A set function is a function /J. whose domain ^"(/x) is a 
class, and whose range is a subset of a Banach space. T h e condition of finite, 
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or countable, additivity on a set function \x is applicable only to those disjoint 
sequences of «^(M) sets whose sums belong to <^(/x). The term "field" refers 
to a field of sets whose maximum (with respect to inclusion) element is S. 
In the context of the lemmas "vector measure" (countably additive vector-
valued set function) is abbreviated to "measure". 

3. Extension from a semi-field to the generated field. 

Definition. A semi-field is a class A such that (a) 0, 5 G A; (b) A is closed 
under finite intersections; (c) whenever A and B are A sets such that A Ç B, 
there exists a finite increasing sequence of A sets: A = E0 Ç Ex C . . . C En = 
B, such that Ei — Ei-1 G A fori = 1, 2 , . . . ,n. A field is a specialized semi-field. 
Given a semi-field A, let 2(A) denote the class of finite sums of A sets; then 
2(A) is the field generated by A. 

Definition. A vector measure / zona semi-field A is monotonely convergent if, 
for every disjoint A sequence {En}, the series Yin v(En) converges. 

THEOREM 1. A vector measure on a semi-field extends uniquely to a vector 
measure on the generated field. If the original vector measure is monotonely 
convergent, so is its extension. 

Proof. The first statement, for a positive measure, is essentially Theorem 8, 
E of (6). The generalization to a vector measure does not affect the proof: 
the association and inversion involving double sums remain valid operations 
since countable additivity refers to unordered summation. The second state
ment is obvious. 

4. Extension from a field to the generated <r-field. For a vector 
measure juona field 2, "monotone convergence" is equivalent to the following 
property: 

"For every monotone 2 sequence {En}, {/x(Ew)} converges". 
Without effect on the property, we may read "increasing" or "decreasing" 
for "monotone". 

Definition. Let T be a class closed under finite unions and finite intersections, 
and let £ be a set. The class r<+>(£) = {A: A G T, A 3 £} , if not empty, 
is directed by inclusion: 

A^B ^ AQB (A, B G r<+>(£)). 

Let M be a set function such that T C ^ ( M ) and E G ^( /x) . If r+ (£ ) is 
non-empty and the generalized sequence {n(A)}, A G T ( + )(£) , converges to 
n(E), we will say that n is upper Y continuous at E. The set function \x will 
be called "upper T continuous" if it is so at every i^(/x) set. Similarly, with 
r ( _ ) ( £ ) = {A: A G T, A Ç E}, reversing inclusions, we define "lower T 
continuity". 

The symbol (2, /x) will serve as abbreviation for the recurring hypothesis: 
" 2 is a field and ix is a monotonely convergent vector measure on 2 " . 
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LEMMA 1. Under hypothesis (S, /x), /x extends to a finitely additive set function 
X 0W Sa, uniquely characterized by lower S continuity. For every increasing S 
sequence {En}, limn \(En) = X(limraEn). 

Proof. For £ G Sff, the generalized sequence {n(A)\, A G S ( _ )(E) , con
verges; In fact, if this were not so, there would exist e > 0 such that, whenever 
E contains a S set A, there is also a S set B such that A C B C E, 

MA) -n(B)\\ ^ e. 

Accordingly, whenever a sequence of n S sets ^4* has been established such 
that Ax C ^2 C . . . C 4„ C E, ||/*(4i) - M(^Z+I)II è e (1 ^ i < »), there 
is a S set ^4w+i such that 4̂W C ^n+i C E, \\n(An) — p(An+i)\\ ^ e. This 
would prove inductively the existence of an increasing S sequence {An} such 
that ||/x(-4n) — jLt(^4n+i)|| è e, which would contradict the monotone con
vergence. Defining X(E) to be the limit of the above generalized sequence, we 
obtain the lower S continuous extension X of /u, of domain Sff. The finite 
additivity is preserved in the passage to the limit, and uniqueness is clear. 
Suppose that En\ E (En G S) ; by the lower S continuity, for arbitrary 
e > 0 there exists a S set A contained in E such that 

A Ç 5 C E , £ G S ==> ||X(E) - X(5)|| < e. 

Since /x is a measure, we have that 

||X(E) - X(EW)|| £ ||X(E) - X(il)|| + ||X(il) - X(EJ| | 

^ ||X(E) - X ( ^ ) | | + MEn-A)\\ + ||MG4 - E J H 

< e + 2e+ \\p(A - E J | | - * 3 e ( » - > » ) . 

LEMMA 1 (equivalent dual form). Under hypothesis (S, /x), jit extends to a 
finitely additive set function v on S 5, uniquely characterized by upper S continuity. 
For every decreasing S sequence {En}, limnp(En) = v(limnEn). 

Proof. The duality is immediate by complementation, except for the finite 
additivity of v. Let E and F be disjoint S5 sets and limits, respectively, of 
decreasing S sequences {En} and {Fn}. Since (En O Ew) j 0, we have that 

, ( E + 70 = \\mnlx(En\J Fn) = 

l imJM (EJ + n(Fn) - M(E» H E„)] = v(E) + , (E) . 

Under hypothesis (S, yu), if £ É 2 a Pi Sa, then there are S sequences, 
{E„}, {Fn}, increasing, decreasing, respectively, to E, therefore 

v{E) - X(E) = HmJM(En) - M ( E J ] = lim„M(E„ - E J = 0. 

Thus X and v combine to form a single extension (denoted by /x), whose 
domain is Sff \J Sa: 

iX(E) if E G 2,, 
M ( E ) " \„(E) if £ 6 2a. 
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This extension, which is finitely additive on each of the parts 2ff and 2 5 of 
its domain, will henceforth be understood, in the context of the hypothesis 
(2, JJL). Some of the lemmas to follow also have dual forms; these will not be 
stated, but appealed to as needed in proofs. Under the hypothesis (2, ju), 
Lemma 1 (with its dual) describes the behaviour of n with respect to monotone 
2 sequences. Under the same hypothesis, Lemmas 2 and 3 (with their duals) 
will describe the behaviour of ix (extended) with respect to monotone 2* 
and 2 g sequences. 

LEMMA 2. Under hypothesis (2, /x), if a 2^ sequence {En} decreases {decreases 
to 0), then {ij,(En)} converges (converges to 0). 

Proof. By the lower 2 continuity, for arbitrary e > 0, there exists a 2 
sequence {Fn) such that Fn C En and 

FnQAQE*, A 6 2 =» \\n(En) - »(A)\\ < e/2n, 

so that 

A Ç En - Fn, i ^ ^ | | / iU) | | < e/2\ 

Write 

An = O Fu 

1 

then for n > 1, 

Fn - A = [Fn - (Fn r\ FJ] + [(Fn r\ FX) - (Fn r\ Fx n F2)] +... 
+ [(Fn n Fi r\... n FW_2) - (F% n ^ n . . . n z ^ ) ] . 

The &th term of the sum is a 2 set contained in Ek — Fk, thus the norm of 
its measure is less than 2e/2fc, hence ||//(FW — An)\\ < 2e. Therefore 

\\»(En) - v(An)\\ ^ MEn) - n(Fn)\\ + \\v(Fn - An)\\ < 3e. 

Since e is arbitrary and {n(An)) converges (converges to 0), the conclusions 
follow. 

LEMMA 3. Under hypothesis (2, /x), for every increasing Xff sequence {En}, 
lim„ v(En) = /z(limn En). 

Proof. For arbitrary e > 0 let {Fn} be a 2 sequence such that Fn C En and 
^ ^ i Ç £ n , ^ G 2 ^ ||/*(£») - A*(^)|| < €• Each En is the limit of an 
increasing 2 sequence {.4nm}, m = 1, 2, . . . , such that Ew Ç ^4wm Ç Ere. Write 

n n 

Bnm
 = U Aim, Dn = U Bii' 

i=l i=l 

Then Fn Q Dn Q En and r ^ 5 tz m =ï Brm ÇL Bsm. If £ is an arbitrary point 
of E = limw En, there is an index r such that >̂ £ £ n then there is an index 
s > r such that p (z Ars Q Brs CI 5S S Ç Ds. This proves that Z>w | E, then, 
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by L e m m a 1, n(Dn) —> ju(E), and the conclusion follows from the following 
inequali ty: 

HMCE) - /x(£»)|| ^ | |M(£) - /i (2?.) 11 + HM(A0 - M(-EJ|| 

< ||„(£) -MAOH + e. 

T h e following weak addi t iv i ty relation will suffice for present purposes. 

L E M M A 4. Under hypothesis ( 2 , /x), if E £ 2 , £ Ç 2 a , rmd £ 3 F, /Âew 

M ( E - F) + /i(70 = /*(£)• 

Proof. Le t F n | ^ ( ^ Ç 2 ) . I t suffices to consider the equat ion 

/ x ( £ - Fn) + /i(Fn) = M ( £ ) 

in the limit (w —» °° ), applying Lemma 1 and its dual . 

Definition. A vector measure /JL on a field 2 is ww// convergent if £„ —> 0, 

( E , G 2 ) =*/ ! (£») ->(> . 

L E M M A 5. Let \xbe a null convergent measure on a field 2 , then if {En\ is a 

convergent 2 sequence {whose limit need not be a 2 set), then {JJL(E?1)} converges. 

Proof. T h e double sequence {id(Em — En)}, m, n = 1, 2, . . . , converges to 0; 
for if not , for some e > 0 and some pair of s tr ict ly increasing sequences of 
integers {mk}, {nk}} we have t h a t \\n(Emk — Enk)\\ ^ e (fe = 1, 2, . . . ) , and 
since Emk — Enk —> 0, this would contradic t the null convergence. Now the 
convergence of [ix(En)) follows from the following inequali ty: 

MEm) - »(En)\\ S \HEm - En)\\ + | |M (E n - Em)\\. 

T H E O R E M 2. For a vector measure on a field, null convergence and monotone 
convergence are equivalent properties. 

Proof. I t remains to show t h a t monotone convergence implies null con
vergence, since the converse is contained in L e m m a 5. W e shall apply the 
following pa r t of the dual of Lemma 2 (obtained by complementa t ion, with 
the aid of Lemma 4 ) : 

" U n d e r hypothesis ( 2 , [x), if a 2s sequence {En} increases, then 
ln(En)} converges". 

Let JU be a vector measure on a field 2 which is no t null convergent . Then for 
some e > 0 there exists a 2 sequence {En} such t h a t \\id(En)\\ ^ e (n = 1, 2, . . .) 
and En —> 0. Wri te An = U?= w Et. Since the 2ff sequence \E1 C\ An\ decreases 
to 0, we have t h a t n(E\ Pi An) —> 0 (Lemma 2) . Le t n\ be an index such t h a t 
| | M ( - E i ^ ^ m ) | | < è*. Then Fx = EY - ( E i H ^ J is a 2 5 set such t h a t 
| | J U ( £ I ) | | > Je (Lemma 4) . By the same argument , for some n2 > n\, Ani — An2 

contains a 2s set F2 such t h a t | | A I ( £ 2 ) | | > ie, and so on, inductively. Hence 
there exists a disjoint 2Ô sequence {£w} such t h a t | | / i (£ n ) | | > \e (n = 1, 2, . . . ) , 
in which case, the series Z J ° ^ ( £ W ) diverges. Wri t ing Gn = YJi Fi} we have 
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the increasing 2 s sequence {Gn} such that \n(Gn)} diverges. Thus, by the dual 
of Lemma 2, n is not monotonely convergent. 

Definition. Let 2 be a field; the class of limits of convergent 2 sequences, 
which is obviously a field containing 2, is called the limit field of 2, and is 
denoted by 2. We note that the field 2 is a cr-field if and only if 2 = 2 . 

LEMMA 6. Under hypothesis (2, /*), ju extends to a finitely additive set function 
jl on 2, uniquely determined by the following condition: 

En -» E, (£n e 2) =»/*(£») -> M(£). 

Proof. Let £ be an arbitrary 2 set and let {En} be a 2 sequence converging 
to E. Then {ii(En)} converges (Theorem 2, Lemma 5), and it follows from the 
null convergence that the limit is independent of the particular 2 sequence 
converging to E. The required extension is therefore defined by the following 
formula: 

/Z(E) = limnfi(En), where En->E (En £ 2, E £ 2) . 

I t remains to verify the finite additivity of jl, but this follows as in the proof 
of the dual of Lemma 1, applying, this time, the null convergence. The exten
sion jl extends the previous extensions X and v. Henceforth, in the context 
(2, JU), the extension /z will be understood, and we will write JU instead of /Z. 

LEMMA 7. Under hypothesis (2, //), 

En->0, (En e 2,) =>/*(£„)-»0. 

Proof. For arbitrary e > 0, there is a 2 sequence {Fn} such that Fn Ç £w 

and \\iJi(Fn) — ix(En)\\ < e (Lemma 1), and the conclusion follows from the 
null convergence. 

LEMMA 8. Under hypothesis (2, /z), every 2 se£ E is the limit of a decreasing 
2ff sequence {En} such that n(En) —»/x(i£). 

Proof. Let \Fn} be a 2 sequence converging to E and write En = U?=» F t. 
Then £ n J, E (En G 2a), n(Fn) —> n(E), and, by Lemma 7, 

LEMMA 9. Under hypothesis (2, /x), 

£» i £, (£. G 2,, £ G 2) =* /!(£„) -> /x(£). 

Proof. By the dual of Lemma 8, £ is the limit of an increasing 25 sequence 
{Fn} such that ii{Fn) —>/x(E), and the 2ff sequence {Ew — 7^} converges to 0, 
thus by Lemma 7 (or Lemma 2), 

M ( £ J - n(Fn) = n(En - Fn) -» 0. 

LEMMA 10. Under hypothesis (2, ju), /&£ additive extension /JL on 2 w upper 2,, 
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Proof. Let £ be a given 2 set. The class S^+^E) = { i : i G 2 ^ D £ ) 
is not empty, since S is a field and S £ 2(r

(+) (E) and the generalized sequence 
{n(A)\, A G 2 a

( + ) (E) , converges to a vector x. For if this were not so, there 
would exist a decreasing 2 , sequence {Fn) such that {̂  (Fn)} diverges, contrary 
to Lemma 2. Let {En} be a 2 , sequence decreasing to E (Lemma 8); we can 
construct inductively a decreasing 2 , sequence {An) such that En^D_ An~D_E 
and ||/x(^4w) — x|| < w_1. By Lemma 9, n(An) —»/*(£), thus x = M ( E ) . 

LEMMA 11. Under hypothesis (2, /z), suppose that ^ feas 5ee^ extended to a 
finitely additive, upper 2ff continuous set function {denoted by /x) on a y£e/d T 
containing 2. rfeew /fee extension y is a monotonely convergent measure on T. 

Proof. The conclusion is equivalent to the conjunction of the following two 
affirmations: 

(a) If {En} is an increasing T sequence, then {n(En)} converges. 
(b) If En Î E (En 6 r , E 6 r ) , then n(En) -> /x(E). 

Proof of (a). By the upper 2 a continuity, for e > 0 arbitrary, there is a 2^ 
sequence {7^} such that 

Fn^E» and ^ 2 ^ 2 4 A G 2 . => | | M ( £ J - »(A)\\ < e/2\ 

Write Gn = UÏ 7^, G = U ï 7?ni so that, by Lemma 3, M(Gn) ->ju(G). For 
w > l ( F o = 0), we have that 

G„ - Fn = [(F„ U Fx) - Fn] + [(Fn \J F1\J F2) - (Fn U FJ] + . . . 

+ [(Fn U 7^ U . . . U Fn_x) - (FH U Fi U . . . U Fn_2)]. 

The feth term of the sum is a proper difference of 2 , sets of the form 
Dk = Ak — Bkj where Bk 2 Efc and Dk C 7^ — 7^. Replacing ^ and 73* by 
their intersections with 7^ (which does not effect Dk), we may suppose, further, 
that EkQBkQAkQ Fk. I t follows that \\v(Dk)\\ < 2e/2*, and therefore 
\\fji(Gn — Fn)\\ < 2e. The affirmation (a) then follows from the following 
inequality: 

\\v(En) - /i(Gn)|| g | | M ( £ , ) - M ( ^ ) | | + ||//(Gn - Fn)| | < 3e, 

with e arbitrary and {n(Gn)} convergent. 

Proof of (b). We may apply the proof of (a) with the added hypothesis 
that there exists a 2ff set F containing E such that: 

E QA Ç F, A G S , = > | | M ( £ ) ~ M(-4) I ! < e. 

We may then further suppose that Fn Cl F (n = 1, 2, . . .) so that E C G Ç T7» 
and therefore ||/x(G) — M(-E)|| < e> a n d thus, finally, 

||limn/x(En) - M ( ^ ) | | < 4e. 

THEOREM 3. 4̂ monotonely convergent vector measure on afield extends uniquely 
to a monotonely convergent vector measure on its limit field. 
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Proof. Under hypothesis (2, /x), because of Lemma 10, the hypothesis of 
Lemma 11 is satisfied for Y = 2, thus the finitely additive extension n on 2 
(Lemma 6) is a monotonely convergent measure. If v is any monotonely 
convergent measure on 2, because of the null convergence, we have that 

En -> E, (En £ 2, E e 2) => K£») -> *(£). 

This implies the uniqueness of the measure extension. 
In the context (2, /x), we understand the extension of \x to a finitely addi

tive function (denoted by /x) on 2 ; following Theorem 3, we understand this 
extension as a monotonely convergent measure on 2. The final induction will 
be carried out with the aid of Lemmas 11 and 13, below. 

LEMMA 12. Under hypothesis (2, /x), suppose that /x /̂ as ôeew extended to a 
monotonely convergent measure [denoted by /x) <w afield Y containing 2. Suppose, 
further, that /JL is upper 2 a continuous at every Y set. Then /x is upper 2ff C0?z-
tinuous at every Ya set. 

Proof. Suppose that En | E (En Ç r ) . Since ju is upper 2^ continuous at 
every En, as in the first part of the proof of Lemma 11, there exists, for 
arbitrary e > 0, an increasing 2ff sequence {Gn) such that En C Gn and 
\\n(En) — id(Gn)\\ < e. Write G = Yimn Gn. Since /x is also a measure on T 
(extension of Theorem 3) we may pass to the limit to obtain 

ME) - M ( G ) | | =g e. 

Let A be any 2ff set such that £ C 4̂ Ç G. It is clear from the proof of Lemma 
11, that if we replace each Gn of the above argument by Gn

r = GnC\ A, we 
still have ||/*(£») — /x(Gn')ll < e. Since G is replaced by A, the conclusion is 
| |M(£) - M C 4 ) | | ^ e. 

LEMMA 13. Under the hypothesis of Lemma 12, /x is upper 2ff continuous at 
every Y set. 

Proof. Let E be a given T set and let e > 0 be arbitrary. Since /x is upper I \ 
continuous at E (Lemma 10), there is a Ya set F such that 

£ C i ^ and E^AQG, A G r„ => ||/x(£) - /x(^)|| < e. 

By the conclusion and Lemma 12, /x is upper 2^ continuous at F; thus there 
is a 2 , set ^ such that 

F Ç 5 and F^CQB, C Ç 2 , => ||/i(/0 - /x(C)|| < e. 

Let £> be any 2„ set such that E Cl D Cl B. Then 

IIMCD) - MCE)|| ^ H M W - /i(2? n /oil + HM(^ n TO - /*(£)! I 

< | | / I ( P W / O - M ( / 0 I I + «. 

Since /x is upper 2 a continuous at the Ya set D KJ F (Lemma 12) there is a 2 , 
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set H such t h a t B 3 H 2 D U F and | |//(JÏ) - /z(Z> U F ) | | < e. B u t then 
B ^ H ^ F, H G 2 „ thus 

||/x(ff) - M ( F ) | | < e, 

| |M(D U F) - n(F)\\ S \\n(D VF)- M ( f f ) | | + | | M ( i ï ) - M ( ^ ) | | < 2e, 

and we have, finally, t h a t \\fj.(D) ~ M CE) 11 < 3e. 

T H E O R E M 4. 4̂ monotonely convergent vector measure on a semi-field extends 
uniquely to a vector measure on the generated a-field. 

Proof. Because of Theorem 1, we may s t a r t with hypothesis ( 2 , /i). Le t 2 ' 
denote the a-field generated by 2 . Let $ be the set of all pairs (T, X) such t h a t 

(a) T is a field such t h a t 2 C r Ç 2 ' , 
(b) X is a monotonely convergent, upper 2ff cont inuous vector measure on 

T, which extends /x, and 

(c) X is the only measure on T extending /x. 
T h e non-null set $ ( ( 2 , /i) G $ ) is part ial ly ordered: for ( I \ X), (T ' , X') 6 $ , 
(T, X) ^ ( r ' f X') means t h a t T ÇZ r r and X' extends X. In order to apply 
Zorn 's lemma, we will show t h a t <£ is inductive, t h a t is, an a rb i t ra ry total ly 
ordered non-null subset Slf is bounded above in <ï>. If ( I \ X) £ & we will say 
t h a t T is a "SF-field" and t h a t X is a " ^ - m e a s u r e " . T h e union of the ^-fields 
is a field r 0 ; and the upper 2^ cont inuous finitely addi t ive set function X0 on r 0 , 
extending //, is well-defined if we set, for E £ r 0 , Xo(E) = X(£) , where (T, X) 
is any element of ^ such t h a t E £ T. B u t then X0 is a monotonely convergent 
measure (Lemma 11). If v is any measure on T0 extending JJL, then by the 
definition of <£, v extends every ^"-measure, thus v = X0. Hence ( r 0 , X0) is an 
element of <£, and is the required upper bound of ^f. T h e induct ivi ty established, 
let (A, v) be a maximal element of <£. Suppose t h a t A C 2 ' . Then À C Â Ç 2 ' , and 
by Theorem 3, v extends uniquely to a monotonely convergent vector measure 
v on Â. Since (À, v) £ $, v is upper 2^ cont inuous a t every A set, so also a t 
every A set (Lemma 13). Le t X be any vector measure on A extending JJL; by 
the uniqueness of *>, the restriction of X to A is v, and therefore X = v (unique
ness condition of Theorem 3) . Hence (A, v) £ $, (A, v) > (A, v), this con
tradict ion showing t h a t A = 2 ' , and therefore v is the required extension. 

Theorem 4 includes the following known bounded variat ion case: 

COROLLARY. A vector measure of bounded variation on a semi-field extends 
uniquely to a vector measure of bounded variation on the generated a-field. 

Proof. l'Bounded var ia t ion" is a proper ty of a vector measure on a semi-field 
(defined there as on a field (3)) if and only if it is a proper ty of its extension 
(Theorem 1) to the generated field. T h u s we may suppose the vector measure /z 
of bounded variat ion defined on a field 2 . T h e to ta l var ia t ion v of ju is a positive 
(finite) measure, thus obviously monotonely convergent , hence null con
vergent (Theorem 2) . B u t then, since v(E) ^ | | ^ ( £ ) | | for all E G 2 , /x is null 
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convergent, hence monotonely convergent (Theorem 2), thus Theorem 4 
applies to ju. Let jl and v be the extensions of ju and v, respectively, to measures 
on the generated cr-field 2 ' ; it is seen inductively that v(E) ^ ||/z(£)|| for 
all E £ 2' , thus Jx is of bounded variation. 
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