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An Elementary Proof of a Weak
Exceptional Zero Conjecture

Louisa Orton

Abstract. In this paper we extend Darmon’s theory of “integration on Hp × H” to cusp forms f of

higher even weight. This enables us to prove a “weak exceptional zero conjecture”: that when the p-

adic L-function of f has an exceptional zero at the central point, the L-invariant arising is independent

of a twist by certain Dirichlet characters.

1 Introduction

Let f be a cusp form for Γ1(N) of weight k and character ε which is an eigenform for

the Hecke operator Tp. In their paper [MTT], Mazur, Tate and Teitelbaum define,
using modular symbols, a p-adic L-function Lp( f , χ, s). Here χ is a Dirichlet charac-
ter, and s ∈ Zp. Their p-adic L-function interpolates the usual complex L-function:
to be precise, we have an equation (in a suitable Cp-vector space V f )

(1) Lp( f , ω jχ, j) = ep(α, χ, j)K(χ, j)L( fχ̄, j + 1)

for 0 ≤ j ≤ k − 2, where ω is the Teichmüller character, χ is a Dirichlet character,
K(χ, j) is a nonzero complex number and ep(α, χ, j) ∈ Q̄ is the p-adic multiplier.
Here α is an ‘allowable’ root of the equation X2− apX + ε(p)pk−1

= 0, where Tp f =

ap f .

Lp is said to have an exceptional zero when the p-adic multiplier is zero.

In particular, suppose f is a newform for Γ0(N) of even weight k and level N

where p||N , and suppose Tp f = wp
k−2

2 f for some w = ±1 (where Tp = U p is the

Hecke operator at p). Now the only allowable root is ap = wp
k−2

2 . Then there is an

exceptional zero at the central point j =
k−2

2
for any Dirichlet character χ satisfying

χ(p) = w.

Mazur, Tate and Teitelbaum conjectured that the exceptional zero is “of local type”,
meaning that there is an equation

(2) L ′
p( f , ω

k−2
2 χ, t)|t= k−2

2
= Lp( f , χ)K(χ, j)L( fχ̄, k/2)

where the L-invariant Lp( f ) = Lp( f , χ) is independent of the choice of χ. It was
hoped that the L-invariant could be defined explicitly using only the p-adic Galois

representation V p( f ) as a representation of the local Galois group Gal(Q̄p/Qp).
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Such an explicit definition was later made by Fontaine and Mazur. There were also
definitions of Lp( f ) made by Teitelbaum and Coleman. It has now been shown that

these values agree when they are all defined.

Then the full exceptional zero conjecture/theorem states, for such an explicitly
defined Lp( f ):

Theorem (Kato, Kurihara, Tsuji/Stevens) Equation (2) is satisfied with Lp( f , χ) =

Lp( f ) for any Dirichlet character χ of conductor prime to N satisfying χ(p) = w.

This has been proved by Kato, Kurihara and Tsuji, and independently by Stevens,
using deep methods from arithmetic geometry.

The aim of this paper is to give a more elementary proof of the following weaker
statement:

Proposition There exist constants L
w∞

p ( f ) ∈ Cp for w∞ = ±1 such that (2) holds

with Lp( f , χ) = L
w∞

p ( f ) for any Dirichlet character χ of conductor prime to N satis-

fying χ(p) = w and χ(−1) = w∞.

This has been done in the first part of Darmon’s paper [Dar] for the case k = 2
(see the remark in Section 3.2 of [Dar]), and his proof is extended here to the higher
weight case.

The idea of this method is to construct two cohomology classes lc f and oc f in

the group H1(Γ,Mk−2) where Mk−2 is a space of Cp-valued modular symbols, and
Γ ⊂ PSL2(Q). The class lc f will interpolate values of L ′

p and the class oc f will in-
terpolate values of L∞. By showing that the two classes are contained in the same
one-dimensional Hecke eigenspace, an equation like (2) will be obtained.

These cohomology classes will be obtained by interpreting cusp forms for Γ0(N)

which are new at p as cusp forms on E(T) ×H for the group Γ ⊂ PSL2(Q), where
H is the complex upper half plane and T is the Bruhat-Tits tree of PGL2(Qp).

To be more precise:

Let N = M p where M and p are coprime.

R := {γ ∈ M2(Z[1/p]) : c ≡ 0 mod M}

Let Γ ⊂ PSL2(Q) be the image of the set of elements of R of determinant 1.

We can interpret cusp forms for Γ0(N) which are new at p as cusp forms on E(T)×
H for Γ. Such a form consists of a set of forms fe, one for each (oriented) edge of
T, such that fe is a cusp form for Γe := StabΓ(e), related by a Γ-invariance property.

f will be taken to correspond to a newform f0.

We define a modular symbol κ f lying in Char
(

Hom(D0,Vk−2(C))
)Γ

, where
Vk−2(C) = Hom(Pk−2,C), Pk−2 is the space of polynomials of degree ≤ k − 2

with coefficients in Z, D0 is the space of divisors of degree zero on P1(Q) and Char(C)
denotes the space of harmonic cocycles with values in C .

This can be written in terms of modular symbols as in [MTT], and by symmetriz-
ing or antisymmetrizing the modular symbols and dividing by a period, you can get a
symbol with algebraic values, written κw∞

f {x→ y}(e)(P) for x, y ∈ P1(Q), e ∈ E(T)
and P ∈ Pk−2.
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It is harmonic in e, with sufficiently bounded growth to define a distribution on
P1(Qp) with ∫

U (e)

P(z) dµ f {x→ y}(z) = κ f {x→ y}(e)(P).

In Darmon’s case κw∞

f takes integer values, so this distribution is in fact a measure,

and he can also define a multiplicative integral.
Now Darmon defines a double multiplicative integral,

∫
×

z2

z1

∫ y

x

ω :=

∫
×

P1(Qp)

( t − z2

t − z1

)
dµ f ,Dar{x→ y}(t)

where zi ∈ Hp and x, y ∈ P1(Q).
In the general even weight case, µ f {x → y} is only a tempered distribution of

order k−2
2

(in the sense of [Col]). So we no longer have a multiplicative double in-
tegral, but choosing a branch of the p-adic logarithm such that logp(p) = 0 we can
still define an additive double integral:

∫ z2

z1

∫ y

x

(P)ω :=

∫

P1(Qp)

logp

( t − z2

t − z1

)
P(t) dµw∞

f {x→ y}(t).

We choose an embedding Ψ : K = Q × Q → M2(Q), γΨ a generator of Ψ̄(K∗) ∩ Γ,
xΨ, yΨ ∈ P1(Q) the fixed points of Ψ̄(K∗).

Darmon defines a ‘period’,

IΨ :=

∫
×
γΨz

z

∫ yΨ

xΨ

ω

It can be shown that IΨ ∈ Q∗
p , ord p(IΨ) is related to values of complex L-functions

at 1, and logp(IΨ) is related to values of the derivative of the p-adic L-function.
In our situation we no longer have IΨ, but we still have values LIΨ and WΨ cor-

responding to logp(IΨ) and ord p(IΨ) respectively and their values are still related to

the complex and p-adic L-functions.
The period IΨ was a special value of a cocycle c f in H1(Γ,M(C∗

p)), where the space
of modular symbols is defined by M(C) := HomZ(D0,C). By showing that logpc f

and ord p c f belong to the same one-dimensional Cp-subspace of H1(Γ,M(Cp)), the

result is obtained for k = 2.
Similarly, for k > 2, we still have cocycles lc f and oc f corresponding to logpc f and

ord p c f which are in the same one-dimensional Hecke eigenspace of H1(Γ,Mk−2)
where Mk−2 = M(Vk−2(Cp)).

2 Cusp Forms on the Tree

2.1 Definitions

Let k be an even positive integer, and N = M p where p is a prime not dividing M.
Let

R :=

{
γ =

(
a b

c d

)
∈ M2(Z[1/p]) : c ≡ 0 mod M

}
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Let Γ ⊂ PSL2(Q) be the image of the set R∗
1 of elements of R of determinant 1.

Let Γ̃ ⊂ PGL2(Q) be the image of the set R∗
+ of invertible elements of R with

positive determinant.

T will be the Bruhat-Tits tree of PGL2(Qp), with a fixed vertex v∗ corresponding
to the class of the lattice Zp ⊕ Zp and a fixed edge e∗ with source v∗ and target cor-
responding to the class of Zp ⊕ pZp. Vertices will be called odd or even according to

the parity of their distance from v∗ (so v∗ is even). Edges will be called odd or even
according to the parity of their source vertex (so e∗ is even). Then Γ acts on the tree,
with StabΓ(e∗) = Γ0(N) and StabΓ(v∗) = Γ0(M).

Define the set of cusp forms on the tree T to be the set Sk(T,Γ) of all

f : E(T)×H→ C

satisfying

(i) f (γe, γz) = (cz + d)k f (e, z) ∀γ ∈ Γ,
(ii) f is harmonic in e, i.e., we have f (ē, z) = − f (e, z) for e ∈ E(T) and∑

s(e)=v f (e, z) = 0 for v ∈ V(T),

(iii) fe = f (e, · ) is a cusp form of weight k for Γe = StabΓ(e).

The action of Γ is transitive on the unoriented edges of T, and preserves the parity
of edges. The harmonicity condition relates values on e and ē, so the restriction

ρT : Sk(T,Γ)→ Sk

(
Γ0(N)

)
, f 7→ fe∗

is injective.

Further, define cusp forms on the edges or vertices of the tree for the group Γ̃ as
follows:

Let Sk(E(T), Γ̃) be the set of all f : E(T)×H→ C satisfying

(i) f (γe, γz) =
(cz + d)k

(det γ)k/2
f (e, z) ∀γ ∈ Γ̃ and

(iii) fe = f (e, · ) is a cusp form of weight k for Γ̃e = Stab
Γ̃

(e).

Let Sk(V(T), Γ̃) be the set of all f : V(T)×H→ C satisfying

(i) f (γv, γz) =
(cz + d)k

(det γ)k/2
f (v, z) ∀γ ∈ Γ̃ and

(iii) fv = f (v, · ) is a cusp form of weight k for Γ̃v = Stab
Γ̃

(v).

Because Γ̃ acts transitively on the edges and vertices of T, the restrictions

ρE : Sk

(
E(T), Γ̃

)
→ Sk

(
Γ0(N)

)
, f 7→ fe∗

and

ρV : Sk

(
V(T), Γ̃

)
→ Sk

(
Γ0(M)

)
, f 7→ fv∗

are injective.
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There are maps relating these spaces. Firstly, fix α ∈ Γ̃ \ Γ in the normalizer of
Γ0(N), i.e., such that αe∗ = ē∗. For f ∈ Sk(T,Γ) and γ ∈ GL2(Q)+, define

( f |γ)(e, z) :=
det(γ)k/2

(cz + d)k
f (γe, γz).

so the condition (i) in the definition of Sk(T,Γ) says f |γ = f for all γ ∈ Γ.

Lemma 2.1 We can define an injection i : Sk(T,Γ) → Sk(E(T), Γ̃) by f 7→ f̃ such

that f̃ (e, z) = f (e, z) if e is an even edge, and f̃ (e, z) = ( f |α)(e, z) for e an odd edge.

Proof This is similar to the weight 2 case given in [Dar].

Lemma 2.2 Defining maps πs and πt : Sk(E(T), Γ̃)→ Sk(V(T), Γ̃) by

πs( f )(v, z) =

∑

s(e)=v

f (e, z) πt ( f )(v, z) =

∑

t(e)=v

f (e, z),

the following is exact:

0→ Sk(T,Γ)
i
−→ Sk

(
E(T), Γ̃

) πs⊕πt−−−→ Sk

(
V(T), Γ̃

)
⊕ Sk

(
V(T), Γ̃).

Proof Again this works similarly to the case k = 2.

The maps defined above will correspond to the “degeneracy” maps for cusp forms,

φs, φt : Sk(Γ0(N))→ Sk(Γ0(M)). If Γ0(M) =
∐p+1

j=1 γ jΓ0(N) then

φs( f0) =

p+1∑

j=1

f0|γ
−1
j , φt ( f0) =

p+1∑

j=1

f0|(αγ
−1
j ).

The space of p-new forms is defined to be the kernel of φs ⊕ φt .

As in the case k = 2 we can show the following:

Lemma 2.3 There is a commutative diagram with exact rows

0 −−−−−→ Sk(T,Γ)
i

−−−−−→ Sk

(
E(T), Γ̃

) πs⊕πt
−−−−−→ Sk

(
V(T), Γ̃

)
⊕ Sk

(
V(T), Γ̃

)
y ρT

y ρE

y ρV ⊕ρV

0 −−−−−→ Sk

(
Γ0(N)

) p−new
−−−−−→ Sk

(
Γ0(N)

) φs⊕φt
−−−−−→ Sk

(
Γ0(M)

)
⊕ Sk

(
Γ0(M)

)

in which the vertical arrows are isomorphisms.
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Proof As mentioned above, the three restriction homomorphisms are injective. Fur-
ther, any f0 ∈ Sk(Γ0(N)) can be lifted to Sk(E(T), Γ̃) by defining

f (γe∗, z) :=
(cz + d)k

(det γ)k/2
f0(γ−1z),

so ρE is an isomorphism. Similarly, ρV is an isomorphism.
The second square of the diagram commutes because {γ1e∗, . . . , γ j+1e∗} is the set

of edges with source v∗, and {γ1αe∗, . . . , γ j+1αe∗} is the set of edges with target v∗.

We will also need modular symbols. Mazur, Tate and Teitelbaum [MTT] use the
symbol

φ f {x→ y}(P) := 2πi

∫ y

x

f0(z)P(z) dz or φ f (P, y) := φ f {∞ → y}(P)

which is in the space Hom(D0 ⊗ Pk−2,C)Γ0(N), where D0 is the group of degree zero
divisors on P1(Q) and Pk−2 is the vector space of polynomials of degree≤ k−2 with
coefficients in Z.

We can define a modular symbol on the tree by

Definition 2.1

κ f {x→ y}(e, P) := 2πi

∫ y

x

fe(z)P(z) dz.

This will be shown to be in the space Char
(

Hom(D0⊗Pk−2,C)
)Γ

of harmonic cocy-
cles on E(T) with values in Hom(D0⊗Pk−2,C), where the group action is described
in the next section.

2.2 Note on Actions of GL2(Q)

The action of GL2(Q)+ on cusp forms is given by

( f0|γ)(z) :=
det(γ)k/2

(cz + d)k
f0(γz).

Let Pk−2(Q) be the space of polynomials with degree ≤ k − 2 and coefficients
in Q . This has an action of GL2(Q) defined by

(P|γ)(z) :=
(cz + d)k−2

det(γ)(k−2)/2
P(γz).

Then we get an action of GL2(Q) on the space of symbols Hom(D0⊗Pk−2,C) by

(φ|γ){x → y}(P) = φ{γx→ γy}(P|γ−1).
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These satisfy the property that scalar multiples of the identity act trivially. Hence
on Pk−2(Q) and even Pk−2 := Pk−2(Z) we have an action of PGL2(Q).

(These differ slightly from the definitions used in [GS], where the scalar matrices
no longer act trivially.)

The action on Sk(Γ0(N)) was extended to Sk(T,Γ) by

( f |γ)(e, z) :=
det(γ)k/2

(cz + d)k
f (γe, γz).

We get an action on the space Char
(

Hom(D0 ⊗ Pk−2,C)
)

similarly by

(κ|γ){x → y}(e, P) = κ{γx→ γy}(γe, P|γ−1)

2.3 Action of Γ, W p, Γ̃

Let f ∈ Sk(T,Γ), then

f (γe, γz) = (cz + d)k f (e, z) ∀γ ∈ Γ

Thus for γ ∈ Γ, and P ∈ Pk−2(Q),

(3) f (γe, γz)P(γz) d(γz) = f (e, z)(P|γ)(z) dz

Lemma 2.4 (Properties of κ f ) κ f is harmonic in e, linear in P, additive in {x → y}
and Γ-invariant in the sense that

κ f {γx→ γy}(γe, P|γ−1) = κ f {x→ y}(e, P).

Proof The harmonicity follows immediately from the corresponding property of f .

Linearity in P and additivity in {x→ y} follow immediately from the definition.
Γ-invariance follows from the definition of κ f and the Γ-invariance of f .

This lemma shows that κ f ∈ Char
(

Hom(D0 ⊗Pk−2,C)
)Γ

. So we have a commu-
tative diagram:

(4)

Sk(T,Γ)
κ·−−−−→ Char

(
Hom(D0 ⊗ Pk−2,C)

)Γ

ρT

y∼=

y ρM

Sk(Γ0(N))p−new φ·
−−−−→ Hom(D0 ⊗ Pk−2,C)Γ0(N)

where ρM also denotes restriction to the edge e∗, which is injective. (The image of ρM

can be described as a ‘p-new’ part exactly as in Lemma 2.3.)

It is possible to define various operators on the space Sk(T,Γ) by their action on
the corresponding cusp form for Γ0(N). For example the standard Atkin-Lehner
involution at p is defined by:

The operator W p is defined on Sk(Γ0(N)) by W p f0 = f0|γ for any γ ∈ Γ̃ \ Γ

normalizing Γ0(N). It is defined similarly on Hom(D0 ⊗ Pk−2,C)Γ0(N) by W pφ =

φ|γ.
In particular, in these definitions we can use the previously fixed α in the normal-

izer of Γ0(N) for the element γ.
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Definition 2.2 Define an operator W p on Sk(T,Γ) by W p f = − f |β for any β ∈
Γ̃ \ Γ.

On Char
(

Hom(D0 ⊗ Pk−2,C)
)Γ

, define W p similarly by W pκ = −κ|β.

Lemma 2.5 These operators W p are well defined, and W p commutes with all the maps

in (4).

In the case where f ∈ Sk(T,Γ) is associated to a newform f0 = fe∗ it is an eigen-

form for W p with eigenvalue −w, say. Then the action of γ ∈ Γ̃ can be described
by

f |γ = w|γ| f and κ f |γ = w|γ|κ f

where |γ| := ord p det γ.
We have an explicit inverse to ρM on the part of its image where W p = −w:

Lemma 2.6 Suppose κ ∈ Char
(

Hom(D0 ⊗ Pk−2,C)
)Γ

satisfies W pκ = −wκ.

If γ ∈ Γ̃ is such that γe = e∗ then

κ{x→ y}(e, P) = w|γ|ρM(κ){γx → γy}(P|γ−1).

2.4 Action of Hecke Operators

Let l be a prime not dividing N . We can pick δ j such that

Γ0(N)

(
1 0
0 l

)
Γ0(N) =

l∐

j=0

Γ0(N)δ j and Γ

(
1 0
0 l

)
Γ =

∐
Γδ j .

The action of the Hecke operator T(l) on Sk(Γ0(N)) is defined by

f0|T(l) = l
k−2

2

∑

j

f0|δ j .

It is defined on Hom(D0 ⊗ Pk−2,C)Γ0(N) by

φ|T(l) = l
k−2

2

∑

j

φ|δ j .

These are the usual Hecke operators.

Definition 2.3 The action of T(l) on Sk(T,Γ) is defined by

f |T(l) := l
k−2

2

∑

j

f |δ j ,

and similarly on Char
(

Hom(D0 ⊗ Pk−2,C)
)Γ

,

κ|T(l) := l
k−2

2

∑

j

κ|δ j .

Lemma 2.7 The Hecke operators in Definition 2.3 are well defined. The operations

T(l) for l prime to N commute with all the maps in (4).
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2.5 Action of W∞

The “Atkin-Lehner involution at ∞”, W∞, will correspond to the action of α∞ =(
−1 0
0 1

)
. This doesn’t act on the cusp forms (as it has negative determinant), but does

act on the modular symbols.

Definition 2.4 W∞ is defined on Hom(D0 ⊗ Pk−2,C)Γ by W∞φ := φ|α∞.

It is defined on Char
(

Hom(D0 ⊗ Pk−2,C)
)Γ

by W∞ f := f |α∞.

Lemma 2.8 W∞ is well defined here and commutes with ρM .

Now let f0 be a newform, so in particular it is an eigenform for W p with eigenvalue
−w, say, and for each T(l) with eigenvalue al. Then the associated f ∈ Sk(T,Γ) is

also an eigenform, as are φ f and κ f .

Let φ±f be elements of the ±1-eigenspace for W∞ in Hom(D0 ⊗ Pk−2,C)Γ0(N)

satisfying

φ f = Ω
+
f φ

+
f + Ω

−
f φ

−
f .

From Shimura’s theorem (described in [GS]), we can choose the φ±
f and complex

periods Ω
±
f in such a way that φ±

f applied to polynomials with integer coefficients
take values in O f (the ring of integers of the finite extension of Q generated by the
Hecke eigenvalues of f ). Write also φw∞

f for φ±f where w∞ = ±1.

These φw∞

f are in the same Hecke eigenspace as φ f , in particular are still Hecke

eigenfunctions for T(l), l prime to N , and W p, with the same eigenvalues as f0.

Note that in the case k−2
2

odd, this φ±
f corresponds to [GS]’s Φ

∓
f .

We have

Ω
w∞

f φw∞

f =
1

2
(φ f + w∞W∞φ f ),

so φw∞

f is still contained in the image of ρM .

Define κw∞

f to be the element of Char
(

Hom(D0 ⊗ Pk−2,C)
)Γ

mapped to φw∞

f by
ρM . By Lemma 2.6, if γe = e∗, then we have

(5) κw∞

f {x→ y}(e, P) = w|γ|φw∞

f {γx→ γy}(P|γ−1).

Lemma 2.9 (Properties of κw∞

f )

1. κw∞

f {x→ y}(e, P) is harmonic in e, additive in x, y, and linear in P. For γ ∈ Γ̃,

κw∞

f |γ = w|γ|κw∞

f .

2. κw∞

f is a Hecke eigenfunction with the same eigenvalues as κ f , i.e.,

alκ
w∞

f {x→ y}(e, P) = l
k−2

2

l∑

j=0

κw∞

f {δ jx→ δ j y}(δ je, P|δ
−1
j ).
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3. There is the additional relation W∞κ
w∞

f = w∞κ
w∞

f , i.e.,

κw∞

f {α∞x→ α∞y}(α∞e, P|α∞) = w∞κ
w∞

f {x→ y}(e, P),

so most generally, for any γ ∈ R∗,

κw∞

f {x→ y}(e, P) = w|γ|wsign(γ)
∞ κw∞

f {γx→ γy}(γe, P|γ−1),

where sign(γ) = 0, 1 if det γ is positive or negative respectively.

Proof These follow from the properties of φw∞

f .

1. These are all from the fact that κw∞

f is an element of Char(Hom(D0 ⊗ Pk−2,C))Γ

and that W pκ
w∞

f = −wκw∞

f (because W p commutes with ρM).

2. This is immediate as T(l) commutes with ρM and φw∞

f is a Hecke eigenfunction.

3. For γ = α∞ this follows from W∞φ
w∞

f = w∞φ
w∞

f . The general result follows

because Γ̃ is of index 2 in R∗.

In terms of modular symbols,

λw∞

f (P(z);−a,m) = (−1)
k−2

2 w∞λ
w∞

f (P(−z); a,m),

and in particular for P(z) = z
k−2

2 we get

(6) λw∞

f (z
k−2

2 ;−a,m) = w∞λ
w∞

f (z
k−2

2 , a,m).

Note that for χ a primitive Dirichlet character of conductor c,

(7)

Λ
w∞( f , χ, j) : =

∑

a∈(Z/cZ)∗

χ(a)λw∞

f ( f , z j ; a, c)

=

{
0 if χ(−1) = −w∞

K(χ, j)L( fχ̄, j + 1)/Ωw∞

f if χ(−1) = w∞

where

K(χ, j) =
c j+1 j!

(−2πi) jτ (χ̄)
∈ C.

The “algebraic part” of the complex L-function is defined to be Λ = Λ
+ + Λ

−.
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3 Defining a Distribution

3.1 The Mazur-Tate-Teitelbaum Distribution

In [MTT] a construction of Vishik and Amice-Velu is used to define a distribution
on Z∗

p,c := lim
←−

(Z/cpnZ)∗ with values in Cp, on the set of locally analytic functions
Z∗

p,c → Cp. The result used is as follows.

Suppose we are given a distribution µ on polynomials of degree≤ h satisfying the
property

(8)

∫

D(a,ν)

(x − a)n
p dµ(x) ∈ pν(n−r)

Ω 0 ≤ n ≤ h

for some fixed r, 0 ≤ r ≤ h, and a fixed Op-lattice Ω in a Cp-vector space V , where
D(a, ν) := a + cpνZp,c ⊂ Z∗

p,c.

Then µ can be extended uniquely to the space of locally analytic functions in such
a way that (8) is satisfied for all n ≥ 0, and if a function F has a convergent power

series expansion on D(a, ν), say F(x) =
∑

n≥0 cn(x − a)n
p, then

∫

D(a,ν)

F(x) dµ(x) =

∑
cn

∫

D(a,ν)

(x − a)n
p dµ(x).

To evaluate such an integral, we use truncations (cf. the proof of the existence of

the distribution given in [MTT]). If on an open set U , the locally analytic function F
has a convergent power series of the form F(z) =

∑∞
0 cn(z − a)n

p with a ∈ U then
write

TruncN
U ,a(F) =

N∑

0

cn(z − a)n.

By the uniqueness property, once r is fixed, the distributions defined by this con-
struction for h ≥ r are the same, so we may as well assume h = r.

Then by definition

∫

U

F(x) dx := lim
ν→∞

∑

U=∪D(ai ,ν)

∫
(Trunch

D(ai ,ν),ai
F)(x) dµ(x).

In [MTT] this is applied to µ = µ f ,MTT , constructed from modular symbols.

Then r =
k−2

2
and k−2

2
≤ h ≤ k− 2. V = V f := Cp ⊗Q̄ Q̄L f and Ω is a multiple of

the O lattice generated by L f , where L f is the lattice in C generated by the values of

φ f on D0 ⊗ Pk−2(Z).

In the case where f is a newform for Γ0(N) we have, for 0 ≤ n ≤ k− 2,

∫

D(a,ν)

P(xp)µ(x) = (wp
k−2

2 )−νλ( f , P; a, pνc).

Then the p-adic L-function is defined by:
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For a p-adic characterψ : Z∗
p,c → Cp and character 〈 · 〉 defined by 〈x〉 = xpω

−1(x)
(the projection to 1 + Zp),

Lp( f , ψ, s) :=

∫

Z∗

p,c

χ(x)〈x〉s dµ f ,MTT (x).

This defines a locally analytic function of s ∈ Zp.

By making a substitution of φ±
f for φ f in the definition of the modular symbol,

we can define similarly Cp-valued distributions µ±
f ,MTT , and p-adic L-functions L±

p ,

now with values in Q̄ ⊗ Cp = Cp. Define the algebraic part of the p-adic L-function
to be Lp = L+

p + L−
p (cf. [Kit]).

In fact if χ(−1) = w∞(−1)
k−2

2 then L−w∞

p ( f , χ, s) = 0 and Lp( f , χ, s) =

Lw∞

p ( f , χ, s) = Lp( f , χ, s)/Ωw∞

f .

3.2 Generalization to P1(Qp)

As described in [Tei], this construction can be generalized to distributions on P1(Qp).

This time, suppose we are given a distribution on the polynomials of degree ≤ h

on P1(Qp), satisfying

(9)

∫

U (e)

(z − a)n dµ(z) ∈ pα(e)(n−r)
Ω for a ∈ U (e),∞ 6∈ U (e), and 0 ≤ n ≤ h,

where α(e) = infu,v∈U (e){vp(u− v)} for∞ 6∈ U (e), and

(10)

∫

U (e)

(z−a0)ndµ(z) ∈ pα(e)(r−n)
Ω for∞ ∈ U (e), a0 6∈ U (e), and 0 ≤ n ≤ h,

with α(e) = − infu,v 6∈U (e){vp(u− v)} for∞ ∈ U (e).

Again, Ω is some fixed lattice in a Cp-vector space V , and r and h are fixed integers
with 0 ≤ r ≤ h. (N.B. if equation (10) holds for a0 = 0 then it holds for any a0)

Then the distribution can be extended uniquely to the space Ch of functions on
P1(Qp) which are locally analytic on Qp and may have a pole of order at most h at
infinity. This is now subject to (9) and (10) holding for all n ≥ 0 and all n ≤ h

respectively. The continuity condition becomes:

If∞ 6∈ U (e), a ∈ U (e), and F has a power series expansion

F(z) =

∞∑

n=0

cn(z − a)n

convergent on U (e), then

∫

U (e)

F(z) dµ(z) =

∞∑

n=0

cn

∫

U (e)

(z − a)n dµ(z).
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If∞ ∈ U (e), a0 6∈ U (e), and F has a Laurent series expansion

F(z) =

h∑

n=−∞

cn(z − a0)n

convergent on U (e), then

∫

U (e)

F(z) dµ(z) =

h∑

n=−∞

cn

∫

U (e)

(z − a0)n dµ(z).

This implies that if∞ 6∈ U (e) and we have a series of functions Fn ∈ Ch satisfying

Fn → F pointwise in U (e) that

∫

U (e)

Fn(z) dµ(z)→

∫

U (e)

F(z) dµ(z).

Now the definition of the distribution is
∫

U

F(z) dµ(z) := lim
α(Ui )→∞

∑

U=∪Ui

∫
(Trunch

Ui ,ai
F)(z) dµ(z).

For∞ ∈ U , if F has a Laurent series expansion

F(z) =

h∑

n=−∞

cn(z − a0)n

where a0 6∈ U , then the truncation is defined as

Trunch
U ,a0

(F) =

h∑

0

cn(z − a0)n.

For∞ 6∈ U the truncations are defined as in the previous section.
Now the uniqueness implies that once r is fixed, the distribution defined by h = r

is the restriction to Cr of the distribution defined by h = h0 > r.

3.3 Application

Let f ∈ Sk(T,Γ) correspond to a new form f0 for Γ0(N) as before. Because of the
harmonicity of κw∞

f {x→ y}( , ) we can use it to define a distribution µw∞

f {x→ y}

on the space of functions on P1(Qp) which are locally polynomial of degree≤ k− 2
via: ∫

U (e)

P(z) dµw∞

f {x→ y}(z) := κw∞

f {x→ y}(e, P).

This can be used to define a distribution on Ck−2 by applying the previous section
with r =

k−2
2

, and h = k− 2.
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Proposition 3.1 The properties (9) and (10) are satisfied by any µw∞

f {x → y} thus

they can be extended to distributions on Ck−2.

Proof We use equation (5) and particular simple representatives for the edges of T.
To be precise, let

γ = γr,s,a =

(
pr −a

0 ps

)

γ−1
=

(
p−r ap−(r+s)

0 p−s

)

where 0 ≤ a ≤ ps − 1, and a is prime to pr .

Then γ−1e∗ represents the edge e corresponding to the open set

U (e) = {x ∈ Qp : prx ≡ a mod ps
Zp}.

So γe = e∗ and α(e) = s− r.

It is easy to see that for r + s fixed this gives all the edges at distance r + s from v∗,
with all except the one with s = 0 oriented away from v∗.

Now from equation (5) we have
∫

U (e)

(z − b)nµw∞

f {x→ y}(z) = w|γ|φw∞

f {γx→ γy}(P|γ−1)

where P(z) = (z − b)n and b ∈ U (e). Now,

(P|γ−1)(z) = (pr−s)
k−2

2
−n

(
z +

a− prb

ps

) n

and b ∈ U (e) implies that a−prb
ps is integral.

We know that for a polynomial with integral coefficients, φw∞

f takes values in O f ,

the integers of the field K f generated over Q by the Hecke eigenvalues of f0. It follows
that for Ω := Op ,

∫

U (e)

(z − b)n dµw∞

f {x→ y}(z) ∈ pα(e)(− k−2
2

+n)
Ω.

The property for∞ ∈ U (e) follows immediately from the case s = 0, as in [Tei], by
harmonicity.

Remark Equation (9) now says precisely that when restricted to Zp or Qp the distri-

bution is tempered of order k−2
2

.
There is an operation of GL2(Q) on Ck−2 given by

( f |γ)(z) =
(cz + d)k−2

(det γ)
k−2

2

f
( az + b

cz + d

)

which specializes to the normal action on Pk−2.
We need to know how this action is related to the truncation operations. This is

given by the following lemma:
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Lemma 3.1 If F is a locally analytic function on U and a0 ∈ U ,∞ 6∈ U and∞ 6∈ γU

then (
Trunck−2

U ,a0
(F)

) ∣∣γ−1
= Trunck−2

γU ,γa0
(F|γ−1).

The same relation holds if a0 6∈ U ,∞ ∈ U and γ · ∞ =∞.

If∞ ∈ U , γ · ∞ 6∈ U and a0 6∈ U then

(
Trunck−2

U ,a0
(F)

) ∣∣γ−1
= Trunck−2

γU ,γ·∞(F|γ−1).

Note that this is sufficient for evaluating integrals, as if∞ ∈ U and γ ·∞ 6=∞ we
can take a smaller U with∞ 6∈ γU . The third relation also gives us the case∞ 6∈ U ,
γ∞ ∈ U of course.

Lemma 3.2 (Properties of the Distributions) The distributions defined as above

have the following properties.

1. If P ∈ Pk−2 then ∫

P1(Qp)

Pµw∞

f {x→ y} = 0.

2. If γ ∈ Γ̃ and F ∈ Ck−2 then
∫

U (γe)

(F|γ−1)µw∞

f {γx→ γy} = w|γ|

∫

U (e)

Fµw∞

f {x→ y}.

3. If F ∈ Ck−2 then

al

∫

U (e)

F(z) dµw∞

f {x→ y}(z) = l
k−2

2

l∑

j=0

∫

U (δ j e)

(F|δ−1
j )(z) dµw∞

f {δ jx→ δ j y}(z).

4. More generally than 2, for γ ∈ R∗ and F ∈ Ck−2,
∫

U (γe)

(F|γ−1)µw∞

f {γx→ γy} = wsign(γ)
∞ w|γ|

∫

U (e)

Fµw∞

f {x→ y}.

Proof The first property holds by the harmonicity of κ. The others hold for polyno-

mials by the equivalent properties of κw∞

f given in Lemma 2.9. They extend to locally
analytic functions by Lemma 3.1.

4 Double Integrals

Now as in [Dar] we can define a double integral (though not a multiplicative integral
in this case):

Definition 4.1

∫ z2

z1

∫ y

x

(P)ω :=

∫

P1(Qp)

logp

( t − z2

t − z1

)
P(t) dµw∞

f {x→ y}(t)

where zi ∈ Hp , P ∈ Pk−2(Cp) and x, y ∈ P1(Q).
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Lemma 4.1 (Properties of Double Integral) The double integral satisfies the follow-

ing properties:

1. The double integral is additive in x, y and in z1, z2, and linear in P.

2. For γ ∈ Γ̃ ∫ γz2

γz1

∫ γy

γx

(F|γ−1)ω = w|γ|

∫ z2

z1

∫ y

x

(F)ω.

3. For all F ∈ Ck−2,

al

∫ z2

z1

∫ y

x

(F)ω = l
k−2

2

l∑

j=0

∫ δ j z2

δ j z1

∫ δ j y

δ j x

(F|δ−1
j )ω.

4. More generally than 2, for γ ∈ R∗

∫ z2

z1

∫ y

x

(F)ω = w|γ|wsign(γ)
∞

∫ γz2

γz1

∫ γy

γx

(F|γ−1)ω.

Proof Additivity in x, y follows from the equivalent property of κ f . Additivity in
z1, z2 follows from properties of logp. The remaining properties follow from the

equivalent properties of the distributions in Lemma 3.2.

5 Cohomology Groups

5.1 Definition of Cocycles

We can’t define a single cohomology class to correspond to Darmon’s c f , but we
can define classes lc f and oc f corresponding to logp c f and ord p c f respectively. Let

Mk−2 := M⊗P∨
k−2 = Hom(D0 ⊗Pk−2,Cp) with operation of PGL2(Q) defined by

(γ · φ){x→ y}(P) = φ{γ−1x→ γ−1 y}(P|γ)

where x, y ∈ P1(Q) and P ∈ Pk−2.

The classes to be defined will be elements of H1(Γ,Mk−2).

Definition 5.1

õc f ,v(γ){x→ y}(P) :=
∑

e∈v→γv

κw∞

f {x→ y}(e, P)

Lemma 5.1 õc f ,v is a cocycle in Z1(Γ,Mk−2) and its class oc f ∈ H1(Γ,Mk−2) is

independent of v.

Proof This is straightforward using the properties of the modular symbol in
Lemma 2.9.
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Definition 5.2

l̃c f ,τ (γ){x → y}(P) :=

∫ γτ

τ

∫ y

x

(P)ω.

Lemma 5.2 l̃c f ,τ is a cocycle in Z1(Γ,Mk−2) and its class lc f ∈ H1(Γ,Mk−2) is in-

dependent of τ .

Proof This follows from the properties of the double integral in Lemma 4.1.

5.2 Action of Hecke Operators and W∞

The action of the Hecke operators T(l), for l - N , on H1(Γ,Mk−2) is defined as in [Hi,

Section 6.3]: Given a cohomology class c, pick a cocycle c̃ representing it. For γ ∈ Γ

we can choose γ j ∈ Γ such that δ jγ = γ jδi( j), where i( j) defines a permutation of
the j.

Define a new cocycle by

T̃(l)(c)(γ) = l
k−2

2

l∑

j=0

δ−1
j · c̃(γ j).

The operator W∞ acts on Mk−2 as the matrix α∞, and on H1(Γ,Mk−2) via

W̃∞(c)(γ) = α∞ · c̃(α∞γα∞).

Lemma 5.3 We have

T(l) oc f = al · oc f and T(l) lc f = al · lc f ,

and

W∞ oc f = w∞ · oc f and W∞ lc f = w∞ · lc f .

Proof These also follow from the properties of the double integral in Lemma 4.1 and

of the modular symbol in Lemma 2.9.

6 Embeddings and Special Values of Cocycles

6.1 Definitions

Now Ψ will be an embedding Q × Q = K ↪→ M2(Q) as in [Dar], γΨ a generator of

Ψ̄(K∗) ∩ Γ, xΨ, yΨ ∈ P1(Q) the fixed points of Ψ̄(K∗), chosen such that for t ∈ Hp

γn
Ψ(t)→ yΨ as n→∞ γn

Ψ(t)→ xΨ as n→ −∞.

We will also need a polynomial fixed by γΨ,

PΨ(z) =

(
Tr

(
γΨ

(
z −z2

1 −z

))) k−2
2

.
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MΨ will be a Möbius transform with coefficients in Qp taking xΨ 7→ ∞, and yΨ 7→ 0
(this is well defined up to multiplication by a scalar).

Viewing the points xΨ, yΨ as elements of P1(Qp) they define an infinite path in T.
Let v be a vertex on this path (xΨ → yΨ); we will define an open subset of P1(Qp) by
U (v) := {points corresponding to ends of T intersecting (xΨ → yΨ) precisely at v}.
It is possible to label the vertices in (xΨ → yΨ) such that

U (v j) =
{

t ∈ P
1(Qp)− {xΨ, yΨ} such that ord p

(
MΨ(t)

)
= j

}
.

Letting e j = v j−1 → v j , then U (v j) = U (e j)−U (e j+1).
A fundamental region for the action of γΨ on P1(Qp)− {xΨ, yΨ} is given by

FΨ = {t ∈ P
1(Qp) : 0 ≤ ord p MΨ(t) < s}

= U (v0) ∪U (v1) ∪ · · · ∪U (vs−1).

Again, we can’t define a period IΨ without a multiplicative integral, but we can

define objects that behave like logp IΨ and ord p IΨ. These are respectively:

Definition 6.1

LIΨ := lc f (γΨ){xΨ → yΨ}(PΨ) =

∫ γΨz

z

∫ yΨ

xΨ

(PΨ)ω

for any z ∈ Hp.

Definition 6.2

WΨ := oc f (γΨ){xΨ → yΨ}(PΨ) =

∑

e∈v→γΨv

κw∞

f {xΨ → yΨ}(e, PΨ)

where v is any vertex of T.

The definitions as special values of cohomology classes are valid because for any

coboundary of the form b(γ) = m− γ ·m,

b(γΨ){xΨ → yΨ}(PΨ) = m{xΨ → yΨ}(PΨ)−m{γ−1
Ψ

xΨ → γ−1
Ψ

yΨ}(PΨ|γΨ) = 0

6.2 Evaluation of WΨ

Darmon uses specific embeddings of conductor c, given by Ψν , for some ν prime to
c, such that

Ψν(a, a) =

(
a 0

0 a

)
, Ψν(c, 0) =

(
c ν
0 0

)

These are oriented optimal embeddings. Moreover, the embedding Ψν is uniquely
determined by the class of ν in (Z/cZ)∗/〈p2 + cZ〉, and these represent all the Γ-
conjugacy classes of oriented optimal embeddings.
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The integer s is taken to be

s = 2 ·
(

order of p2 in (Z/cZ)∗
)

and s ′ will be the order of p in (Z/cZ)∗. Thus either s ′ is even and s = s ′ or s ′ is odd

and s = 2s ′.
Now fix one such Ψ = Ψν . Then the following are known:

xΨ =∞, yΨ = −ν/c,

γΨ = Ψν(ps/2, p−s/2)

=

(
ps/2 (ps/2 − p−s/2)ν/c,
0 p−s/2

)

PΨ(z) =
(

(ps/2 − p−s/2)/c
) k−2

2 (cz + ν)
k−2

2 .

For simplicity we can remove the factor ((ps/2 − p−s/2)/c)
k−2

2 which is independent
of ν, so

PΨ(z) = (cz + ν)
k−2

2 ,

and we can choose
MΨ(t) = t + ν/c.

Proposition 6.1

WΨν
= β

∑

a∈ Jν

w j(a)λw∞( f , z
k−2

2 ; a, c),

where Jν is the set Jν = {b ∈ (Z/cZ)∗ : ∃ j = j(b) such that b/ν ≡ p j mod c}, and

β =





1 if s = s ′(i.e. s ′ is even)

2 if s = 2s ′(i.e. s ′ is odd), and w = +1

0 if s = 2s ′and w = −1.

Proof Then the edge e j is given by γ−1e∗ where γ =

(
1 −ν ′

0 p j

)
, where ν ′ is an integer

with ν ′ ≡ −ν/c mod ps. We have γxΨ =∞ and γyΨ =
(−ν−cν ′)/p j

c

WΨ =

s−1∑

i=0

κw∞

f {xΨ → yΨ}(ei , PΨ).

We can evaluate each term of this sum:

κw∞

f {xΨ → yΨ}(e j , PΨ) = w|γ|
(
φw∞

f (PΨ|γ
−1, γyΨ)− φw∞

f (PΨ|γ
−1, γxΨ)

)

= w jφw∞

f

(
PΨ|γ

−1,
(−ν − cν ′)/p j

c

)
.
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A calculation gives

PΨ|γ
−1(z) =

(
cz + (cν ′ + ν)/p j

) k−2
2 .

Hence

κw∞

f {xΨ → yΨ}(e j , PΨ) = w jλw∞

(
f , z

k−2
2 ; (cν ′ + ν)/p j , c

)
.

The ν/p j run over the set Jν : once if s = s ′ and twice if s = 2s ′. In the latter case

the w j ’s have the opposite sign in the second occurrence if and only if w = −1. So
we have

WΨν
= β

∑

a∈ Jν

w j(a)λw∞( f , z
k−2

2 ; a, c).

Assume we are not in the case β = 0.

Corollary 6.1 If χ is a primitive Dirichlet character of conductor c, and with χ(p) =

w then

∑

ν∈(Z/cZ)∗

χ(ν)WΨν
= s

∑

a∈(Z/cZ)∗

χ(a)λw∞( f , z
k−2

2 ; a, c)

=

{
sΛ( f , χ, k−2

2
) if χ(−1) = w∞

0 if χ(−1) = −w∞.

Proof As β 6= 0 we have β = s/s ′. The sets Jν for ν ∈ (Z/cZ)∗ cover (Z/cZ)∗, with

each element repeated s ′ times. The result follows from equation (6).

Note that if we had defined WΨ using κ f instead of κw∞

f then this sum would have
evaluated to a multiple of the complex L-function, rather than its algebraic part.

6.3 Comparison of Distributions

The Mazur-Tate-Teitelbaum distribution and the Darmon distributions are both de-

fined in terms of modular symbols, so should be related in some way.
Again we fix Ψ = Ψν . On the Darmon side we will integrate over

FΨ =

s−1⋃
j=0

U (v j) =

s−1⋃
j=0

⋃
a∈(Z/pnZ)∗

U j,a,

where
U j,a = {t ∈ U (v j) : p− j(t + ν/c) ≡ a mod pn}.

This subdivision will correspond to the division of

J∞,ν := (π∞
0 )−1 Jν ∩ Z

∗
p,c

= {b ∈ Z
∗
p,c : b/ν ≡ p j mod c for some j = j(b)}
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as

J∞,ν =

s−1⋃
j=0

J∞,ν, j =

s−1⋃
j=0

⋃
a∈(Z/pnZ)∗

D(Aa, j , n)

where Aa, j = (ν + cν ′)/p j + ac and

J∞,ν, j := {b ∈ Z
∗
p,c : b/ν ≡ p j mod c}.

Then U j,a = γ−1U (e∗) with

γ =

(
1 −ν ′ − p ja

0 pn+ j

)
, γ−1

= p−(n+ j)

(
pn+ j ν ′ + p ja

0 1

)
,

and ν ′ ∈ Z/pn+sZ defined by ν ′ ≡ −ν/c mod pn+s.

Lemma 6.1 If F is a locally analytic function on Z∗
p, then

w j p j( k−2
2

)

∫

U (v j )

F
( cz + ν

p j

)
dµw∞

f {xΨ → yΨ}(z) =

∫

J∞,ν, j

F(xp) dµw∞

f ,MTT (x),

and so

∫

FΨ

p j(z)( k−2
2

)F

(
cz + ν

p j(z)

)
dµw∞

f {xΨ → yΨ}(z) = β

∫

J∞,ν

w j(x)F(xp) dµw∞

f ,MTT (t).

Note that j(t) and j(x) are locally constant functions on J∞,ν and FΨ.

Proof For the first:
Let P be a polynomial of degree≤ k−2. Then calculations with modular symbols

using (5) give

∫

D(A,n)

P(t) dµw∞

f ,MTT (t) = wn p−n( k−2
2

)φw∞

f

(
P(pncz + A),−A/pnc

)

= w j p j( k−2
2

)

∫

U j,a

P
( cz + ν

p j

)
dµw∞

f {xΨ → yΨ}(z),

where A = Aa, j so that γyΨ = −A/cpn and γxΨ =∞.

For a general F, both integrals are defined as a limit as n increases of integrals of
truncations to polynomials of degree k− 2. It is enough to show that

Trunch
D(A,n),A

(
F(yp)

) ∣∣
yp=(cz+ν)/p j = Trunch

U j,a,ν ′+p j a

(
F
( cz + ν

p j(z)

))
.

This holds by Lemma 3.1 with γ−1
=

( c ν
0 p j

)
.

For the second:
As j varies the J∞,ν, j cover the set J∞,ν : once if s = s ′ and twice if s = 2s ′, in the

latter case with opposite sign for w j if and only if w = −1.
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6.4 Evaluation of LIΨ

By definition,

LIΨ =

∫ 1

P

(Qp) logp

( t − γΨz

t − z

)
PΨ(t) dµw∞

f {xΨ → yΨ}(t).

Again we fix Ψ = Ψν . To simplify the notation, set µ = µw∞

f {xΨ → yΨ}, and

κ = κw∞

f {xΨ → yΨ}.
By the definition of the integral for locally analytic functions F, to evaluate it we

need to divide P1(Qp) into smaller open sets, and approximate the integral on each
set by the evaluation of κ on a truncation of F.

Our choice of divisions will be as follows:

P
1(Qp) = U−(n) q

+n∐

−n

γ
j
Ψ
FΨ qU +(n)

where U +(n) = U (e(n+1)s), U−(n) = U (e−ns), definitions as in 6.1. The middle
divisions will be refined later, and we will take a limit as n increases.

First we show that the end divisions can be ignored:

Lemma 6.2

lim
n→∞

(
κ
(

e(n+1)s,Trunck−2
U +(n),yΨ

[
logp

( t − γΨz

t − z

)
PΨ(t)

]))

= lim
n→∞

(
κ
(

e−ns,Trunck−2
U−(n),yΨ

[
logp

( t − γΨz

t − z

)
PΨ(t)

]))
= 0

Proof Note that in the second term because∞ ∈ U−(n), we can choose to truncate

at a0 = yΨ 6∈ U−(n).

κ

(
e−ns,Trunck−2

U−(n),yΨ

[
logp

( t − γΨz

t − z

)
PΨ(t)

])

= κ

(
e0,Trunck−2

U (e∗),yΨ

[
logp

( γ−n
Ψ

t − γΨz

γ−n
Ψ

t − z

)
PΨ(t)

])
by Γ-invariance of κ

= κ

(
e0,Trunck−2

U (e∗),yΨ

[
logp

( t − γn+1
Ψ

z

t − γn
Ψ

z

)
PΨ(t)

])
,

as each of the expressions inside the “logp”s are Möbius transforms of t taking

γn+1
Ψ

z 7→ 0, γn
Ψ

z 7→ ∞ and∞ 7→ 1, hence they are equal.

Now,

logp

( t − γn+1
Ψ

z

t − γn
Ψ

z

)
= logp

(
1 +

yΨ − γ
n+1
Ψ

z

t − yΨ

)
− logp

(
1 +

yΨ − γ
n
Ψ

z

t − yΨ

)

= −
∑

i≥1

1

i

( γn+1
Ψ

z − yΨ

t − yΨ

) i

+
∑

i≥1

1

i

( γn
Ψ

z − yΨ

t − yΨ

) i
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and PΨ(t) = (ct + ν)
k−2

2 = c
k−2

2 (t − yΨ)
k−2

2 , so

Trunck−2
U (e∗),yΨ

[
logp

( t − γn+1
Ψ

z

t − γn
Ψ

z

)
PΨ(t)

]

=

k−2
2∑

i=1

(
−(γn+1

Ψ z − yΨ)i + (γn
Ψz − yΨ)i

)
·

c
k−2

2

i
(t − yΨ)( k−2

2
−i).

But γn+1
Ψ

z → yΨ as n→∞, and γn
Ψ

z → yΨ as n→∞, so these coefficients go to
zero as n increases. κ is linear in P, so it follows that the limit of the second term is
zero.

Similarly, for the first term,

κ
(

e(n+1)s,Trunck−2
U +(n),yΨ

[
logp

( t − γΨz

t − z

)
PΨ(t)

])

= κ
(

e0,Trunck−2
U (e∗),yΨ

[
logp

( γ(n+1)
Ψ

t − γΨz

γ(n+1)
Ψ

t − z

)
PΨ(t)

])
by Γ-invariance of κ

= κ
(

e0,Trunck−2
U (e∗),yΨ

[
logp

( t − γ−n
Ψ

z

t − γ−(n+1)
Ψ

z

)
PΨ(t)

])
,

as each of the expressions inside the “logp”s are Möbius transforms of t taking

γ−n
Ψ

z 7→ 0, γ−(n+1)
Ψ

z 7→ ∞ and∞ 7→ 1, hence they are equal.

Now,

logp

( t − γ−n
Ψ

z

t − γ−(n+1)
Ψ

z

)
= logp

(
1 +

t − yΨ

yΨ − γ
−n
Ψ

z

)

− logp

(
1 +

t − yΨ

yΨ − γ
−(n+1)
Ψ

z

)
+ logp

( yΨ − γ
−n
Ψ

z

yΨ − γ
−(n+1)
Ψ

z

)

= −
∑

i≥1

1

i

( t − yΨ

γ−n
Ψ

z − yΨ

) i

+
∑

i≥1

1

i

( t − yΨ

γ−(n+1)
Ψ

z − yΨ

) i

,

where the last term is zero because

logp

( yΨ − γ
−n
Ψ

z

yΨ − γ
−(n+1)
Ψ

z

)
f = logp

(
MΨ(γΨ · γ

−(n+1)
Ψ

z)

MΨ(γ−(n+1)
Ψ

z)

)

= logp(ps)as MΨ(γΨz) = psMΨ(z) for any z

= 0.
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We have PΨ(t) = (ct + ν)
k−2

2 = c
k−2

2 (t − yΨ)
k−2

2 , so

Trunck−2
U (e∗),yΨ

[
logp

( t − γ−n
Ψ

z

t − γ−(n+1)
Ψ

z

)
PΨ(t)

]

=

k−2
2∑

i=1

(
−

( 1

γ−n
Ψ

z − yΨ

) i

+
( 1

γ−(n+1)
Ψ

z − yΨ

) i
)

c
k−2

2

i
(t − yΨ)i+ k−2

2 .

Again, these coefficients tend to zero as n increases, so the first limit is also zero.

To evaluate the remaining parts we need the lemma:

Lemma 6.3 ∫

FΨ

PΨ(t) dµ(t) = 0.

Proof This follows immediately because

∫

FΨ

PΨ(t) dµ(t) = κ(es, PΨ)− κ(e0, PΨ) = 0.

Hence the integral LIΨ is approximated by

LIΨ,n =

n∑

−n

∫

γ
j

Ψ
FΨ

logp

( t − γΨz

t − z

)
PΨ(t) dµ(t)

=

∫

FΨ

logp

( t − γ1+n
Ψ

z

t − γ−n
Ψ

z

)
PΨ(t) dµ(t) by a similar method to Darmon’s case.

Lemma 6.4 As n→∞, the limit of the above is

LIΨ =

∫

FΨ

logp

(
MΨ(t)

)
PΨ(t) dµ(t).

Proof The integrand in LIΨ,n involves a Möbius transform taking γ1+n
Ψ

z to 0 and

γ−n
Ψ

z to∞. But γ1+n
Ψ

z → yΨ and γ−n
Ψ

z → xΨ. The idea is that in the limit we can
replace the Möbius transform by one taking yΨ to 0 and xΨ to∞, i.e., the transform
MΨ. More precisely, write

Mn(t) =
−yΨγ

−n
Ψ

z

γn+1
Ψ

z
·

t − γ1+n
Ψ

z

t − γ−n
Ψ

z
;

then

LIΨ,n =

∫

FΨ

logp

(
Mn(t)

)
PΨ(t) dµ(t)
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by Lemma 6.3. The multiplier inside the logp is chosen such that all the Möbius maps
take 0 7→ −yΨ.

Then Mn(t)→ MΨ(t) as n→∞, for any t ∈ FΨ, so by continuity of the integral,

∫

FΨ

logp

(
Mn(t)

)
PΨ(t) dµ(t)→

∫

FΨ

logp

(
MΨ(t)

)
PΨ(t) dµ(t).

Proposition 6.2

LIΨν
= β

∫

J∞,ν

w j(t)t
k−2

2
p logp(tp) dµw∞

f ,MTT (t),

where µw∞

f ,MTT is the Mazur-Tate-Teitelbaum measure associated to f0, β is as in Propo-

sition 6.1, and

J∞,ν = (π∞
0 )−1 Jν ∩ Z

∗
p,c

= {b ∈ Z
∗
p,c : b/ν ≡ p j mod c for some j = j(b)}.

Proof We have

LIΨν
=

∫

FΨ

logp(z + ν/c))(cz + ν)
k−2

2 dµ(z)

=

∫

FΨ

logp(cz + ν)(cz + ν)
k−2

2 dµ(z) by Lemma 6.3

=

∫

FΨ

p j(z)( k−2
2

) logp

( cz + ν

p j(z)

)( cz + ν

p j(z)

) k−2
2

dµ(z) as logp(p j) = 0

= β

∫

J∞,ν

w j(t)t
k−2

2
p logp(tp) dµw∞

f ,MTT (t) by Lemma 6.1.

Now assume again that we are not in the case β = 0.

Corollary 6.2 If χ is a primitive Dirichlet character of conductor c, and χ(p) = w

then

∑

ν∈(Z/cZ)∗

χ(ν)LIΨν
= s

∫

Z∗

p,c

χ(t)t
k−2

2
p logp(tp) dµw∞

f ,MTT (t)

=

{
s d

dt
Lp

(
f0,wp

k−2
2 , χ(x)x

k−2
2

p , t
) ∣∣

t=0
if χ(−1) = w∞,

0 if χ(−1) = −w∞.

Proof First, χ(ν)w j(t)
= χ(t). Secondly, each coset a + pcZp,c which is contained in

Z∗
p,c is contained in precisely s of the sets J∞,ν , for ν ≡ a, a/p, . . . , a/ps ′−1 mod c,

and βs ′ = s.
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Note that if χ(−1) = w∞,

Lw∞

p

(
f0,wp

k−2
2 , x

k−2
2

p χ(x), t
)

= Lp

(
f0,wp

k−2
2 , x

k−2
2

p χ(x), t
)
,

as then (−1)
k−2

2
p χ(−1) = (−1)

k−2
2 w∞.

If χ(−1) = −w∞ then

Lw∞

p

(
f0,wp

k−2
2 , x

k−2
2

p χ(x), t
)

= 0,

so assume we are in the former case.
By definition,

d

dt
Lw∞

p

(
f0,wp

k−2
2 , χ(x)x

k−2
2

p , t
) ∣∣

t=0

=

( d

dt

∫

Z∗

p,c

χ(x)x
k−2

2
p 〈x〉

t dµw∞

f ,MTT (x)
)∣∣∣

t=0

=

( d

dt

∫

Z∗

p,c

χ(x)x
k−2

2
p

( ∞∑

r=0

t r

r!
(logp〈x〉)

r
)

dµw∞

f ,MTT (x)
)∣∣∣

t=0

=

∫

Z∗

p,c

χ(x)x
k−2

2
p logp〈x〉 dµw∞

f ,MTT (x)

=

∫

Z∗

p,c

χ(x)x
k−2

2
p logp(xp) dµw∞

f ,MTT (x).

If we had constructed the distribution using κ f instead of κw∞

f , so that it took
values in V f = Cp ⊗Q̄ Q̄L f , then the algebraic part Lp would be replaced by Lp in this

Corollary. This is not as useful, because the eigenspaces of the cohomology classes
constructed in this way may not be 1-dimensional (see the next section).

7 Cohomology and Hecke Operators

7.1 Spaces Involved and Exact Sequences

Let Vk−2 = Pk−2(Cp)∗ ∼= Hom(Pk−2,Cp). Let F = Fk−2 = Hom(D,Vk−2) and
M = Mk−2 = Hom(D0,Vk−2). Then there is an exact sequence:

0→ Vk−2 → F →M→ 0.

This leads to the long exact sequence

0→ V Γ0(M)
k−2 → F

Γ0(M) →M
Γ0(M) →(11)

→ H1
(
Γ0(M),Vk−2

)
→ H1

(
Γ0(M),F

)
→ H1

(
Γ0(M),M

)
→

→ H2
(
Γ0(M),Vk−2

)
→ · · · .
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This sequence is compatible with the action of Hecke operators T(l) for l prime
to N , and W∞. Its behaviour for k = 2 is considered in Darmon’s paper, so assume

k > 2 is even. Several terms in (11) are known:
V Γ0(M)

k−2 = 0, as Vk−2 is an irreducible Γ0(M)-module ([Hi] p. 165 Lemma 2).
(This is not true when k = 2 as then Vk−2 = Cp.)

H2(Γ0(M),Vk−2) = 0 by [Hi, p. 162 Proposition 1].

We have
F = ⊕x IndΓ0(M)

Γx
Vk−2

where x runs over the distinct cusps, so

H0
(
Γ0(M),F

)
=

⊕

x

V Γx

k−2 and

H1
(
Γ0(M),F

)
=

⊕
H1(Γx,Vk−2).

Each Γx is free on a generator πx, so V Γx

k−2 = V πx

k−2 and

H1(Γx,Vk−2) = Vk−2/(πx − 1)Vk−2.

Note that by [Hi, p. 166 (2a)], each of these has dimension 1. This shows that the
dimensions of H0(Γ0(M),F) and H1(Γ0(M),F) are both equal to S, the number of

cusps.
By definition of the parabolic cohomology groups H1

P as in [Hi], the sequence (11)
now divides into the following parts:

(12) 0→ F
Γ0(M) →M

Γ0(M) → H1
P

(
Γ0(M),Vk−2

)
→ 0,

0→ H1
P

(
Γ0(M),Vk−2

)
→ H1

(
Γ0(M),Vk−2

)
(13)

→ H1
(
Γ0(M),F

)
→ H1

(
Γ0(M),M

)
→ 0.

Over the complex numbers there are Eichler-Shimura isomorphisms ([Hi, Sec-
tion 6.2])

H1
(
Γ0(M),Vk−2(C)

)
∼= Sk

(
Γ0(M)

)
⊕ Sc

k

(
Γ0(M)

)
⊕ Ek

(
Γ0(M)

)

H1
P

(
Γ0(M),Vk−2(C)

)
∼= Sk

(
Γ0(M)

)
⊕ Sc

k

(
Γ0(M)

)
.

where Ek(Γ0(M)) is the space of Eisenstein series.
We have

dimCp
H1

(
Γ0(M),Vk−2

)
= dimC H1

(
Γ0(M),Vk−2(C)

)

and similarly for H1
P.

But the dimension of Ek(Γ0(M)) is also S, by [Miy, p. 179–180, 1◦], so looking at
the alternating sum of dimensions in (13) we see H1(Γ0(M),M) = 0. (In the case

k = 2 the dimension of Ek(Γ0(M)) is S− 1).
Now we look at sequence (12). We know the dimensions of the Hecke eigenspaces

in H1
P(Γ0(M),Vk−2(C)) by the Eichler-Shimura isomorphism, so also of the Hecke

eigenspaces in H1
P(Γ0(M),Vk−2).
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7.2 Description of Cusps and Hecke Action on FΓ0(M)

According to [Mil] the cusps of Γ0(M) can be described as follows: there is a cusp
(

ã
d

)

for each d|M and each ã ∈ (Z/tZ)∗ where t = (d,M/d). Write a for a representative
in Z of the class ã, which is prime to M. Then a/d is a representative of the cusp

(
ã
d

)
.

To tell whether two rational numbers p/q and r/s are equivalent under Γ0(M)
([Cr]) we write p/q = P∞ and r/s = R∞ with P =

(
p u
q v

)
∈ SL2(Z) and R =

( r w
s z ) ∈ SL2(Z). Then they are equivalent if and only if there exists h ∈ Z such that

R−1γP =
(

1 h
0 1

)
for some γ ∈ Γ0(M), i.e.,

(14) γ = R

(
1 h

0 1

)
P−1 ∈ Γ0(M).

So they are equivalent if and only if there is a solution h to the congruence qsh ≡
sv − qz mod M. Assuming r and p are prime to M this is equivalent to

rspqh ≡ rs− pq + qs(ru− sw) mod M

Lemma 7.1 The Hecke operator T(l) acts on the cusps by

T(l)

(
ã

d

)
= l

(
lã

d

)
+

(
l−1ã

d

)
.

Proof Use representatives for the cosets

δ j =

(
1 j

0 l

)
0 ≤ j ≤ l− 1 and δl =

(
l 0
0 1

)
.

First, δl(a/d) = (la/d) is clearly a representative of the cusp
(

lã
d

)
.

Now assume l does not divide a + jd. Then to show δ j(a/d) = (a + jd)/ld ∼ la/d

we need to solve the above congruence with p = a + jd, q = ld, r = la, and s = d.
Then

rspqh ≡ rs− pq + qs(ru− sw) mod M

⇐⇒ lad(a + jd)ldh ≡ lad− (a + jd)ld + ld2(lau− dw) mod M

⇐⇒ l2a(d/t)(a + jd)h ≡ − j(d/t)l + l(d/t)(lau− dw) mod M/dt,

which is soluble as l, a, (d/t) and a + jd are all prime to M/dt .

Finally, for some j, l does divide a+ jd. Then (a+ jd)/l ≡ al−1 mod t , so δ j(a/d) =

((a + jd)/l)/d represents the cusp
(

l−1ã
d

)
.

We have a decomposition

F
Γ0(M)

=

⊕

x

V Γx

k−2

φ 7→
⊕

x

φ(x),

where x runs over a set of representatives of the cusps, and each component is 1-
dimensional.

https://doi.org/10.4153/CJM-2004-018-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2004-018-4


Elementary Proof of a Weak Exceptional Zero Conjecture 401

Lemma 7.2 There is a natural basis element v(x) of V Γx

k−2 given by v(x)(P) := P(x)
(or v(x) = 1 ∈ Cp if k = 2).

Thus for φ ∈ FΓ0(M) we can write φ(x) = λφ(x)v(x), so

φ =

∑
λφ(a/d)v(a/d),

where d runs over divisors of M and a is a representative as above of ã which runs
through (Z/tZ)∗.

Lemma 7.3 The λφ(a/d) are independent of the choice of representative a ∈ Z of the

class ã.

Proof This follows from the fact that for γ ∈ Γ0(M),

(15) λφ(γx) = j(γ, x)k−2λφ(x),

with the usual notation

j(γ, x) =
(Cx + D)

(det γ)1/2

if γ =
(

A B
C D

)
∈ GL2(Q)+.

This follows from the definition of the λφ and the Γ0(M)-invariance of φ.
Now suppose a and a ′ are two representatives of the class ã, prime to M. Multi-

plying out the equation (14) for γ, with p/q = a/d and r/s = a ′/d, we see that if

γa/d = a ′/d, then j(γ, a/d) = 1.

Lemma 7.4 The action of the Hecke operator T(l) on FΓ0(M) is such that

λT(l)φ(a/d) = lλφ(la/d) + λφ(l ′a/d)

where a, d are as above and l ′ is an integer prime to M with ll ′ ≡ 1 mod t.

Proof Fix φ ∈ FΓ0(M) and let λ(x) := λφ(x) for all x ∈ P1(Q). Then

T(l)φ(x)(P) = l
k−2

2

∑

j

(φ|δ j)(x)(P)

= l
k−2

2

(∑

j

λ(δ jx) j(δ j , x)−(k−2)
)

P(x).

So when δ j(a/d) ∼ a ′/d we need to know how λ(δ j(a/d)) is related to λ(a ′/d). As
above we have γ ∈ Γ0(M) such that γδ j(a/d) = a ′/d. Then by (15),

λ
(
δ j(a/d)

)
= λ(a ′/d) j(γ−1, a ′/d)k−2.

When j = l and a ′
= la then γ = 1 and so λ(δl(a/d)) = λ(la/d).
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When l does not divide a + jd, and a ′
= la,

γ−1
=

(
a + jd u

dl v

) (
1 −h

0 1

) (
z −w

−d a ′

)

=

(
· ·

dlz − (−hdl + v) d −wdl + a ′(−hdl + v)

)

so j(γ−1, a ′/d) = a ′lz − wdl = l and λ(δ j(a/d)) = lk−2λ(la/d)

When l divides a + jd, and a ′
= l ′a then γ =

(
1 h
0 1

)
for some h and λ(δ j(a/d)) =

λ(l ′a/d).

So we have overall

λT(l)φ(a/d) = l
k−2

2

(∑

j

λ
(
δ j(a/d)

)
j
(
δ j , (a/d)

)−(k−2)
)

= l
k−2

2

(
l

k−2
2 λ(la/d) + (l − 1)l−

k−2
2 · lk−2λ(la/d) + l−

k−2
2 λ(l ′a/d)

)

=
(

lk−2λ(la/d) + λ(l ′a/d)
)
.

Then writing v
(

ã
d

)
for v(a/d) for a suitable choice of representative a, we have

F
Γ0(M)

=

⊕

cusps

v

(
ã

d

)
Cp

and

T(l)v

(
ã

d

)
= lk−1v

(
l−1ã

d

)
+ v

(
lã

d

)
.

This action is diagonalizable with eigenvalues

lk−1χ(l) + χ−1(l),

where χ is any Dirichlet character of conductor t = (d,M/d) for any d|M.

From [Miy, p. 179–180] we see that these are precisely the eigenvalues of the Hecke
operator acting on Eisenstein series.

Remark The results and methods of this section still hold for k = 2. There is an

error here in [Dar], where equation (150) in fact only holds if N is squarefree, so that
all T(l) act trivially (i.e., as multiplication by (l + 1)) on the cusps. In general, one can
only say that the eigenvalues of T(l) on FΓ0(N) and on the Eisenstein series are of the
form lχ(l) + χ−1(l), for χ as above.
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7.3 Dimension of Eigenspaces

Let f be a newform for Γ0(N) with T(l) f = al f . For a module A with Hecke oper-
ators acting on it, then A f ,w∞ will denote the eigenspace in A where T(l) = al for l

prime to N , and W∞ = w∞.

The results of the previous section together with sequence (12) shows that the
non-zero eigenspaces in MΓ0(M) correspond either to eigenvalues of Eisenstein series,

or to eigenvalues of newforms for Γ0(M), so (MΓ0(M)) f ,w∞ = 0.

A similar argument using the equivalent sequence for Γ0(N), or reference to [GS],

shows that (MΓ0(N)) f ,w∞ is 1-dimensional. Now we know enough to prove

Proposition 7.1

dimCp
(H1(Γ,M) f ,w∞) = 1.

Proof We use the exact sequence from [Ser]

M
Γ0(M) ⊕M

Γ0(M) ′ →M
Γ0(N) → H1(Γ,M)→ H1

(
Γ0(M),M

)
⊕H1

(
Γ0(M) ′,M

)

where Γ0(M) ′ = StabΓ(αv∗) = αΓ0(M)α−1. Thus

(
M

Γ0(M)
) f ,w∞

⊕ (MΓ0(M) ′) f ,w∞ →
(
M

Γ0(N)
) f ,w∞

→
(

H1(Γ,M)
) f ,w∞

→ H1
(
Γ0(M),M

) f ,w∞

⊕H1
(
Γ0(M) ′,M

) f ,w∞

We know the first and last terms here are zero (using similar methods for the

conjugate subgroup Γ0(M) ′), and that dim(MΓ0(N)) f ,w∞ = 1.

7.4 The Exceptional Zero Conjecture

The p-adic L-function attached to the newform f for Γ0(N) satisfies

Lp( f , ω jχ, j) = ep(χ, j)K(χ, j)L( fχ̄, j + 1)/Ωw∞

f ,

where ω is the Teichmüller character, χ is a primitive Dirichlet character of conduc-
tor c,

ep(χ, j) =
1

av(c)
p

(
1−

χ(p)p j

ap

)

is the p-adic multiplier, an algebraic number, and

K(χ, j) =
c j+1 j!

(−2πi) jτ (χ̄)

is an element of C.

When ep(χ, j) = 0, we say there is an exceptional zero. So there is an exceptional

zero when j =
k−2

2
and χ(p) = w.
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Proposition 7.2 (The Exceptional Zero is of Local Type) There is a constant

L
w∞

p ( f ) ∈ Cp such that for χ any primitive Dirichlet character of conductor c prime to

N satisfying χ(p) = w and χ(−1) = w∞,

L ′
p( f , ω

k−2
2 χ, t)|t= k−2

2
= L

w∞

p ( f )Λ
(

f , χ,
k− 2

2

)
.

Proof We know that the cohomology classes lc f and oc f are both contained in the
same 1-dimensional eigenspace. Hence, provided oc f is nonzero, we can choose a
constant L

w∞

p ( f ) ∈ Cp such that lc f = L
w∞

p ( f ) oc f . Hence for any Ψ = Ψν ,
LIΨ = L

w∞

p ( f )WΨ. Thus, summing and applying Corollaries 6.1 and 6.2, we get the

result.

By Corollary 6.1, oc f will be non-zero provided there exists a conductor c and
some Dirichlet character χ as above satisfying

L( f , χ, k/2) 6= 0.

This holds by a general result of Rohrlich, the theorem in the introduction of [Ro].
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