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The Commutant of an Abstract Backward Shift
Bruce A. Barnes

Abstract. A bounded linear operator T on a Banach space X is an abstract backward shift if the nullspace of
T is one dimensional, and the union of the null spaces of Tk for all k ≥ 1 is dense in X. In this paper it is
shown that the commutant of an abstract backward shift is an integral domain. This result is used to derive
properties of operators in the commutant.

Introduction

Let X be a linear space, and T : X → X, a linear operator on X. We use the notation
N(T) and R(T) to denote the null space of T and the range of T, respectively. Also, let
N∞(T) =

⋃∞
n=1 N(Tn). When X is a Banach space, B(X) denotes the algebra of all the

bounded linear operators on X.
The theory of weighted shifts and weighted backward shifts is an important part of oper-

ator theory and some other areas; see [1], [2], [3], [4], [5], [7] and [8] for example. These
operators are usually defined on Hilbert spaces or Banach spaces which have a Schauder
basis. J. Holub in his paper [5] introduced “basis free” concepts of shift and backward shift.
His definitions make sense when the underlying space is an arbitrary separable Banach
space. Two of the requirements made by Holub in his definition of a backward shift on an
infinite dimensional Banach space X are:

(1) dim
(
N(T)

)
= 1;

(2) N∞(T) is dense in X.

He also requires an isometry condition on T which will play no role in this paper.

Definition An operator T ∈ B(X) is an abstract backward shift if T satisfies (1) and (2)
above. We use the convenient notation, ABS, to stand for “abstract backward shift”.

It follows from work of S. Grabiner in [4, Theorem 1.1], that for every separable Banach
space X, there exists an ABS on X. In contrast, Holub shows in [5] that backward shifts as
defined in [5] do not exist on some classical Banach space, C[0, 1] for example.

In this paper we study properties of operators in the commutant of an ABS. Assume that
T is an ABS, and let {T} ′ denote the commutant of T. Using some purely algebraic results
established in Section 1, we show in Section 2 that {T} ′ is an integral domain [Theorem 5].
Also, we prove that operators S ∈ {T} ′ have some interesting special properties; for exam-
ple, S has connected spectrum, and when S �= 0, then R(S) is dense in X [Theorem 7].
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1 Some Algebraic Preliminaries

The purely algebraic results in this section form the basis of the proof of our main theorems.
Throughout this section, X is an arbitrary linear space, and T : X → X is a linear operator
on X. Let nul(T) denote the nullity of T, that is, nul(T) = dim

(
N(T)

)
. Also, let α(T)

denote the ascent of T [9, pp. 289–290]. In particular, when T is an ABS, then nul(T) = 1,
and α(T) =∞.

Elements of the scalar field are denoted by lower case Greek letters. For E ⊆ X, let 〈E〉
denote the linear span of E in X.

Proposition 1 Assume T has α(T) = ∞ and nul(T) = 1. Suppose N(T) = 〈x0〉. Then
there exists an infinite linearly independent sequence {x0, x1, x2, . . . } with N(Tm) =
〈x0, x1, . . . , xm−1〉 for all m ≥ 1, and T(xk) = xk−1 for k ≥ 1.

Proof N(T) = 〈x0〉 by hypothesis. Choose x ∈ N(T2) such that x /∈ N(T). Then T(Tx) =
0, so that Tx = λx0 for some λ �= 0. Set x1 = λ

−1x. Clearly, {x0, x1} is a l.i. subset of
N(T2). If y ∈ N(T2), then Ty = µx0 = T(µx1) for some µ. Thus, T(y − µx1) = 0,
y − µx1 = δx0 for some δ. Therefore, y ∈ 〈x0, x1〉.

Now suppose m ≥ 2, and {x0, x1, . . . , xm−1} is a l.i. set such that 〈x0, x1, . . . , xm−1〉 =
N(Tm), and T(xk) = xk−1 for 1 ≤ k ≤ m− 1. Choose x ∈ N(Tm+1) such that x /∈ N(Tm).
Then {x0, x1, . . . , xm−1, x} is a l.i. set. For some λ �= 0, Tmx = λx0. Take any y ∈ N(Tm+1).
Then Tm y = µx0 for some µ. Thus, y − (µ/λ)x ∈ N(Tm), so y ∈ 〈x0, x1, . . . , xm−1, x〉.
This proves that N(Tm+1) is (m + 1)-dimensional.

Let S : N(Tm+1)→ N(Tm) be defined by Sw = Tw, w ∈ N(Tm+1). We have dim
(
N(S)

)
+

dim
(
R(S)
)
= m + 1. Since dim

(
N(S)

)
= 1, it follows that dim

(
R(S)
)
= m, so R(S) is all

of N(Tm). Choose xm ∈ N(Tm+1) such that T(xm) = xm−1. Note that xm /∈ N(Tm) since
Tm(xm) = x0. Therefore, N(Tm+1) = 〈x0, x1, . . . , xm〉.

As Proposition 1 shows, when α(T) = ∞ and nul(T) = 1, then there is a sequence
which has span N∞(T), and on which T acts like a backward shift. We use this in what
follows to derive information about {T} ′.

Proposition 2 Let T and {x0, x1, x2, . . . } be as in Proposition 1. Assume S ∈ {T} ′, so
S
(

N(Tm)
)
⊆ N(Tm) for m ≥ 1. For each m ≥ 0, S(xm) = λmx0 + zm where zm ∈

〈x1, . . . , xm〉. Set pm(T) =
∑m

0 λkTk. Then for m ≥ 0, S = pm(T) on N(Tm+1).

Proof The statement is true for m = 0, since S(x0) = λ0x0 (the definition of λ0), and
p0(T) = λ0I (the definition of p0(T). Now suppose the statement is true for some m ≥ 0.
We prove S = pm+1(T) on N(Tm+2). Note that pm+1(T) = pm(T) + λm+1Tm+1. Also,
N(Tm+2) = 〈x0, x1, . . . , xm+1〉. Now for 0 ≤ j ≤ m, Tm+1x j = 0. Thus,

Sx j = pm(T)x j = pm+1(T)x j for 0 ≤ j ≤ m.

We have Sxm+1 = λm+1x0 + zm+1 where zm+1 ∈ 〈x1, . . . , xm+1〉. Now pm(T)Txm+1 =
pm(T)xm = Sxm = STxm+1 = TSxm+1 = T(λm+1x0 + zm+1) = T(zm+1). Therefore,
T
(

zm+1 − pm(T)xm+1

)
= 0. Thus, for some µ, zm+1 − pm(T)xm+1 = µx0. Now zm+1 ∈

〈x1, . . . , xm+1〉 and pm(T)xm+1 ∈ 〈x1, . . . , xm+1〉, so µ = 0. This proves zm+1 = pm(T)xm+1.
Therefore Sxm+1 = λm+1x0 + pm(T)xm+1 = λm+1Tm+1xm+1 + pm(T)xm+1 = pm+1(T)xm+1.
This completes the proof that S = pm+1(T) on N(Tm+2) = 〈x0, x1, . . . , xm+1〉.
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Corollary 3 Assume T has α(T) =∞, and nul(T) = 1. If n is an integer, n ≥ 2, then there
does not exist a linear operator S on X such that Sn = T.

Proof We adopt the notation of Proposition 2. Suppose Sn = T for some integer n ≥ 2.
Then S ∈ {T} ′. Therefore S(x0) = λ0x0, and it follows that 0 = T(x0) = Sn(x0) = λn

0x0.
Thus, λ0 = 0. Furthermore, S(x1) = p1(T)(x1) = λ1x0. Then x0 = T(x1) = Sn(x1) =
Sn−1(λ1x0) = 0, a contradiction.

Proposition 4 Let T and {x0, x1, x2, . . . } be as in Proposition 1. If S ∈ {T} ′, then either
S
(
N∞(T)

)
= {0} or N∞(T) ⊆ R(S).

Proof Suppose S
(
N∞(T)

)
�= {0}. Let m be the smallest non-negative integer such that

Sxm �= 0. Then since in this case pm−1(T)xm = 0, Sxm = λmx0 + pm−1(T)xm = λmx0 �= 0.
Thus, λm �= 0 and x0 ∈ R(S). Assume that xk ∈ R(S) for 0 ≤ k ≤ q. Now for j ≥ m,
p j(T) =

∑ j
m λkTk. Set j = q+m. Then Sx j+1 = λ j+1x0 + p j(T)x j+1 = λ j+1x0 +λmx j−m+1 +

{a linear combination of xk’s where k ≤ q}. This proves x j−m+1 = xq+1 ∈ R(S). Thus by
induction, N∞(T) = span{xk : 0 ≤ k} ⊆ R(S).

2 Applications to Operators on a Banach Space

Now we look at the situation where X is a complex Banach space and T is an ABS on X.

Theorem 5 Assume that T is an ABS. Then {T} ′ is an integral domain and a maximal
commutative subalgebra of B(X).

Proof Assume S,R ∈ {T} ′. By Proposition 2 for all n ≥ 1, both S and R are equal to
polynomials in T on N(Tn). Thus, SR− RS = 0 on N(Tn). Since N∞(T) =

⋃∞
1 N(Tn) is

dense, we have SR = RS.
Now suppose that S,R ∈ {T} ′ and RS = 0. If S �= 0, then by Proposition 4, N∞(T) ⊆

R(S). Then R
(
N∞(T)

)
= {0}, so R = 0. This proves that {T} ′ is an integral domain. That

this algebra is a maximal commutative subalgebra of B(X) is immediate.
The next result is known; it follows from the work of S. Grabiner in [3]. A new proof is

provided by Theorem 5 and the result that there exists an ABS on every separable Banach
space, also due to Grabiner [4, Theorem 1.1].

Corollary 6 For every separable Banach space, B(X) contains a maximal commutative sub-
algebra which is an integral domain.

When T is an ABS, the operators in {T} ′ have a number of interesting properties. We
note several of them in the next theorem.

Theorem 7 Assume T ∈ B(X) is an ABS. An operator S ∈ {T} ′ has the properties:

(1) σ(S) is connected;
(2) if S �= 0, then R(S) is dense in X;
(3) if S is a Fredholm operator, then R(S) = X. In this case, S has a right inverse in B(X);
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(4) let N(T) = 〈x0〉. If S(x0) = 0, then for any w ∈ X,

‖Sk(w)‖ = o(‖Sk‖).

Proof By Theorem 5, {T} ′ is an integral domain. Thus, the only projections in {T} ′ are
0 and the identity. If σ(S) were disconnected, then there would be a proper projection in
{T} ′. This proves (1).

(2) is a direct application of Proposition 4.
It follows from (2) that when S is a Fredholm operator, then R(S) = X. Furthermore, in

this case S has a right inverse by [6, Theorem 5.4, p. 89]. Therefore (3) holds.
Now assume that S(x0) = 0. First we show that Sn

(
N(Tn)

)
= {0}. This is true when

n = 1 by hypothesis. Suppose that Sm
(
N(Tm)

)
= {0}. Assume that y ∈ N(Tm+1). Then

T(Sm y) = Sm(Ty) = 0. Therefore Sm y = λx0 for some λ. Thus, Sm+1 y = 0. This proves
by induction that Sn

(
N(Tn)

)
= {0} for all n.

Fix w ∈ X. Let dk = inf{‖w − y‖ : y ∈ N(Tk)} for all k ≥ 1, and note that dk → 0
as k → ∞. For each k choose yk ∈ N(Tk) such that ‖w − yk‖ < 2dk. Then ‖Skw‖ =
‖Sk(w − yk)‖ ≤ 2dk‖Sk‖. This proves 4.
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