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Abstract. In this paper we study the asymptotic behaviour of the escape rate of a Gibbs
measure supported on a conformal repeller through a small hole. There are additional
applications to the convergence of the Hausdorff dimension of the survivor set.

1. Introduction
Given any transformation T : X→ X preserving an ergodic probability measure µ and
any Borel set A ⊂ X , the escape rate quantifies the asymptotic behaviour of the measure
of the set of points x ∈ X for which none of the first n terms in the orbit intersects U .
Bunimovich and Yurchenko [7] considered the fundamental case of the doubling map and
Haar measure, and where U is a dyadic interval. Subsequently, Keller and Liverani [16]
proved a more general perturbation result which was then used to show, amongst other
things, that a similar formula holds in the case that T is an expanding interval map and µ
the absolutely continuous invariant probability measure. Other papers regarding this topic
include [1, 6, 9, 19] and references therein.

In this paper, we prove analogous results in the more general setting of Gibbs measures
supported on conformal repellers. Much of the analysis is undertaken in the setting of
subshifts of finite type; this not only allows us to prove similar results for a broad class of
maps which can be modelled symbolically but also improve on the work of Lind [18] who
considered the convergence of topological entropy for a topologically mixing subshift.

Another interesting aspect of our analysis is the connection with the work of Hirata [12]
on the exponential law for first return times for Axiom A diffeomorphisms. Some of
the ingredients in our approach were suggested by Hirata’s paper, although we had to
significantly modify the actual details.

Let M be a Riemannian manifold and f :M→M a C1-map. Let J be a compact
subset of M such that f (J )= J . We say that the pair (J, f ) is a conformal repeller if:
(1) f |J is a conformal map;
(2) there exist c > 0 and λ > 1 such that ‖d f n

x v‖ ≥ cλn
‖v‖ for all x ∈ J , v ∈ Tx M, and

n ≥ 1;
(3) f is topologically mixing on J ;
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(4) J is maximal, i.e. there exists an open neighbourhood V ⊃ J such that

J = {x ∈ V : f n(x) ∈ V for all n ≥ 0}.

Let φ : J → R be α-Hölder and let µ denote the associated equilibrium state, i.e.

P(φ)= sup
{

hν( f )+
∫
φ dν : f∗(ν)= ν, ν(J )= 1

}
= hµ( f )+

∫
φ dµ,

where hν( f ) denotes the Kolmogorov–Sinai entropy of the measure ν (see [26] for further
details).

Fix z ∈ J ; for ε > 0, we define the escape rate of µ through B(z, ε) (i.e. the rate at
which mass ‘escapes’ or ‘leaks’ through the hole B(z, ε)) by

rµ(B(z, ε))=−lim supk→∞
1
k

log µ{x ∈ J : f i (x) 6∈ B(z, ε), 0≤ i ≤ k − 1}.

Our first result concerns the asymptotic behaviour of rµ(B(z, ε)) for small ε.

THEOREM 1.1. Let (J, f ) be a conformal repeller, φ : J → R Hölder continuous, and µ
the associated equilibrium state. Fix z ∈ J ; then

lim
ε→0

rµ(B(z, ε))

µ(B(z, ε))
= dφ(z)=

{
1 if z is not periodic,

1− eφ
p(z)−pP(φ) if z has prime period p,

where φ p(z)= φ(z)+ φ( f (z))+ · · · + φ( f p−1(z)).

We also obtain an asymptotic formula for the Hausdorff dimension of the survivor set:

Jε = {x ∈ J : f k(x) 6∈ B(z, ε) for all k ≥ 0},

i.e. all points whose orbits are ε-bounded away from z.
Suppose now that f ∈ C1+α(J ) for some α > 0. Let µ denote the equilibrium state

related to the potential φ =−s log | f ′|, where s = dimH (J ). For ε > 0, we let sε denote
the Hausdorff dimension of the set Jε .

THEOREM 1.2. Let (J, f ) be a conformal repeller with f ∈C1+α(J ). Let φ=−s log | f ′|
and let µ denote the associated equilibrium state. Fix z ∈ J ; then

lim
ε→0

s − sε
µ(B(z, ε))

=
dφ(z)∫

log | f ′| dµ
.

Remark 1.3. A similar formula was obtained by Hensley [11] in the setting of continued
fractions.

The paper is structured as follows: in §2 we apply Theorems 1.1 and 1.2 to concrete
examples. In §3 we study the spectral properties of transfer operators acting on a certain
class of Banach spaces. Section 4 contains a perturbation result, while in §5 we prove the
result in the analogue of Theorem 1.1 in the setting of subshifts of finite type. Finally, §§6
and 7 contain the proofs of Theorems 1.1 and 1.2, respectively.

2. Examples
To illustrate the main results, we briefly consider two simple examples.

2.1. Hyperbolic Julia sets. Let f : Ĉ→ Ĉ be a rational map of degree d ≥ 2, where Ĉ
denotes the Riemann sphere. The Julia set of R is the closure of the repelling periodic
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points of f , i.e.

J = cl({z ∈ Ĉ : f p(z)= z, for some p ≥ 1 and |( f p)′(z)|> 1}).

The map f : J → J is a conformal expanding map and the results of the previous
section apply. As an example, the map f (z)= z2

+ c for |c|< 1/4 is hyperbolic. Define
φ : J → R by φ(z)=−s log |2z|, where s denotes the Hausdorff dimension of J . Let
µ denote the associated equilibrium state. Setting z = (1+

√
1− 4c)/2, we see that

f (z)= z and | f ′(z)|> 1 and accordingly Theorem 1.1 implies that

lim
ε→0

rµ(B(z, ε))

µ(B(z, ε))
= 1−

1
|2z|s

.

2.2. One-dimensional Markov maps. Assume that there exist a finite family of disjoint
closed intervals I1, I2, . . . , Im ⊂ [0, 1] and a C1+α-map f :

⋃
i Ii → [0, 1] such that:

(1) for every i , there is a subset P = P(i) of indices with f (Ii ) ∩
⋃

i Ii =
⋃

k∈P Ik ;
(2) for every x ∈

⋃
i int(Ii ), the derivative of f satisfies | f ′(x)| ≥ ρ for some fixed

ρ > 0;
(3) there exist λ > 1 and n0 > 0 such that if f m(x) ∈

⋃
i Ii for all 0≤ m ≤ n0 − 1, then

|( f n0)′(x)| ≥ λ.
Let J = {x ∈ [0, 1] : f n(x) ∈

⋃
i Ii for all n ∈ N}. The set J is a repeller for the map f

and conformality follows from the domain being one dimensional.
If we take I1 = [0, 1/3], I2 = [2/3, 1], and let f (x)= 3x(mod 1), the associated

repeller J is the middle-third Cantor set. Let z = 1/4; then z ∈ J and has prime period 2.
Set φ(x)=−log(2) and let µ denote the associated equilibrium state. Then Theorem 1.1
implies that

lim
ε→0

rµ(B(1/4, ε))
µ(B(1/4, ε))

= 1−
1

22 =
3
4
.

For ε > 0, we set

Jε = {x ∈ J : f k(x) 6∈ B(1/4, ε) for k = 0, 1, 2, . . .}.

Let sε = dimH (Jε) and s = log(2)/log(3); then Theorem 1.2 implies that

lim
ε→0

s − sε
µ(B(1/4, ε))

=
3

4 log(3)
.

3. Spectral properties of the transfer operator
In this section, we study the spectral properties of the transfer operator. We first fix notation
which will be used for the rest of the paper. Throughout the rest of the paper, c will denote a
positive and finite constant which may change in value with successive uses. Let A denote
an irreducible and aperiodic l × l matrix of zeroes and ones, i.e. there exists a positive
integer d such that Ad > 0. We define the subshift of finite type (associated with matrix A)
to be

6 = {(xn)
∞

n=0 : A(xn, xn+1)= 1 for all n}.

If we equip the set {0, 1, . . . , l − 1}with the discrete topology, then6 is compact in the
corresponding Tychonov product topology. The shift σ :6→6 is defined by σ(x)= y,
where yn = xn+1 for all n, i.e. the sequence is shifted one place to the left and the first
entry deleted.
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For θ ∈ (0, 1), we define a metric on 6 by dθ (x, y)= θm , where m is the least positive
integer (assuming that such an m exists) with xm 6= ym ; otherwise, we set dθ (x, x)= 0.
Equipped with the metric dθ , the space (6, dθ ) is complete, and moreover the topology
induced by dθ agrees with the previously mentioned Tychonov product topology. Finally,
for x ∈6 and a positive integer n ≥ 1, we define the cylinder of length n centred on x to
be the set

[x]n = [x0, x1, . . . , xn−1] = {y ∈6 : yi = xi for i = 0, 1, . . . , n − 1}.

Fix a dθ -Lipschitz continuous function φ :6→ R and recall that we let µ denote its
equilibrium state defined in the introduction, i.e.

P(φ) := sup
{

hν +
∫
φ dν : σ∗(ν)= ν, ν(6)= 1

}
= hµ +

∫
φ dµ.

We let

L1(µ) :=

{
w :6→ C : w is measurable and

∫
|w| dµ <∞

}
,

which, equipped with the norm ‖w‖1 =
∫
|w| dµ, is a Banach space. We now describe

a particular subspace of L1(µ) on which the transfer operator will act: for w ∈ L1(µ),
x ∈6, and a positive integer m, we set

osc(w, m, x)= esssup{|w(y)− w(z)| : y, z ∈ [x]m}.

We introduce the semi-norm

|w|θ = sup
m≥1

θ−m
‖osc(w, m, ·)‖1.

We let
Bθ = {w ∈ L1(µ) : |w|θ <∞}.

It is worth noting that if we were to take the supremum norm ‖ · ‖∞ in place of the L1

norm, then the space coincides with Lipschitz continuous functions (with respect to the
metric dθ ).

We equip Bθ with the norm

‖w‖θ = |w|θ + ‖w‖1.

This space was first introduced by Keller [14], in a more general framework, where the
following result was also proved.

PROPOSITION 3.1. (Keller) The space (Bθ , ‖ · ‖θ ) is complete. Furthermore, the set
{w ∈ Bθ : ‖w‖θ ≤ c} is L1-compact for any c > 0.

We introduce the transfer operator L= Lφ : Bθ → Bθ

(Lw)(x)=
∑

σ(y)=x

eφ(y)w(y).

We let i = (i0, i1, . . . , ik−1) denote an allowed string of length k; then we can write
(Lkw)(x)=

∑
|i |=k eφ

k (i x)w(i x), where the sum is over those strings for which the
concatenation i x is allowed, i.e. we require that i x ∈6.
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Another Banach space that we require is that of Lipschitz functions

Fθ =

{
w :6→ C : sup

m≥1
θ−m
‖osc(w, m, ·)‖∞ <∞

}
.

The following theorem describes the spectral properties of L acting on the space Fθ of
dθ -Lipschitz continuous functions; for a proof, see [21, Theorem 2.2].

PROPOSITION 3.2. (Ruelle) Let φ ∈ Fθ be real valued and suppose that A is irreducible
and aperiodic.
(1) There is a simple maximal positive eigenvalue λ= λφ of L with corresponding

strictly positive eigenfunction g = gφ ∈ Fθ .
(2) The remainder of the spectrum of L : Fθ → Fθ (excluding λ > 0) is contained in a

disk of radius strictly smaller than λ.
(3) There is a unique probability measure ν such that L∗ν = λν.
(4) λ−k Lkw→ g

∫
w dν uniformly for allw ∈ Fθ , where g is as above and

∫
g dν = 1.

We remark that the equilibrium state µ is absolutely continuous with respect to the
eigenmeasure ν, with the Radon–Nikodym derivative being given by the eigenfunction g.
By scaling the operator L, if necessary, we may assume without loss of generality that
λ= 1; further, as g > 0, we may assume that L1= 1.

Another useful property of µ is the Gibbs property (see [3] for further details). Namely,
there exists a constant c > 1 such that for any x ∈6 and positive integer n we have that

c−1
≤
µ[x]n
eφn(x)

≤ c. (1)

We now prove a result relating to the spectrum of L acting on Bθ , namely that it has a
spectral gap. A crucial part in this process is proving a Lasota–Yorke inequality†.

LEMMA 3.3. There exists c > 0 such that for any w ∈ Bθ we have

|Lkw|θ ≤ c(θk
|w|θ + ‖w‖1).

Proof. Let x, y ∈6 be such that dθ (x, y)≤ θm ; then

|Lkw(x)− Lkw(y)| ≤
∑
|i |=k

|eφ
k (i x)w(i x)− eφ

k (iy)w(iy)|

≤

∑
|i |=k

eφ
k (i x)osc(w, k + m, i x)+ eφ

k (i x)
|1− eφ

k (iy)−φk (i x)
||w(iy)|

≤ c
∑
|i |=k

(
eφ

k (i x)osc(w, k + m, i x)+ θm eφ
k (i x)

µ[i x]k+m

∫
[i x]k+m

|w| dµ

)
≤ c

∑
|i |=k

(
eφ

k (i x)osc(w, k + m, i x)+ θm c

µ[x]m

∫
[i x]k+m

|w| dµ

)
,

where we used the Gibbs property (1) in the final line, i.e.

eφ
k (i x)

µ[i x]k+m
≤

c

eφm (x)
≤

c2

µ[x]m
.

† The term ‘Lasota–Yorke’ refers to the modern usage dating back to their paper [17]. Similar inequalities date
back to Ionescu Tulcea–Marinescu [13] and perhaps earlier.
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Thus,

osc(Lkw, m, x)≤ c
∑
|i |=k

(
eφ

k (i x)osc(w, k + m, i x)+ θm c

µ[x]m

∫
[i x]k+m

|w| dµ

)
.

Integrating with respect to µ, and again invoking (1), we see that∫
osc(Lkw, m, x) dµ(x)≤ c

(∫
osc(w, k + m, x) dµ(x)+ θm

‖w‖1

)
;

dividing by θm and taking suprema yields

|Lw|θ ≤ c(θk
|w|θ + ‖w‖1).

Finally, we see that

‖Lkw‖θ = |Lkw|θ + ‖Lkw‖1

≤ cθk(|w|θ + ‖w‖1)+ ‖w‖1

≤ c(θk
|w|θ + ‖w‖1). 2

LEMMA 3.4. The operator L : Bθ → Bθ has a simple maximal eigenvalue λ= 1, while
the rest of the spectrum is contained in a ball of radius strictly less than 1.

Proof. We begin by proving that for any w ∈ Bθ , Lkw converges to
∫
w dµ in L1(µ).

Fix ε > 0 and choose v ∈ Fθ such that ‖v − w‖1 < ε/3; by Proposition 3.2, there exists
a positive integer N such that ‖Ln(v)−

∫
v dµ‖1 < ε/3 for all n ≥ N , in which case we

see that∥∥∥∥Ln(w)−

∫
w dµ

∥∥∥∥
1
≤ ‖Ln(w − v)‖1 +

∥∥∥∥Ln(v)−

∫
v dµ

∥∥∥∥
1
+

∥∥∥∥∫ v dµ−
∫
w dµ

∥∥∥∥
1

≤ 2‖v − w‖1 +

∥∥∥∥Ln(v)−

∫
v dµ

∥∥∥∥
1
< ε.

This in turn implies that for each w ∈ B = {v ∈ Bθ : ‖v‖θ ≤ 1},

‖Ln(w)|C⊥‖1 = inf
c∈C
‖Ln(w)− c‖1→ 0 as n→∞,

where C⊥ = {w ∈ Bθ :
∫
w dµ= 0}. We claim that this convergence is uniform over B.

To see this, fix δ > 0 and w ∈ B; then there exists a positive integer N = N (w) such that
‖Ln(w)|C⊥‖1 ≤ δ/2 for all n ≥ N . By Proposition 3.1, B is compact and so the cover
{B1(w, δ/2)}w∈B has a finite subcover, say B1(w1, δ/2), B1(w2, δ/2), . . . , B1(wm, δ/2).
In which case, if n ≥ N :=maxi=1,2,...,m N (wi ), we have ‖Ln

φ(w)|C⊥‖1 ≤ δ for
any w ∈ B.

Finally, to show the existence of a spectral gap, from Proposition 3.3, we observe for
w ∈ B and n ≥ N that

‖L2n(w)|C⊥‖θ ≤ c(θn
|Ln(w)|C⊥ |θ + ‖Ln(w)|C⊥‖1)

≤ c(θ2n
|w|C⊥ |θ + θ

n
‖w|C⊥‖1 + ‖Ln(w)|C⊥‖1)

≤ c(θ2n
+ θn

+ δ).

We may choose n and δ so that ‖L2n(w)|C⊥‖θ < 1, which proves that L has a spectral
gap. 2
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3.1. Singular perturbations of the transfer operator. We introduce a perturbation of the
transfer operator L: let {Un}n be a family of open sets; further, we require that they satisfy
the following technical conditions:
(1) {Un}n are nested with

⋂
n≥1 Un = {z};

(2) each Un consists of a finite union of cylinder sets, with each cylinder having length n;
(3) there exist constants c > 0, 0< ρ < 1 such that µ(Un)≤ cρn for n ≥ 1;
(4) there are a sequence {ln}n ⊂ N and a constant κ > 0 such that κ < ln/n ≤ 1 and

Un ⊂ [z]ln for all n ≥ 1;
(5) if σ p(z)= z has prime period p, then σ−p(Un) ∩ [z0z1 · · · z p−1] ⊆Un for large

enough n.

Remark 3.5. We observe that (5) above is not absolutely essential for the application to
conformal repellers and serves only to greatly simplify the analysis.

For n ≥ 1, we define the perturbed operator Ln : Bθ → Bθ by

Ln(w)(x)= L(χU c
n
w)(x).

For a positive integer n, we let 6n =
⋂

k≥0 6\σ
− j (Un). By choosing n large enough,

we can ensure that the system (6n, σ |6n ) is topologically mixing, and so the results of [8]
apply, namely we have the following proposition.

PROPOSITION 3.6. (Collet, Martı́nez, Schmitt) For each n, there exist a continuous gn :

6→ R with gn > 0 and a λn > 0 such that Lngn = λngn; moreover, for any continuous
w :6→ C, we have

‖λ−k
n Lk

nw − νn(w|6n )gn‖∞→ 0,

where νn denotes the unique probability measure guaranteed by Proposition 3.2, i.e. νn

satisfies supp(νn)=6n and (L∗nνn)(w)= λnνn(w) for w ∈ Fθ (6n).

Moreover, we may prove a Lasota–Yorke style inequality for Ln : Bθ → Bθ , which, in
conjunction with Proposition 3.6 and the methods of Lemma 3.4, we can use to show that
gn ∈ Bθ and that λn is a simple maximal eigenvalue for Ln : Bθ → Bθ .

The perturbation Ln is singular with respect to the ‖ · ‖θ norm. We adopt the approach
of [15] and introduce a weak norm

‖w‖h := |w|h + ‖w‖1 = sup
j≥0

sup
m≥1

θ−m
∫
σ− j (Um )

|w| dµ+ ‖w‖1.

Throughout this section, we assume that θ ∈ (ρ, 1). Our first result states that the weak
norm is dominated by the strong norm.

LEMMA 3.7. Under the assumptions above, we have

‖w‖h ≤ c‖w‖θ

for all w ∈ Bθ .
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Proof. We first relate the strong norm with the L∞ norm. Let c =maxi=0,1,...,l−1 µ[i]
−1
1 ;

then, for µ almost all x ∈6,

|w(x)| ≤ osc(w, 1, x)+ c
∫
[x0]1

|w| dµ

≤ c

(∫
[x0]1

osc(w, 1, y) dµ(y)+
∫
[x0]1

|w| dµ

)
≤ c‖w‖θ . (2)

If θ ∈ (ρ, 1), then
|w|h ≤ sup

m≥1
θ−mµ(Um)‖w‖∞ ≤ c‖w‖θ . 2

3.2. Convergence of the spectral radii. In this section, we prove a preliminary result
relating to the behaviour of the spectra of the operators Ln acting on Bθ . From
Proposition 3.6, it is easy to see that for any u ∈6 we have

P6n (φ) := log λn = lim
k→∞

1
k

log(Lk
n1(u)). (3)

PROPOSITION 3.8. Under assumptions (1)–(5), we have limn→∞ λn = λ.

Proof. As Un ⊂ [z]ln , setting 6̃n =6\
⋂

k≥0σ
−k
[z]ln , it is easy to see that 6̃n ⊂6n .

Accordingly, it suffices to show that P6̃n
(φ)→ P(φ).

As (6, σ ) is topologically mixing, we may find a positive integer d such that Ad > 0.
Fix u ∈6; for integers k and n, we set

Bk = {x0x1 · · · xk−1 : x0x1 · · · xk−1u ∈6},

Bk,n = {x0x1 · · · xk−1 ∈ Bk : [x0x1 · · · xk−1] ∩6n 6= ∅},

Zk(φ)=
∑

x0x1···xk−1∈Bk

eφ
k (x0x1···xk−1u), Zk,n(φ)=

∑
x0x1···xk−1∈Bk,n

eφ
k (x0x1···xk−1u).

It is easy to see that Lk1(u)= Zk(φ) (respectively Lk
n1(u)= Zk,n(φ)) and so by (2)

we have that P(φ)= limk→∞(1/k) log Zk(φ) (respectively P6n (φ)= limk→∞(1/k)
log Zk,n(φ)).

Fix ε > 0. By (3), there exists a > 0 such that Zk(φ)≥ aek(P(φ)−ε) for all k ≥ 1. In
addition, as htop(σ ) > 0, there exists b > 0 such that |Bk | ≥ bek(htop(σ )−ε) for all k ≥ 1.

Fix large integers k and n such that both bek(htop(σ )−ε) > ln − k + 1 and 2(k + d) <
lnε. Observe that the string z0z1 · · · zln−1 has precisely ln − k + 1 subwords of length k;
accordingly, the first condition on k and n guarantees the existence of a finite word
x ∈ Bk such that x does not appear as a subword of z0z1 · · · zln−1. Fix m ∈ N and
let y1, y2, . . . , ym

∈ Bln−2k−2d ; we now associate with this list a unique element
of Bm(ln−k). Choose s1, s2, . . . , sm, t1, t2, . . . , tm

∈ Bd so that the word w :=

y1s1xt1 y2s2xt2
· · · tm−1 ymsm xtm

∈ {1, 2, . . . , l}m(ln−k) is such that tmu ∈6; this is
possible as Ad > 0.

It is easy to see that as x is contained in any subword of length n, the word z0z1 · · · zln−1

cannot be contained as a subword of the periodic extension of w. Hence, w ∈ Bm(ln−k),ln
and so

Zm(ln−k),ln (φ)≥ (ae(ln−2k−2d)(P(φ)−ε))m > (aeln(1−ε)(P(φ)−ε))m .
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Taking logarithms, dividing by m, and letting m→∞ yields

P6̃n
(φ)≥

log(a)
ln − k

+ (1− ε)
ln

ln − k
(P(φ)− ε).

Finally, letting n→∞ and ε→ 0 gives the result. 2

Remark 3.9. The proof of Proposition 3.8 is modified from [4], where an analogous result
for topological entropy is proved.

3.3. A uniform Lasota–Yorke inequality. We now prove that the transfer operators Ln

satisfy a uniform Lasota–Yorke inequality. We assume that the transfer operator L is
normalized, i.e. L1= 1. Iterating the perturbed operator Ln , we see that

(Lk
nw)(x)=

∑
σ k (y)=x

hn,k(y)e
φk (y)w(y),

where hn,k(x)=
∏k−1

j=0 χU c
n
(σ j x) and φk(y)=

∑k−1
j=0 φ(σ

j (y)).

LEMMA 3.10. For any positive integers k, n, we have

‖Lk
n‖h ≤ 1.

Proof. Let w ∈ L1; then

‖Lnw‖1 =

∫
|LχU c

n
w| dµ

≤

∫
L|χU c

n
w| dµ

=

∫
|χU c

n
w| dµ≤ ‖w‖1. (4)

In addition, fixing j ≥ 0, m ≥ 1, we see that

θ−m
∫
σ− j (Um )

|Lnw| dµ ≤ θ
−m

∫
σ− j (Um )

L(|χU c
n
w|) dµ

= θ−m
∫
σ−( j+1)(Um )

χU c
n
|w| dµ

≤ θ−m
∫
σ−( j+1)(Um )

|w| dµ≤ |w|h .

Taking the supremum over j and m yields

|Lnw|h ≤ |w|h . (5)

Combining (4) and (5) and iterating completes the proof. 2

LEMMA 3.11. There exists a constant c > 0 such that for any positive integers n, k we
have

|hn,kw|θ ≤ |w|θ + cθ−k
‖w‖h

for all w ∈ Bθ .

Proof. We prove this by induction, namely we prove that for any w ∈ Bθ we have

|χσ− j (U c
n )
w|θ ≤ |w|θ + θ

− j
‖w‖h . (6)
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To show this, fix a positive integer m. We consider two cases, namely: j + n ≤ m and
m < j + n. If we suppose that j + n ≤ m, then osc(χσ− j (U c

n )
w, m, x)≤ osc(w, m, x) for

all x ∈6, and thus

θ−m
∫

osc(χσ− j (U c
n )
w, m, x) dµ(x)≤ θ−m

∫
osc(w, m, x) dµ(x)≤ |w|θ . (7)

On the other hand, if m < j + n it is easy to see that if [x]m ⊂ σ− j (U c
n ), then

osc(χσ− j (U c
n )
w, m, x)= osc(w, m, x). If, however, [x]m ∩ σ− j (Un) 6= ∅ then

osc(χσ− j (U c
n )
w, m, x)=max(osc(w, m, x), ‖χ[x]mw‖∞),

in which case

osc(χσ− j (U c
n )
w, m, x) = max(osc(w, m, x), ‖χ[x]mw‖∞)

≤ osc(w, m, x)+
1

µ[x]m

∫
[x]m
|w| dµ,

which implies that

θ−m
∫

osc(χσ− j (U c
n )
w, m, x) dµ(x)≤ |w|θ + θ

−m
∫
{x :[x]m∩σ− j (Un)6=∅}

|w| dµ. (8)

We now analyse two further subcases. If m ≤ j , we see that

θ−m
∫
{x :[x]m∩σ− j (Un)6=∅}

|w| dµ≤ θ− j
‖w‖1. (9)

If j < m < j + n, the fact that the open sets {Un}n are nested implies that

{x : [x]m ∩ σ
− j (Un) 6= ∅} ⊂ σ

− j (Um− j ).

In which case,

θ−m
∫
{x :[x]m∩σ− j (Un)6=∅}

|w| dµ≤ θ− j
|w|h . (10)

If we combine (7), (9), and (10), we obtain (6). This completes the proof. 2

LEMMA 3.12. There exists a constant c > 0 such that

‖Lk
nw‖θ ≤ c(θk

‖w‖θ + ‖w‖h)

for all w ∈ Bθ and n, k ≥ 1.

Proof. Fix x, y ∈6 and suppose that dθ (x, y)= θm with m ≥ 1; then

|(Lk
nw)(x)− (Lk

nw)(y)| ≤
∑
|i |=k

|eφ
k (i x)hn,k(i x)w(i x)− eφ

k (iy)hn,k(iy)w(iy)|

≤

∑
|i |=k

eφ
k (i x)
|hn,k(i x)w(i x)− hn,k(iy)w(iy)|

+ eφ
k (i x)
|1− eφ

k (iy)−φk (i x)
||w(iy)|

≤

∑
|i |=k

eφ
k (i x)
[osc(hn,kw, k + m, i x)+ c · osc(w, k + m, i x)]

+ cθm
∑
|i |=k

eφ
k (i x)

µ[i x]k+m

∫
µ[i x]k+m

|w| dµ.
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Integrating and dividing by θm implies that

|Lk
nw|θ ≤ cθk(|w|θ + |hn,kw|θ )+ c‖w‖1. (11)

And so, from (4) and (11) along with Lemma 3.11, we deduce that

‖Lk
nw‖θ = |Lk

nw|θ + ‖Lk
nw‖1

≤ cθk(|hn,kw|θ + |w|θ )+ ‖w‖1

≤ cθk
|w|θ + c‖w‖h ≤ cθk

‖w‖θ + c‖w‖h .

This completes the proof. 2

Remark 3.13. The advantage of introducing the weak norm ‖ · ‖h is that it overcomes the
restrictions imposed by the usual weak norm ‖ · ‖1. In particular, had we considered the
usual ‖ · ‖1 norm it would have imposed the condition that 0< θ < 1 be chosen sufficiently
small (leading to complications later in the proof when we also require that ρ < θ < 1).

3.4. Quasi-compactness of Ln . A prerequisite for proving quasi-compactness of Ln is
that the unit ball is compact with respect to the weak norm.

PROPOSITION 3.14. The set B = {w ∈ Bθ : ‖w‖θ ≤ 1} is ‖ · ‖h-compact.

Proof. Let ( fn)n ∈ B be any sequence. By Proposition 3.1, there exist a subsequence
( fnk )k and f ∈ B such that ‖ fnk − f ‖1→ 0. It suffices to show that | fnk − f |h→ 0.
As f, fnk ∈ B, we have that c = supk≥1 ‖ f − fnk‖∞ <∞. Fix ε > 0 and choose a positive
integer M such that θ−mµ(Um)≤ ε/c for all m > M . Choose a positive integer K such
that ‖ f − fnk‖1 ≤ θ

Mε for all k ≥ K . For fixed m, j , if m > M we have

θ−m
∫
σ− j (Um )

| f − fnk | dµ≤ θ
−mµ(Um)‖ f − fnk‖∞ < ε. (12)

Otherwise, m ≤ M , in which case for k ≥ K we have

θ−m
∫
σ− j (Um )

| f − fnk | dµ≤ θ
−M

∫
| f − fnk | dµ < ε. (13)

Taking (12) and (13) together implies that | f − fnk |h < ε for k ≥ K . This completes
the proof. 2

We now prove quasi-compactness of Ln using a criterion of Hennion.

LEMMA 3.15. The essential spectral radii of the operators Ln are uniformly bounded
by θ .

Proof. To show that the essential spectral radii of the operators Ln are bounded by θ , we
note that Lemmas 3.12 and 3.14 show that the operators Ln satisfy the hypotheses of [10,
Corollary 1], namely:
(1) Ln({w ∈ Bθ : ‖w‖θ ≤ 1}) is conditionally compact in (Bθ , ‖ · ‖h);
(2) for each k, there exist positive real numbers Rk , rk such that lim infk→∞(rk)

1/k
=

r < λn for which

‖Lk
n(w)‖θ ≤ rk‖w‖θ + Rk‖w‖h for all w ∈ Bθ .
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In which case, we conclude that Ln is quasi-compact with essential spectral radius
bounded by r . Condition (1) can be deduced from Proposition 3.1, while condition (2)
is the uniform Lasota–Yorke inequality proved in Lemma 3.12. Finally, Proposition 3.8
implies that for any θ ∈ (0, 1) we have that λn > θ for large n. 2

3.5. Stability of the spectrum. We introduce a so-called ‘asymmetric operator norm’ for
which the operators Ln converge to L as n→∞. For a linear operator Q : Bθ → Bθ , we
define

‖|Q|‖ = sup{‖Qw‖h : ‖w‖θ ≤ 1}.

Recall the Gibbs property (1) of µ, namely that there exists a constant c > 1 such that
for any x ∈6 and a positive integer n we have that

c−1
≤
µ[x]n
eφn(x)

≤ c. (14)

Using the above, it is relatively easy to show the following proposition, which is stated
without proof.

PROPOSITION 3.16. (Gibbs property) There exists a constant c > 0 such that for any
positive integers n, m and j ≥ n we have

µ(Un ∩ σ
− j (Um))≤ cµ(Un)µ(Um).

LEMMA 3.17. There exists a constant c > 0 such that

‖|L− Ln|‖ ≤ c(ρθ−1)n

for all n.

Proof. Let w ∈ Bθ be such that ‖w‖θ ≤ 1; then

‖(L− Ln)w‖1 = ‖LχUnw‖1

≤ ‖χUnw‖1

≤ µ(Un)‖w‖∞ ≤ cµ(Un)‖w‖θ ≤ cµ(Un). (15)

On the other hand, for fixed m, j we have

θ−m
∫
σ− j (Um )

|(L− Ln)w| dµ≤ cθ−mµ(σ−( j+1)(Um) ∩Un)‖w‖θ .

Fix positive integers m, j . We study three cases, namely:
(1) n ≤ j + 1;
(2) j + 1< n < m + j + 1;
(3) m + j + 1≤ n.

First, we suppose that n ≤ j + 1, which implies from Proposition 3.16 that

θ−mµ(σ−( j+1)(Um) ∩Un)≤ cθ−mµ(Um)µ(Un)≤ cρn . (16)

Next, we suppose that j + 1< n < m + j + 1; then, observing that the nested
property of {Un}n gives us σ−( j+1)(Um) ∩Un ⊂ σ

−( j+1)(Um) ∩U j+1, combining this
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with Proposition 3.16 we see that

θ−mµ(σ−( j+1)(Um) ∩Un) ≤ µ(σ
−( j+1)(Um) ∩U j+1)

≤ cθ−mµ(Um)µ(U j+1)

≤ cθ−mρm+ j+1

≤ c(θ−1ρ)m+ j+1

≤ c(θ−1ρ)n . (17)

If n ≥ m + j + 1,

θ−mµ(σ−( j+1)(Um) ∩Un)≤ θ
−mµ(Un)≤ θ

−nµ(Un)≤ c(θ−1ρ)n . (18)

Combining (16), (17), and (18) yields

|(L− Ln)w|h ≤ c(θ−1ρ)n‖w‖θ .

Combining this with (15) completes the proof. 2

We note that Lemmas 3.10, 3.12, 3.15, and 3.17 show that the operators Ln satisfy the
hypotheses of [15, Theorem 1]. We now cite a specific consequence of the result.

For δ > 0 and r > θ , let

Vδ,r = {z ∈ C : |z| ≤ r or dist(z, spec(L))≤ δ}.
Then, by [15, Theorem 1], there exists N = N (δ, r) such that

Sδ,r = sup{‖(z − Ln)
−1
‖θ : n ≥ N , z ∈ C\Vδ,r }<∞, (19)

where ‖(z − Ln)
−1
‖θ denotes the operator norm of (z − Ln)

−1
: Bθ → Bθ .

We may use quasi-compactness of Ln to write

Ln = λn En +9n,

where En is a projection onto the eigenspace {cgn : c ∈ C} and En9n =9n En = 0.

PROPOSITION 3.18. There exist a positive integer N and constants c > 0 and 0< q < 1
such that for all n ≥ N we have

‖9k
n 1‖∞ ≤ cqk for any k ≥ 1.

Proof. Fix q ∈ (θ, 1) such that spec(L)\{1} ⊂ B(0, q). Then by Proposition 3.8 there
exists a positive integer N such that for all n ≥ N , we may write using standard operator
calculus

9k
n =

1
2π i

∫
|t |=q

tk(t − Ln)
−1 dt.

Then, from Lemma 3.7 and (19) above, we see that

‖9k
n 1‖∞ ≤ c‖9k

n 1‖θ

≤ c
∫
|t |=q
|t |k‖(t − Ln)

−1
‖θ dt

≤ cqk . 2

Remark 3.19. This result (Proposition 3.18) is claimed in an article of Hirata [12].
However, the proof presented in the article contains an error which we correct in this
section. In particular, this allows us to recover the exponential and Poisson return time
estimates claimed in [12] for conformal expanding maps.

https://doi.org/10.1017/S0143385711000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385711000058


974 A. Ferguson and M. Pollicott

PROPOSITION 3.20. There exists a constant c > 0 such that for all n

‖En1‖∞ ≤ c.
Proof. For n ≥ N , write

En =
1

2π i

∫
|t−1|=1−q

(t − Ln)
−1 dt.

Then, from Lemma 3.7 and (19) above, we see that

‖En1‖∞ ≤ c‖En1‖θ

≤ c
∫
|t−1|=1−q

‖(t − Ln)
−1
‖θ dt

≤ c. 2

4. An asymptotic formula for λn

In this section, we prove the following proposition.

PROPOSITION 4.1. Fix φ ∈ Bθ ; then

lim
n→∞

λ− λn

µ(Un)
=

{
λ if z is not periodic,

λ(1− λ−peφ
p(z)) if z has prime period p.

We prove the proposition in the case that L is normalized, i.e. L1= 1; the more general
statement above can be deduced by scaling the operator.

Let mn denote the restriction of µ to In , i.e.

mn =
µ|Un

µ(Un)
.

The following four lemmas were motivated by corresponding results in [12].

LEMMA 4.2. If z is non-periodic, then

lim
n→∞

∫
En(LχUn ) dmn

1− λn
= lim

n→∞

∫
En1 dmn = 1.

Proof. For simplicity, we put

[En] =

∫
En(LχUn ) dmn .

Then, by using LχUn = 1− Ln1,

[En] = (1− λn)

∫
En1 dmn .

As z is non-periodic, it follows from the fact that a countable intersection of nested
compact sets is non-empty that for any integer k ≥ 1, there exists Nk such that UNk ∩

σ− j (UNk )= ∅ for j = 1, 2, . . . , k.
Then, for any x ∈ σ− jUNk , 1≤ j ≤ k, we have that x 6∈UNk . So, for any n > Nk and

any x ∈ σ−kUn , we see that

χU c
n
(x)χU c

n
(σ (x)) · · · χU c

n
(σ k−1(x))= 1.
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So, for n > Nk , we see that

χUn (x)Lk
n1(x)= χUn (x)Lk1(x)= χUn (x).

And so
∫

Ln1 dmn = 1 for all n > Nk .
We now use the decomposition Lk

n = λ
k
n En +9

k
n to see that for any k and n > Nk we

have ∣∣∣∣1− ∫ En1 dmn

∣∣∣∣ = ∣∣∣∣(λk
n − 1)

∫
En1 dmn +

∫
9k

n 1 dmn

∣∣∣∣
≤ |1− λk

n|‖En1‖∞ + ‖9k
n 1‖∞

≤ c(|1− λk
n| + qk),

where Propositions 3.18 and 3.20 were used in the final line. This completes the proof. 2

LEMMA 4.3. If z is non-periodic, then

lim
n→∞

∫
En(LχUn ) dmn

µ(Un)
= 1.

Proof. We let Tn(x) denote the first return time (assuming that it exists) for x ∈Un , i.e.

Tn(x)= inf{i ∈ N : σ i (x) ∈Un};

then ∫
Tn dmn =

∞∑
i=1

imn(Tn = i)

= mn(Tn = 1)+
∞∑

i=2

i
∫

Li−1
n (LχUn ) dmn

= mn(Tn = 1)+
∫

En(LχUn ) dmn

∞∑
i=2

iλi−1
n

+

∞∑
i=2

i
∫
9 i−1

n (LnχUn ) dmn

= mn(Tn = 1)+
∫

En(LχUn ) dmn

(
1

(1− λn)2
− 1

)
+

∞∑
i=2

∫
9 i−1

n 1 dmn . (20)

But, by Kac’s theorem,
∫

Tn dmn = 1/µ(Un) and thus∫
En(LχUn ) dmn

µ(Un)
=

(∫
En(LχUn ) dµn

1− λn

)2

︸ ︷︷ ︸
→1

+

∫
En(LχUn ) dmn︸ ︷︷ ︸

→0

×

(
mn(Tn = 1)−

∫
En(LχUn ) dmn +

∞∑
k=1

9k
n 1 dmn

)
︸ ︷︷ ︸

=O(1)

.

This completes the proof. 2
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LEMMA 4.4. If z has prime period p, then

lim
n→∞

∫
En(LχUn ) dmn

1− λn
= lim

n→∞

∫
En1 dmn = 1− eφ

p(z).

Proof. Fix a large positive integer t and set k = pt . We have for large n that

χUn (x)− χUn (x)Lk
n1(x) = χUn (x)

∑
σ k (y)=x

χ⋃k−1
j=0 σ

− j (Un)
(y)eφ

k (y)

= χUn (x)
∑

σ k (y)=x

χσ k−p[z0z1···z p−1]
(y)eφ

k (y)

= χUn (x)
∑

σ pm (y)=x

eφ
pm (y)χσ−p(m−1)[z0z1···z p−1]

(y)

= χUn (x)L pm(χ[z0z1···z p−1] ◦ σ
p(m−1))(x)

= χUn (x)L p(χ[z0z1···z p−1])(x),

where assumption (5) on the family {Un}n was utilized in the second line. Hence,∣∣∣∣1− eφ
p(z)
−

∫
Lk

n1 dmn

∣∣∣∣ ≤ ∣∣∣∣∫ L p(χ[z0z1···z p−1])(x)− eφ
p(z) dmn(x)

∣∣∣∣
≤ sup

y∈[z]ln+p

|φ p(y)− φ p(z)|

≤
|φ|θ,∞

1− θ
diam(Un)→ 0 (n→∞),

where | · |θ,∞ denotes the usual Hölder semi-norm.
Hence, for any k = pt ,

lim
n→∞

∫
Lk

n1 dmn = 1− eφ
p(z).

On the other hand, by Lemma 4.2, for large n∣∣∣∣∫ Lk
n1 dmn − λ

k
n

∫
En dmn

∣∣∣∣= ∣∣∣∣∫ 9k
n 1 dmn

∣∣∣∣≤ ‖9k
n‖∞ ≤ cqk .

We fix k = pt and λn→ 1 as n→∞; hence,

lim
n→∞

∫
En1 dmn = 1− eφ

p(z). 2

LEMMA 4.5. If z has prime period p, then

lim
n→∞

∫
En(LχUn ) dmn

µ(Un)
= (1− eφ

p(z))2.

Proof. The proof of this is a combination of the methods from Lemma 4.3 and the result
of Lemma 4.4. 2

Combining Lemmas 4.2, 4.3, 4.4, and 4.5 proves Proposition 4.1.
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5. Escape rates for Gibbs measures
In this section, we prove the analogue of Theorem 1.1 in the setting of a topologically
mixing subshift of finite type, namely, we prove the following theorem.

THEOREM 5.1. Suppose that the {Un}n satisfy assumptions (1)–(5). Let φ :6→ R be
Hölder continuous and let µ denote the associated equilibrium state; then

lim
n→∞

rµ(Un)

µ(Un)
=

{
1 if z is not periodic,

1− eφ
p(z)−pP(φ) if z has prime period p,

where φ p(z)= φ(z)+ φ(σ(z))+ · · · + φ(σ p−1(z)).

It is well known that the escape rate rµ(Un) is related to the spectral radius λn and we
include the proof of the following proposition only for completeness.

PROPOSITION 5.2. We have the following relation:

rµ(Un)=−log(λn).

Proof. We can write

µ{x ∈6 : σ i (x) 6∈Un, 0≤ i ≤ k − 1} =
∫ (k−1∏

i=0

χU c
n
(σ i x)

)
dµ(x)

=

∫
Lk
(k−1∏

i=0

χU c
n
(σ i x)

)
dµ(x)

=

∫
Lk

n1(x) dµ(x)

= λk
n

∫
En1 dµ+

∫
9k

n 1 dµ.

Using Propositions 3.18 and 3.20, we see that

rµ(Un)= lim
k→∞

−
1
k

log µ{x ∈6 : σ i (x) 6∈Un, 0≤ i ≤ k − 1} = −log(λn).

We now prove Theorem 5.1.

Proof. We assume without loss of generality that P(φ)= 0. In which case, we see from
Proposition 5.2 that

rµ(Un)

µ(Un)
=
−log(λn)

µ(Un)

=
log(λ)− log(λn)

µ(Un)

=
λ− λn

µ(Un)

log(λ)− log(λn)

λ− λn
.

The result now follows from Proposition 4.1. 2
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We also can obtain results relating to the convergence of the topological pressure.

THEOREM 5.3. Suppose that the {Un}n satisfy assumptions (1)–(5). Let φ :6→ R be
Hölder continuous and let µ denote the associated equilibrium state; then

lim
n→∞

P(φ)− P6n (φ)

µ(Un)
=

{
1 if z is not periodic,

1− eφ
p(z)−pP(φ) if z has prime period p.

Proof. Using λ= eP(φ), we see that

P(φ)− P6n (φ)

µ(Un)
=

P(φ)− P6n (φ)

eP(φ) − eP6n (φ)

λ− λn

µ(Un)
. (21)

Observing that

lim
n→∞

P(φ)− P6n (φ)

eP(φ) − eP6n (φ)
= e−P(φ),

and combining this, (21), and Proposition 4.1 completes the proof. 2

An immediate corollary is the following.

COROLLARY 5.4. Let µ denote the measure of maximal entropy (i.e. the Parry
measure [20]); then

lim
n→∞

htop(σ )− htop(σ |6n ))

µ(Un)
=

{
1 if z is not periodic,

1− e−phtop(σ ) if z has prime period p.

Remark 5.5. The rate of convergence of the topological entropy of the restriction of the
shift to these sets was studied by Lind [18] who proved, in the case that the Un consisted
of a single cylinder of length n, i.e. Un = [z]n , the existence of a constant c > 1 such that

1/c ≤
htop(σ )− htop(σ |6n )

µ(Un)
≤ c for all n.

6. Proof of Theorem 1.1
In this section, we prove Theorem 1.1. Let M be a Riemannian manifold and f :M→M
a C1-map. Let J be a compact subset of M such that f (J )= J . We say that the pair (J, f )
is a conformal repeller if:
(1) f |J is a conformal map;
(2) there exist c > 0 and λ > 1 such that ‖d f n

x v‖ ≥ cλn
‖v‖ for all x ∈ J , v ∈ Tx M, and

n ≥ 1;
(3) f is topologically mixing on J ;
(4) J is maximal, i.e. there exists an open neighbourhood V ⊃ J such that

J = {x ∈ V : f n(x) ∈ V for all n ≥ 0}.

Let φ : J → R be α-Hölder and let µ denote the associated equilibrium state. For an
open set U ⊂ J , we let rµ(U ) denote the escape rate of µ through U .

It is well known that an expanding map has a finite Markov partition {R1, R2, . . . , Rl},
and that there exists a continuous semi-conjugacy π :6→ J , where 6 is a subshift of
finite type on l symbols. By choosing λ−α < θ < 1 and considering 6 equipped with the
metric dθ , it can be seen that the map φ̃ = φ ◦ π :6→ R is dθ -Lipshitz, and so φ̃ ∈ Bθ .

https://doi.org/10.1017/S0143385711000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385711000058


Escape rates 979

We state without proof the following result of Bowen [2].

PROPOSITION 6.1. (Bowen) There exists a positive integer d such that the cardinality of
π−1(x) is at most d for all x ∈ J .

This proposition was used to prove the following corollary.

COROLLARY 6.2. (Bowen) x ∈6 is periodic if and only if π(x) ∈ J is periodic.

We also require the following technical lemmas.

LEMMA 6.3. For any periodic point z ∈ J , there exists a Markov partition {R1, R2, . . . ,

Rm} such that z ∈
⋃m

i=1 int(Ri ).

Proof. This follows easily from the standard construction of Markov partitions (using
shadowing); for example see [27]. 2

LEMMA 6.4. There exist constants s, c1 > 0 such that µ(B(z, ε))≤ c1ε
s for all ε > 0.

Proof. Let φ̃ :6→ R be defined by φ̃(x)= φ(π(x)), and denote the associated
equilibrium state by µ̃; then µ= π∗(µ̃).

For ε > 0, let Uε denote the Moran cover associated with the Markov partition {R1,

R2, . . . , Rm} (see [23, p. 200]). Then for z ∈ J we choose elements U1,U2, . . . ,Uk ∈ Uε
which intersect B(z, ε). A basic property of Moran covers is that:
(1) Ui = π [zi

0zi
1 · · · z

i
n(zi )
], where zi

∈6;

(2) diam(Ui )≤ ε < diam(π [zi
0zi

1 · · · z
i
n(zi )−1

]);
(3) k ≤ K , where K is independent of both z and ε.
In which case, it suffices to show that µ(Ui )≤ cεs for some constant c > 0. To see this,
we observe that a basic property of Gibbs measures is that for any x ∈6, there exist
c > 0 and γ ∈ (0, 1) such that µ̃[x]n ≤ cγ n for n = 1, 2, . . . . In addition to f ∈ C1+α

and conformal, we have that cλ−n(zi )
≤ ε for any ε > 0. In which case, we see that

µ(B(z, ε))≤
k∑

i=1

µ(Ui )=

k∑
i=1

µ̃[zi
0zi

1 · · · z
i
n(zi )
] ≤ K c1+log(γ )/log(λ)ε−log(γ )/log(λ). 2

Next, we require the so-called ‘D-annular decay property’, that is, there exists a constant
c2 > 0 such that for all x ∈ J, ε > 0 and 0< δ < 1, we have that

µ(B(x, ε)\B(x, (1− δ)ε))≤ c2δ
Dµ(B(x, ε)). (22)

A related condition is the ‘doubling’ or ‘Federer’ property, namely there exists a
constant K > 1 such that for all x ∈ J and ε > 0, we have

µ(B(x, 2ε))≤ Kµ(B(x, ε)).

Evidently, a measure that satisfies the D-annular decay property also satisfies the
doubling property. The converse was shown by Buckley in [5, Corollary 2.2]. In the
context of an equilibrium state µ supported on a conformal repeller, Pesin and Weiss [22]
showed that µ satisfies the doubling property. We collect these two results in the following
proposition.
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PROPOSITION 6.5. There exists a D such that µ satisfies the D-annular decay property.

We now prove Theorem 1.1.

Proof. We first prove the result if z ∈ J is not periodic. As a consequence of
Proposition 6.1 we have that π−1

{z} = {z1, z2, . . . , zr
}. Further, Corollary 6.2 implies

that each zi is non-periodic.
Hence, to show Theorem 1.1 it suffices to show that

lim
ε→0

rµ̃(π−1(B(z, ε)))

µ̃(π−1(B(z, ε)))
= 1.

First, we observe that Theorem 5.1 may be modified to accommodate multiple non-periodic
points appearing in the intersection; this modification is trivial and we therefore omit the
proof. For non-periodic points, the new hypotheses become:
(1) let {Vn} be a family of nested sets with each Vn being a finite union of

cylinders. Suppose further that
⋂

n≥1 Vn consists of finitely many non-periodic
points {z1, z2, . . . , zr

};
(2) there exist constants c > 0 and 0< ρ < 1 such that µ̃(Vn)≤ cρkn for all n ≥ 1; here

kn denotes the maximum length of a cylinder in Vn ;
(3) There exist a sequence (ln)n and a constant κ > 0 such that κ < ln/kn ≥ 1 and

Vn ⊂
⋃r

i=1[z
i
]ln for all n ≥ 1.

If the sets {Vn}n satisfy these hypotheses, then we conclude that

lim
n→∞

rµ̃(Vn)

µ̃(Vn)
= 1.

For ε > 0 and a positive integer k, we set

Uk,ε =

{
U ∈

k−1∨
i=0

f −i R :U ∩ B(z, ε) 6= ∅

}
.

We observe that due to f being uniformly expanding, there exist constants c3 > 0 and
0< ρ < 1 such that

diam(U )≤ c3ρ
k

for any U ∈Uk,ε .
Let δk = c3ρ

k/(ε + c3ρ
k), in which case it is easy to see that⋃

U∈Uk,ε

U ⊂ B(z, ε + c3ρ
k)= B(z, (1− δk)

−1ε).

Fix η > 0 small and choose k = k(ε, η) such that

ρk
≤

ε

c3((c2η−1)1/D − 1)
< ρk−1,

in which case we see that

(1− η)µ
( ⋃

U∈Uk,ε

U

)
≤ (1− c2δ

D
k )µ

( ⋃
U∈Uk,ε

U

)
≤ (1− c2δ

D
k )µ(B(z, (1− δk)

−1ε))

≤ µ(B(z, ε)), (23)
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where the D-annular decay property was used in the final line. Now let {εn}n be any
monotonic sequence with εn→ 0 and set

Un =
⋃

U∈Uk(εn ,η),εn

U.

Observing that Un is a finite union of kn := k(εn, η)th level refinements of the
Markov partition, there exists Vn ⊂6, a finite union of cylinders of length kn , such that
π(Vn)=Un .

We claim that Vn satisfies the hypotheses of the modified Theorem 5.1. Clearly, the Vn

are nested (1), so it suffices to show that µ̃(Vn) decays exponentially in n. To see this, we
observe that

µ̃(Vn) = µ(Un)

≤ (1− η)−1µ(B(z, εn))

≤ c1ε
s
n ≤ c1(c3((c2η

−1)1/D
− 1))sρs(kn−1).

And, thus, we see that µ̃(Vn) decreases exponentially in kn , which proves (2).
As f is conformal and z ∈ [zi

]l for all i and l, there exist constants c4 > 0 and 0< % < 1
such that for any i ∈ {1, 2, . . . , r} and l ∈ N, we have that c−1

4 ≤ diam(π [zi
]l)/%

l . Let ln
be the minimum such l such that c−1

4 %l
≥ 2εn . It is easy to see that for such a choice

of l, we have that Vn ⊂
⋃r

i=1[z
i
]ln . In addition, we have that ln > c5kn for some constant

c5 > 0; this proves (3). Thus, we deduce from the modified Theorem 5.1

lim
n→∞

rµ̃(Vn)

µ̃(Vn)
= 1.

And, so, by monotonicity of escape rates and (23), we see that

lim sup
n→∞

rµ(B(z, εn))

µ(B(z, εn))
≤ (1− η)−1 lim sup

n→∞

rµ(Un)

µ(Un)

= (1− η)−1 lim sup
n→∞

rµ̃(Vn)

µ̃(Vn)
= (1− η)−1. (24)

Similarly, using the same method we may obtain a lower bound, which in conjunction
with (24) gives

lim
n→∞

rµ(B(z, εn))

µ(B(z, εn))
= 1.

We now turn our attention to the case where z is periodic. By Lemma 6.3, we may
assume that π−1(z) consists of a single point of prime period p, say π(z′)= z.

As before, we approximate B(z, ε) from outside using elements of
∨k−1

i=0 f −i R, which
may be thought of as cylinders of length k in a subshift of finite type. Recall the hypotheses
for Theorem 5.1:
(1) let {Vn} be a family of nested sets with each Vn being a finite union of cylinders.

Suppose further that
⋂

n≥1 Vn = {z′}, where z′ has prime period p;
(2) there exist constants c > 0 and 0< ρ < 1 such that µ̃(Vn)≤ cρkn for n = 1, 2, . . .;

here kn denotes the maximum length of a cylinder in Vn ;
(3) for each n ≥ 1, we have that σ−p(Vn) ∩ [z′0z′1 · · · z

′

p−1] ⊂ Vn .
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In which case, we deduce from Theorem 5.1 that

lim
n→∞

rµ̃(Vn)

µ̃(Vn)
= 1− eφ̃

p(z′).

We first approximate B(z, εn) from outside using the same method employed
previously. For η > 0, we obtain Un ⊃ B(z, εn) nested, each being a finite union of
elements from

∨k(n)−1
i=0 f −i R for some k, with the property that µ(Un)≤ (1− η)−1

µ(B(z, εn)). As before, we may find a Vn ⊂6 which is a finite union of cylinders. It
is easy to see that Vn satisfies conditions (1) and (2). To see (3), we observe that for εn

small, expansivity of f and the fact that z has prime period p yields f −p(B(z, εn)) ∩

π [z′0, z′1, . . . , z′p−1] ⊂ B(z, εn). A simple argument extends this to approximations of
balls centred on z. Using monotonicity of escape rates together with the conclusions of
Theorem 5.1 yields

lim sup
n→∞

rµ(B(z, εn))

µ(B(z, εn))
≤ (1− η)−1 lim sup

n→∞

rµ(Un)

µ(Un)

= (1− η)−1 lim sup
n→∞

rµ̃(Vn)

µ̃(Vn)

= (1− η)−1(1− eφ̃
p
(z′))

= (1− η)−1(1− eφ
p(z)). (25)

Similarly, using the same method we may obtain a lower bound, which, in conjunction
with (25), yields

lim
n→∞

rµ(B(z, εn))

µ(B(z, εn))
= 1− eφ

p(z). 2

7. Proof of Theorem 1.2
In this section, we study the asymptotic behaviour of the Hausdorff dimension of the non-
trapped set. Let f : J → J be a conformal repeller as defined in the previous section; we
make the further assumption that f ∈ C1+α(J ) for some α > 0. Fix z ∈ J . For ε > 0, we
define

Jε = {x ∈ J : f k(x) 6∈ B(z, ε), for all k ≥ 0},

i.e. all points whose orbits are ε-bounded away from z.
Let µ denote the equilibrium state related to the potential ψ =−s log | f ′|, where

s = dimH (J ). As before, we may study the escape rate rµ(B(z, ε)) of µ through B(z, ε)
and its associated asymptotic, i.e.

dφ(z) := lim
ε→0

rµ(B(z, ε))

µ(B(z, ε))
.

The method of proof is as follows: in a similar vein to the proof of Theorem 1.1, we
first prove the result where the hole consists of a finite union of refinements of the Markov
partition and then extend it to the case of geometric balls via an approximation argument.

Let R= {R1, R2, . . . , Rm} denote a Markov partition for the conformal repeller J ; this
induces a semi-conjugacy π between a subshift of finite type (6, σ ) and the conformal
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repeller (J, f ). Let In ∈
∨n−1

i=0 f − j R be a nested family such that
⋂

n≥0 In = {z}. We let
Jn denote the set of points in J which do not fall down the hole In , i.e.

Jn = {x ∈ J : f k(x) 6∈ In, for all k ≥ 0}.

Let sε denote the Hausdorff dimension of the set Jε .

PROPOSITION 7.1. Under the assumptions above,

lim
n→∞

s − sn

µ(In)
=

dφ(z)∫
log | f ′| dµ

.

A crucial ingredient to the proof of Proposition 7.1 is the following result of Ruelle [24].

PROPOSITION 7.2. (Ruelle) Let s ≥ 0 be the unique real number for which
P(−s log | f ′|)= 0; then dimH (J )= s.

Let φ̃(x) := −log | f ′(π(x))|. It is easy to see that the semi-conjugacy π being one–
one on a set of full measure for all equilibrium states for Hölder potentials implies that
the Hausdorff dimension of J is the unique real number s for which P(sφ̃)= 0. A
similar argument shows that dimH (Jn)= sn , where sn is the unique real number satisfying
P6n (snφ̃)= 0. We may therefore translate the problem into the language of subshifts of
finite type. As the family {In} is nested, there exists a point z′ ∈6 such that π [z′] = In .
Accordingly, if we set

6n = {x ∈6 : σ
k(x) 6∈ [z′]n for k = 0, 1, 2, . . .},

then π(6n)= Jn . Let φ̃(x)=−log | f ′(π(x))|; then it is easy to see that the semi-
conjugacy π being one–one on a set of full measure for all equilibrium states for Hölder
potentials implies that the Hausdorff dimension of J is the unique real number s for which
P(sφ̃)= 0. A similar argument shows that dimH (Jn)= sn , where sn is the unique real
number satisfying P6n (snφ̃)= 0. We therefore may prove the result in the setting of
subshifts of finite type.

For t ≥ 0, we let Lt : Bθ → Bθ denote the transfer operator associated with the potential
t φ̃, i.e.

(Ltw)(x)=
∑

σ(y)=x

w(y)

| f ′(π(y))|t
;

analogously, we define the perturbed transfer operator Lt,n : Bθ → Bθ to be (Lt,nw)(x)=
(Ltχ[z′]cnw)(x). We let gt (respectively gt,n) and νt (respectively νt,n) denote the eigen-
functions and eigenmeasures guaranteed by Proposition 3.2 applied to Lt (respectively
Lt,n). We shall assume without loss of generality that

∫
gt dνt =

∫
gt,n dνt,n = 1 for all

t ≥ 0 and n ≥ 1. The associated equilibrium states will be denoted by µt and µt,n ,
observing that one can show that dµt = gt dνt (respectively dµt,n = gt,n dνt,n). We
proved earlier that both Lt and Lt,n have spectral gaps; we denote their maximal
eigenvalues by λt and λt,n , respectively. As log(λt )= P(t φ̃) (respectively log(λt,n)=

P6n (t φ̃)), the problem of finding the Hausdorff dimensions of J (respectively Jn) reduces
to finding the values of t (respectively tn) such that λt = 1 (respectively λtn ,n = 1).

The proof of Proposition 7.1 relies on a few elementary facts: the maps t 7→ λt,n are
analytic and non-increasing in t , while for a fixed t the sequence {λt,n}n is increasing
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(and converges to λt ), we use Taylor’s theorem applied to λt,n about t = s to obtain
an approximation of λt,n close to λs,n , we then use Theorem 5.1 and let n→∞ to
prove the result. The main problem then reduces to analysing the behaviour of the first
λ′t,n = d/dt (λt,n) and second λ′′t,n = d2/dt2(λt,n) derivatives of λt,n , which is the focus of
the following two technical lemmas.

LEMMA 7.3. For any t ≥ 0, we have that limn→∞ λ
′
t,n = λ

′
t .

Proof. We first obtain an explicit formula for λ′t,n ; to do this, we follow an argument of
Ruelle [25, p. 96, Exercise 5] to prove that for any t ≥ 0 and n = 1, 2, . . .,

λ′t,n =−λt,n

∫
log | f ′| dµt,n . (26)

Analogously, for the unperturbed operator,

λ′t =−λt

∫
log | f ′| dµt . (27)

To see this, we take the eigenfunction equation

L t,ngt,n = λt,ngt,n . (28)

Differentiating once yields

L ′t,ngt,n + L t,ng′t,n = λ
′
t,ngt,n + λt,ng′t,n,

and then integrating with respect to νt,n and cancelling terms yields

λ′t,n =

∫
L′t,n(gt,n) dνt,n =

∫
Lt,n(φgt,n) dνt,n = λt,n

∫
φ dµt,n

where φ =−log | f ′|. This shows (26); the proof of (27) is analogous and is omitted.
Without loss of generality, we may assume that gt = 1, that is, Lt 1(x)= λt . We

decompose the transfer operators Lt,n and Lt as

Lt,n = λt,n Et,n +9t,n, Lt = λt Et +9t ,

where Et,n and Et are projection operators given by

Et,nw =

∫
w dνt,ngt,n, Etw =

∫
w dνt (29)

and 9t,n (respectively 9t ) has a spectral radius strictly less than λt,n (respectively λt ).
From [15], we have that limn→∞ ‖|Et,n − Et |‖ = 0 and so

‖gt,n − gt‖1 ≤ ‖gt,n − gt‖h

= ‖(Et,n − Et )(1)‖h ≤ ‖|Et,n − Et |‖‖1‖θ → 0. (30)

Finally, to show that λ′t,n→ λ′t , it suffices to show that Et,n(gt,nφ)→ Et (φ). We
first show that there exists a constant c > 0 such that ‖gt,nφ‖θ ≤ c for all n. We note
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that by [15, Corollary 1] there exist a constant c > 0 and a positive integer N such that
‖Et,nw‖θ ≤ c‖Etw‖h for any w ∈ Bθ and n ≥ N . In which case,

‖gt,nφ‖θ = ‖gt,nφ‖θ + ‖gt,nφ‖1

≤ ‖gt,n‖∞|φ|θ + |gt,n|θ‖φ‖∞ + ‖φ‖∞‖gt,n‖1

≤ 2‖φ‖θ‖gt,n‖θ + ‖φ‖∞‖gt,n‖h

= 2‖φ‖θ‖Et,n1‖θ + ‖φ‖∞‖gt,n‖h

≤ 2c‖φ‖θ‖Et,n1‖h + ‖φ‖∞‖gt,n‖h

= (2c‖φ‖θ + ‖φ‖∞)‖gt,n‖h .

We observe that ‖gt,n − 1‖1→ 0 implies that ‖gt,n − 1‖h→ 0 and so ‖gt,n‖θ is bounded.
Next, we note that

‖Et,n(gt,nφ)− Et (φ)‖1 = ‖|Et,n − Et |‖‖gt,nφ‖θ + ‖Et (φ(gt,n − 1))‖1

≤ c‖|Et,n − Et |‖ + ‖φ‖∞‖Et‖1‖gt,n − 1‖1.

Both terms tend to zero by (30) and [15]. This completes the proof. 2

LEMMA 7.4. For any s > 0, there exists δ > 0 such that supn≥1 supt∈(s−δ,s+δ) λ
′′
t,n <∞.

Proof. We first obtain an expression for λ′′t,n . Fix a positive integer N . Taking
the eigenfunction equation L N

t,ngt,n = λ
N
t,ngt,n and differentiating twice, integrating with

respect to νt,n , and cancelling yields

λ−1
t,nλ
′′
t,n =

1
N

[∫
(φN )2gt,n dνt,n − N (N − 1)(λ−1

t,nλ
′
t,n)

2
]

+ 2
[

1
N

∫
φN g′t,n dνt,n − λ

−1
t,nλ
′
t,n

∫
g′t,n dνt,n

]
.

We observe that as dµt,n = gt,n dνt,n is strong mixing, this second term tends to zero
as N →∞, and thus

λ−1
t,nλ
′′
t,n = lim

N→∞

1
N

[∫
(φN )2gt,n dνt,n − N (N − 1)(λ−1

t,nλ
′
t,n)

2
]
. (31)

We now estimate the term N−1
∫
(φN )2gt,n dνt,n : expanding the term (φN )2 and using

the dual identity L∗t,n(νt,n)= λt,nνt,n yields for n large enough

N−1
∫
(φN )2gt,n dνt,n =

N−1∑
i=0

N−1∑
j=0

∫
gt,nφ ◦ σ

iφ ◦ σ j dνt,n

= ‖φ‖22 +
2
N

N−1∑
k=0

(N − k)
∫

gt,nφφ ◦ σ
k dνt,n

= ‖φ‖22 +
2
N

N−1∑
k=0

(N − k)λ−k
t,n

∫
Lk

t,n(gt,nφ)φ dνt,n . (32)
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We apply the decomposition L t,n = λt,n Et,n +9t,n along with Proposition 3.18 to (32) to
obtain

N−1
∫
(φN )2gt,n dνt,n = ‖φ‖

2
2 +

2
N

N−1∑
k=0

(N − k)

×

∫
Et,n(gt,nφ)φ + λ

−k
t,n9

k
t,n(gt,nφ)φ dνt,n

= ‖φ‖22 + (N + 1)
(∫

φgt,n dνt,n

)2

+
2
N

N−1∑
k=1

(N − k)λ−k
t,n

∫
9k

t,n(gt,nφ)φ dνt,n . (33)

We note that (
∫
φgt,n dνt,n)

2
= (λ−1

t,nλ
′
t,n)

2 and so combining (31) and (33) we obtain

λ−1
t,nλ
′′
t,n = ‖φ‖

2
2 + 2(λ−1

t,nλ
′
t,n)

2
+ lim

N→∞

2
N

N−1∑
k=0

(N − k)λ−k
t,n

∫
9k

t,n(gt,nφ)φ dνt,n .

Finally, we observe that the perturbation t 7→ Lt is analytic and so for any q > 0 such
that spec(Ls)\{λs} ⊂ B(0, q), there exist a positive integer M and δ > 0 such that λt,n > q
and spec(Lt,n)\{λt,n} ⊂ B(0, q) for all n ≥ M and t ∈ (s − δ, s + δ). Combining this
observation with Proposition 3.18 completes the proof. 2

We now prove Proposition 7.1.

Proof. We begin by proving that s − sn = O(µ(In)); to see this, we observe that the map
t 7→ λt,n is analytic, and so using Taylor’s theorem we may write

λsn ,n = 1= λs,n + λ
′
ξn ,n(sn − s) (34)

for some ξn ∈ (sn, s). We note that Proposition 4.1 and Lemma 7.3 prove the claim. Next,
we use Taylor’s theorem once again to see that

λsn ,n = 1= λs,n + λ
′
s,n(sn − s)+ λ′′ξn ,n O(µ(In)

2)

for ξn ∈ (sn, s). Rearranging yields

s − sn

µ(In)
=

1
−λ′s,n

[
1− λs,n

µ(In)
+ λ′′ξn ,n O(µ(In))

]
.

Finally, we let n→∞, observing that the right-hand side converges by Lemmas 7.3
and 7.4. This completes the proof. 2

We note that as in the case of escape rates Proposition 7.1 generalizes easily to the case
of finite unions of symbolic holes. We now prove Theorem 1.2.

Proof. Let {εn}n be any monotonic sequence with εn→ 0. Fix η > 0 and choose Un ⊂

B(z, εn)⊂ Vn which consist of finite unions of refinements of the Markov partition R
such that

(1− η)µ(Vn)≤ µ(B(z, εn))≤ (1+ η)µ(Un). (35)
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From the proof of Theorem 1.1, it is clear that we may choose the families {Un}n and
{Vn}n so that they satisfy the hypotheses of Proposition 7.1. Let sn (respectively sn) denote
the Hausdorff dimension of the non-trapped set with respect to the hole Un (respectively
Vn). Monotonicity of the Hausdorff dimension along with (35) yields

1
1+ η

s − sn

µ(Un)
≤

s − sn

µ(B(z, εn))
≤

1
1− η

s − sn

µ(Vn)

for any n; combining this with Proposition 7.1 and letting η→ 0 completes the proof. 2
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