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A UNIFORM ASYMPTOTIC EXPANSION OF THE
JACOBI POLYNOMIALS WITH ERROR BOUNDS

C. L. FRENZEN AND R. WONG

1. Introduction. In a recent investigation of the asymptotic behavior of
the Lebesgue constants for Jacobi polynomials, we encountered the
problem of obtaining an asymptotic expansion for the Jacobi polynomials

P“P(cos ), as n — oo, which is uniformly valid for 8 in [0, g] The

leading term of such an expansion is provided by the following
well-known formula of “Hilb’s type” [13, p. 197]:

a B
(sing) (cosg) PP(cos 6)
2 2

Tn+a+1)
!

n:

(1.1) =N"¢ (6/sin 6)"2J (NG)

{0'/20(n“3/2) fen's0=7—¢
+ a+2 o . << << —1
9° "0 (n%) f0=0=cn ',

1
where « > —1, Brealand N = n + E(a + B + 1); ¢ and € are fixed

positive numbers. Note that the remainder in (1.1) is always 6" 20(n—3/ 2).

When ¢« = B = 0, the Jacobi polynomial reduces to the Legendre
polynomial, and in this case, we have the following full expansion from a
well-known paper of Szego [11}]:

o (2]

(1.2)  P(cos ) = 2 ay(ﬂ)_% + O(n_m—l/z),
r=0 (n + 5)

for every m = 1, where the coefficients a,(f) are analytic functions for
0 = 6 < =, and the O-term is uniform with respect to § € [0, §,),
0, = 0.828 ... 7. Thus it seems natural to suggest that a corresponding
result exists for the more general polynomial PS,"’B)(cos 6). There is
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indeed such a result, and the construction of this result will be the purpose
of the present article.

1
MAIN THEOREM. For a > —5, a— B> -2manda + B = —1, we

have
—a -B 1/2
Pf,""ﬁ)(cos 6) = F(n—’_—o‘JrD(sin é’) (cosg) ( _0 )
n! 2 2 sin 6
(1.3) - No
2 A/(a) lx+ix(+/ ) + oaO(N—m) ]’
where

(1.4) N=n+%(a+,8+l),0€(0,7r).

The coefficients A,(8) are analytic functions for 0 = 6 < m, and are explicitly
given in (3.15). The O-term is uniform with respect to § € [0, 7 — €|, € being
an arbitrary positive number.

An expansion similar to (1.3) had been given earlier by Szego in a not so
well-known paper [12], and this paper was also not available to us until the
recent appearance of his collected works [3]. In any case, our analysis
differs from that of Szegd, and provides more information for the error
term. For instance, we have the following useful consequence.

CoOROLLARY 1. Fora > —1/2, a — B> —danda + B = —1, we

have
«a B
(sin g) (cosg) PP (cos )
2 2

(1) Fn+ o+ D[ 8 \2[J(NO) (NO)

- n 44 o a+|

B n! (sin 0) [ N® + A4 Net! M 02]’
where

_ 2 2
(1.6)  A4,0) = (a2 - 1)(1 6 cot 0)) Bl
4 26 4 2

and

E T
1.7) ool = 2267, 0=6 = -.
A ool = 3 :

The constant E, is given explicitly in (4.27).
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A similar two-term expansion has been given by Gatteschi [7, Eq. (22) .

who uses
2 _ 2 271/2
Vz[(n+a+B+l)+l a 3,8]

2 12

as his asymptotic variable and shows that the remainder term is o(n %

for § [0, z].
2
If a = B = 0, then Corollary 1 reduces to

H 1/2
(1.8) (Smo) P, (cos 8)
9
1 9 -
= JO{ (n + —)0} j et — 1 IJI{ (n + 1)0} + o
2 1 2
80(n + —)
2
with
013 ™
19) Johl < —> @ 0=6="
(1.9) oy ( 1)2 >
n+ —
2

This result should be compared with another result of Gatteschi [6], which

states that

: 1/2
(1.10) (Sma) P,(cos 6) = JO{ (n + 1)0}
6 2
e )
24(n + —)
2
where

lo’| < 0.036* fo<og="
2n
=6 = z;
2

o] < 0.256%2n~ 32 if L
2n

see [13, p. 242]. Note that the second term in (1.10) differs from the
corresponding term in (1.9), and that the remainder ¢’ is only of the order

n3%for g e [0, %] and not of the order n_ 2.
Another useful consequence of our main theorem is the following
expansion for the zeros of the Jacobi polynomials.
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1
COROLLARY 2. Let a > = a + B = —1,and let 0 < 0, < 6,

< ...< 8, < 7 be the zeros of P'*P(cos 8). Then, as n — oo,

. 2 2

A — t — t
H/ZJ_JJF_IE{(az_l)l tcoti o — B tan_}

N N 2 4 2

(1.11) |
+ tZO(F),

where j, , is the I-th positive zero of the Bessel function J(x) and t = j, ,/N.
The O-term is uniformly bounded for all values of | = 1, 2, ...[yn], where
y € (0, 1).

The above results will all be used in a subsequent paper on the
derivation of the asymptotic expansion of the Lebesgue constants for
Jacobi series.

For completeness, we also mention two related papers on the same
subject. The first one is by Hahn [9], who recently obtained an asymptotic
expansion of Stieltjes type for Jacobi polynomials, that is, an expansion
which is uniformly valid in any compact subinterval of (0, 7) and whose
error is numerically less than twice the first neglected term. The second
paper is by Elliot [4], who supplied a uniform asymptotic expansion of
Pff"B)(z) for z & [—1, 1]. A combination of the results in [4], [9] and the
present paper gives a rather complete description of the behavior of the
Jacobi polynomials.

2. Some preliminary lemmas. The starting point of our derivation of

(1.3) is the following extension of Mehler’s integral due to Gasper [5]; see
also [2, p. 21].

1
LEMMA 1. For Re a > —5 and 0 < 0 < 7, we have

P*F(cos 6)
PPy
2((1+B+|)/21"(a + l)

o r(%)r(a + %)

f” cosln + (a + B + 1)/2]¢

(1 — cos 8) %1 + cos §) @ +A2

X
0 (cos ¢ — cos §)/27¢
% 2Fl(az + ,B’a — ,B;a 4+ l; cos 0 — cos¢)d¢
2 2 2 1 + cos @

https://doi.org/10.4153/CJM-1985-053-5 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1985-053-5

JACOBI POLYNOMIALS 983

Later in our derivation, we shall replace the hypergeometric function
,F, in (2.1) by its Taylor series with remainder. An estimate for the
remainder is given in the following lemma.

LEMMA 2. Let m be a positive integer, Re ¢ > Re b > —m, and
Re a = —m. Then, for real and negative z, we have

m—1
(22)  LF((a, b;c; z) = 2 Mzk + M

F, (2),
2 Ok! a(2)

where

(a )m +H(b )m
)+t 1),

Proof. The binomial expansion gives

2.3) |F(z)| = =012 ...

U COTE )

24) (1 -
24 A +x)¢ & @

mRm(x)

for x = 0, where
(-1 L
R, (x) = )" (‘1’))' f (A — w1+ xu) ¢ "du.

Since Re a = —m, the remainder satisfies

@5) ROy | = Dl 0oy g
(m + 1),
Now insert (2.4) in the well-known identity
r
SFi(a, b; ¢; z) = B G
I'(b)L(c — b)

X f(l) A7 = T = 1z) ",
which is valid under the conditions
Rec> Reb >0 and |arg(l — z)| < 7.
Using the Pochhammer notation (a), = 1,
I'n + a)

(@, =a@+1)...(a+n—1)= @

we obtain (2.2) with

D) N prmety b1
) = S =5 /Ot (A — 0 P7IR, (—12)dt.
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Note that the last integral exists for Re » > —m. Thus the condition
Re b > 0 can now be removed. The estimates in (2.3) follow immediately
from those in (2.5).

Throughout the paper, the parameters a, b and ¢ are fixed, and are taken
to be

26) a= b = and ¢ = a +

(S}
N | —

Therefore, there is no ambiguity in suppressing the dependence of F,, on
these parameters.

LEMMA 3. Let F,,(z) be defined as in Lemma 2, and put
cos 8 — cos ¢)
1 + cos 6
(1) Forp =0,1,2,..., we have
(28) [l 0 =0
(i1) There exists a constant C,, (0), depending on a, b and c, such that

29 sup IfAd)] =Cn0, v=0,1,....m
0=¢=4 !

Q) Lal$) = Fm(

An explicit expression for C,, (0) is given in (2.14).

Proof. (i) The following identity is given in [8, p. 19, Eq. (1)]: If
f(x) = F(y)and y = y(x), then

d" U
S = 'F(y) + 5 F0)
(2.10) U U
+ Z2F(y) + .+ =2F(y),
3! n!
where
d" k d"
U, = —
k dx”y l'yd Y
(2.11)

ktk — 1) ,d" k=1, xk—14"y
NERAL ALY L (D gk
a7 ax” =D dx"

In the present case, x = ¢, y = (cos § — cos ¢)/(1 + cos 0), F = F, and
f = f..6- By expanding cos ¢ into a Maclaurin series, it is easily seen that
for n 2 1 and n odd,

n — /
Qi (L)(eloeey| o ik
do 1 + cos 6 ¢=0
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Therefore all the U,’s in (2.11), &k = 1,...,n, vanish when we set
x = ¢ = 0. This proves the statement in (1).
(i1) Here we use the following alternative identity, also given in [8, p. 19,

Eq. 2) ]:

d" ! d"’F r\i ”\j 11\ h (D \ k
2.13) “fx) = 2,—_—”——(1) (y—) (y—) (y—) ,
dx ik a \1t) \21) 3 1

where X sums over all solutions in non-negative integers of the two
equations

i+2+33+...+k=v and n=i+j+h+ ...+ Lk

The estimate in (2.9) now follows with

! b
Cm,v(g) _ 2 - (a)nz+n( )m ‘
iytht .. k! (), (m + 1),
(2.14) B
(1 +cos®) "
AN RYBY .. (K
Note that C,, (0) depends on a, b and c.
For convenience of later calculation, we give the following values of
C,.(0):
7 a'b T (a), - b
Cl,()(i) = |7 »Cu(”) = _Z__l
c 2 2c
b b
(2.15) C2.0(1_T) _ (a)y(b), ’ Cz“(Z) _ (a)3(b), ’
2 ()2 2 (¢)x(2),
cm(f) _ |@ao| (0)3(b)2('
2 (€):(3), (€),(2),

LEMMA 4. For a > —1/2, put

(2.16) R, (6; N) = f o ©0s No(cos ¢ — cos 9)" T2 (d)do,

where f,,,,o((#) is defined as in Lemma 3. Then there exists a constant C,,(0),
depending on a, b and ¢, such that

C,,(0)

(2.17) IR,,(0; N)| = 0=0<m.

An explicit formula for C, (0) is given in (2.21).
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Proof. Let

gn1,0(¢) = (COS ¢ — COS 0)m+a_]/2

and recall the formula

(d)" A FA+1)
— )Y = ——
dy 'A—s+1

From (2.13), it follows that

F(m + « +l)
w! 2

L k! 1
Y F(m+a+——s)

GGG

lgWe) | = =

1) 12—
(F) (cos ¢ — cos 0)m+a 172 s,

where X sums over all solutions in

i+ 2 +3h+...+lk=p and s=i+,+...+k
In deriving this, we have taken y = cos ¢ — cos 8 and F(y) = y" e 1/2
in (2.13). Since

0=cos¢p —cos@ =1 —cosf for0=¢p=60<wm,

we have

(cosd — cos )" = (1 — cos )"™° fors

IA
=
A
3

Therefore,

(2.18) Ig%%(9)| = D, (O)(cos ¢ — cos 6)* 2,

where

(n+a+3)

I'tm+ a + -

219) D, 0 = S — 2
(2.19) D, ,(0) = Y k! ( 1 )
\'m+a+-—z5

2

(1 — cos )" *

an'eny/an ... ank

Now we return to (2.16) and apply integration by parts m times. On
account of (2.8), all the integrated terms vanish. Thus
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(2.20) R, (6; N) =

+1 [ {sm N¢

N cos N¢} 8 0(8) S, (9) .

By (2.9) and (2.18), we have

- m
IR, (6: N)| = 2 ( ) )Cn,,,(o)Dn,,p(e)]

NI
N v+pu=m

X fo (cos ¢ — cos 0)* " 2de.
Taking

@21y @0 =] (':') ,,,”(0)Dm,‘(0)]

v+u=m

(4
X fo (cos ¢ — cos ) %dg,
we complete the proof of the lemma.
For 6 in the interval [0, g], the integral in (2.21) can be estimated by

using the following lemma.
LEMMA 5. For0 = ¢ = 0 =

%<cos¢—cos0<l

2.22 = = -
( ) 02 _ ¢2 2

Proof. This follows immediately from the identity

. (¢+0) . (¢*0)
sin sin
cos¢ —cosf 1 2 2

- 2 ¢+ ¢ — 0
2 2

and the fact that

2
(223) = =1
o

for0 =y =

A

The first inequality in (2.22) gives

0 &~ 1/2
/0 (cos ¢ — cos 8 2d¢ = 2T _[ @ — o2 2y

https://doi.org/10.4153/CJM-1985-053-5 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1985-053-5

988 C.L. FRENZEN AND R. WONG

1 1
Ja=3/2 F(E)F(a + 5)

2a

T T(a + 1)

r()r(e+2)

I'(a + 1)

if @ < 1/2, and the second inequality gives

9
/o (cos ¢ — cos )% V2dp = 27971292

if a > 1/2. Here we have used the definition of the Beta function
[10, p. 37). If @« = 1/2, then trivially the above integral is equal to 4.

Put
1 ifa = 1
2
1 1
(2.24) Ty(a) =& 27772 a> -
Ia + 1)
1 1
r(3)r(e + 3)
2(1—3/2 2 « 2 ) l
e re if a < —.
T I'a + 1) 2

Then we have
0
(2.25) fo (cos ¢ — cos ) 2dp = Fl(a)()z"

for0 <8 = % Define

)
(2.26) Tya) = max 6 > f , (cos & — cos 6)*2de.
(m/2)=0=x
Then we also have

]
(2.27) /0 (cos ¢ — cos 0)* " %de = I‘z(a)Bz"‘

for g = 0 = 7. A combination of (2.21), (2.25) and (2.27) gives

(228) C,(0) = l“*(a)02"[ > (’:)Cm,y(ﬂ)Dm,#(ﬂ)]

vtu=m

for 0 = 6 = 7, where I'*(6) = max{I'|(a), I';(a) }.
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LEMMA 6. Fora > —1/2, m=1,2,...,andk =0,1,...,m — 1, we
have

(2.29) [2(cos ¢ — cos B) [FTe12

i k+a—1/2pm k-1
_ (511;0) D ¢k‘y(0)(02 _ g trramin
v=0

+ (02 _ ¢2)m+a~l/2Ak*m(0’ ¢)]’
where the coefficients Y, (0) are analytic functions for 0 = 6 < m and the

remainder satisfies

m

d _
W[ (02 _ ¢2)m+a 1/2Ak‘m(0’ ¢)]‘

= Mk‘m(e)am(az _ ¢2)a—l/2

(2.30)

for some constant M, ,(0). An explicit expression for M, ,(0) is given in
(2.39).

Here are some of the coefficients:
(231) Yy o0) =1

1

1 1 — @ coté
an>Wﬂw=ZQ+a—5}—————

02

1
k+a—-
1(3 1

AR TERTREY
Wil = =5 lg\F ~g) T § !

2 (1 — 6 cot 0)2

2 - 4 ¢ '
Proof. From [14, p. 140, Eq. (3) ], we have

(2.34) 2(cos ¢ — cos §) =

(2.33) +

sin 6
]

6> = ¢ b+§@—&r%@L

where

l 1 Jv—l/2(0)
I R ()

(2.35) ¢,(0) = 0=6<m

(Equation (2.35) was also used by Szego in the derivation of (1.2).) Thus,
for ¢ near 6, we get
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(2.36) [2(cos ¢ — cos ) [FTa172

in 6 k+a—1/2
— (8 — & k+a-|/2(sm )
( %) W

k+a—1/2

X [1 + > (@ - ¢2)"_'¢V(0)]
v=2

(sin a)k+a—l/2 oo
~\ 9

2 ‘l/k.y(o)(az _ ¢2)/\’+V+a*|/2’
v=0

where {, () can be expressed as a linear combination of products of
¢,(0). The first few are given in (2.31)-(2.33).
Define 4, (0, ¢) as in (2.29), i.e.,
(2.37) (6 = )" *A 00, )
2(cos ¢ — cos g) k+a—1/2 /] k+ta—1/2
= 9 — ¢2

sin 6
m—k—1
~ §)m¢m¢—¢w.

Since the sum in (2.37) is finite, there is no problem with convergence.
Furthermore, it is easily seen that 4, (0, ¢) is a C *-function of ¢ in [0, 8].
(For ¢ near 6, we can argue this by using the infinite convergent series in
(2.36).)

To derive the estimate in (2.30), we note that

( d )I(02 . ¢2)m+a—l/2

d$
I —_—
[)(d))\ m+a—l/2(d)l A mta—1/2
- — )@ - — 6 +
Ago (A do ( ?) do ( ?

/ NT i
2 (- (A)(’" ta - 5)

<m+a—§)...(m+a—l—)\+l)
2 2

X (8 — ¢)m+tx—l/2—)\

X

X

(m+a—l)...(m+a—1—l+}\+l)
2 2

% (0 + ¢)m+a—l/2—/+)\.
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Thus,if m = 1land 0 =/ = m,

d\!
(2.38) '(_) (02 _ ¢2)m+a*]/2
d¢

l
=m+ a — ]/2)1(02 _ ¢2)m+a—l/2[ 1 4 1

0 —¢ 0+ ¢
=m+ a— 1/2)/(02 _ ¢2)m+afl/2fl(20)/.
This implies

’(—d_)m[ (02 _ ¢2)m+a71/2Ak'm(0’ ¢) ]'

de
S (m d)l 2 2m+a7|/2(d)'"7/ ‘
= — )6 — — A, (0,
E(,)(dq) @ — o) % O
= (02 _ ¢2)a—l/2 2 (r;l)(m 4+ a — 1/2)/(02 _ ¢2)m*/(20)/
/=0
d m—1
() s 0]
d¢ k.m( ¢)

The constant M, () should therefore be taken to be

239 M0 = = (’7)(2m + 2a —1)o"!
=0
( d )m*lA o ‘
X — , o).
ogféo dé km(®: @)

This completes the proof of Lemma 6.

3. Proof of the theorem. We are now ready to prove the main result of
this paper. First, we replace ,F, in (2.1) by it series expansion (2.2).
Thus

P*P(cos 0)
PP
2((1+B+])/2I‘(a + ])

r(2)r(a+3)

[2 biO)](6; N) + R, (6; N)]

3.1)

(1 — cos 6) %1 + cos ) @2
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where

(_l)k(a ; B)k(a ; B)k

1 k
k!(a + E)k(l + cos 6)

(32) b6 =

s

0
(33) I,(6;N) = fo (cos ¢ — cos ) T¥V2 cos Nede,
and R,_(0; N) is given in (2.16). Next, we insert (2.29) in (3.3) and

m
obtain

34) 1,(6; N)

sin 0)k+a—'/2["""" o Ji s s olNO)
0 rra * 0 VTra
(%% P

where

(3.5)  YE(0) = 2k+“+"_lI‘(%)I‘(k +r+a+ %)x}zkw(ﬂ)

and

(4
(3.6)  Si(0; N) = f o LO — &2, (8 )] cos Nods,

Y, ,(0) being the coefficient given in (2.29). To the last integral, we
shall apply repeated integration by parts, and show that for k = 0, 1,...,
m — 1,

1

r()r(e+3)
1 2 2 02a+ka,m(0)

3.7 S, (0, N)| ==
( ) | k,m( )| 2 F(a + 1) Nm

where M, _(6) has the same meaning as given in (2.30). To do this, we
need the following two results:

dy -
(3.8) (ﬁ) [ — 6" 20,,0: ) 1ly—o = 0. j 0dd
and

dy -
(3.9) (d_¢) [ = )" 720, ,(0: 9)y—p = O.

The first result follows from (2.29), (2.12) and the identity [8, Eq. 1,
Section 0.432, p. 20]
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n

(3.10) —d—n F(x*) = 2x)"F"(?)
dx

N n(n — l)(zx)n—ZF(n—l)(XZ)
N nn — I)(n — 2)(n — 3)
2!
Ll = D = 9 = 3 = Hn = 5)
3!
X (2x)"TO PTG 4+

(2X )11*4F(n—2)(x2)

with x = ¢ and F(¢2) = (02 - 4)2))\, A being an arbitrary real number. The
second result is a consequence of (2.38). Upon integration by parts m
times, (3.6) becomes

(3.11) S, ,.(6; N)
N {SinN(p}(i)m[ @ — Q"2 (0 &) 1do,
o & m

N cos

the integrated terms all vanishing due to (3.8) and (3.9). Coupling (2.30)
and (3.11), we have

My ,(0) 0 (* .
(3.12) 1S,,(0: N)| = __’;zv"_r:l(_)gm fo @ — S,

The estimate in (3.7) now follows from the definition of the Beta function
(10, p. 37].
Finally, we substitute (3.4) in (3.1), and put

0
(3.13) B,(8) = E bk(fi)(Sln )\Pky()

The result is

(3.14)  P'*P(cos 6)

I'n + a + 1)( . 0)“’( 0)”13( 0 )”2
= ————|sin— cos —
n! 2 2 sin 0

m—1 ( )
2 A,(6) “*’,,+, + E,(6; N)],

where
2l ' 4

O

(3.15) A,0) = ¢'B,(6)
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and

(3.16) E,(6; N)

2l -« N = sin 0
e LS el
r(—)r(a + —) k=0
2 2

N ( 200)a~1/2Rm(0; N)].

sin

k
) Si.(0; N)

Clearly, the functions 4,(f) are analytic for 0 = § < =, and from (2.17),
(2.28) and (3.7) it readily follows that

(3.17) E,(6; N) = O(8Y/N"™),

the O-symbol being independent of 8 for all 6 in [0, # — €], ¢ > 0. This
completes the proof of the theorem.

The first three coefficients in expansion (1.3) are given by Ay(6) = 1,
Il —fcotd o —p

1 [/}
3.18) A0 = |a* - —) - -
(3.18) A(0) (Ot 1 Y 1 tan )

and

(3.19)  A(0)
1\[1 3V(3 3
= (a2 - —)[— (a + —)(-— -1—-- cot0)
4/16 27102 0
1( 2 9)(1_’0C0t0)2] 2 2
+ — R - — J—
s\" g 6 =5
[( 3)( 1) 61— 86cotd
X a+ ~-Jla + =) tan - ———
2 2 2 80
1 0
-5 ((@ — 2% — B tanzi].
4. Proof of corollary 1. Before proceeding, one further result is
required.

LEMMA 7. Put

2(cos ¢ — cos 6) @
6> — qb2 sin 6

(4.1 =1+ o8, ¢).

For0§¢§0§§,wehave
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42) 0<o(b¢) = i(f)2 s

(4.3) —%0 < oy6, ¢) <0

(4.4) —1172- < 0,60, ¢) <0

T d o, ¢)

4.5 —hl< ——5 <0
(4.5) 360 do 6> — ¢°
T & o,
360 do” 6° — ¢
Proof. From
_ 1 2 _ 2 _ 1 _ 4
cos¢>—c050—i(0 ¢°) I(ﬁ’4 )
+ L@ — g -+
o R
we have
cos ¢ — cos - +1
0 T 1 n ,
P El (—=1""'p,
where
o, = (02(n 1) + 02(" 2)¢ + ...+ 02¢2("—2) + ¢2(n*l)).
(2n)!
Thus
2(cos ¢ — cos 8) sin 6 ad n+1
02 _ ¢2 - 0 = g (_1) an’
where
. 6+ T L+ D 4
"@n+ 1) (n + HQ2n + 1)

This together with (4.1) gives

n+l

(4.7) (8. ¢) =

We wish to show that {a,} is a monotonically decreasing sequence of
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non-negative numbers. To demonstrate the non-negativeness, we rewrite
a, in the form

I k)

To@n+ Dn+ 1)
+ 00T + %07 + 0 + .+ (@D
+ 02()1—2)¢2 + .+ ¢2(n*l)) }

{02(n*l) + 02(}1*2)(02 + ¢2)

Itis clear that a, = 0. To prove that a, = a,, |, we write the last equation
as

2 2
a, = (0 — ¢ ) {n02(n~l)
2n + Di(n + 1)

+ (n _ 1)02(ﬂ—2)¢2 + (n _ 2)02(11—3)¢4
+ ot 2055 TD 4 gy

Multiplying the right-hand side by > + ¢ and dividing it by the same
quantity gives

(4.8)

02 _ 4)2
" n + D)n + )@ + o)
X (a6 + (2n — DPPTVGE + L+ 3077 + o™

We now replace n by n + 1 in (4.8) and subtract the resulting expression
from (4.9). Observe that

(49) «

2
02+¢2§202<% and
7 < dn(n +2)2n + 3)/(n+ 1) forn=12,....

The non-negativeness of the differences a, — a, |, n = 2,3, ..., follows
immediately upon comparing the coefficients of 6%, %" Vg? .. .|
6’6>" =V and ¢". Therefore, we have from (4.7)

0
0< O(a, ¢) < - Qay.
sin 6

Since

IIA

2 sin 6 i
'rr b

1 2 2
a = —(6- — and =
I 12( %) p
the desired result (4.2) now follows.
To demonstrate (4.3), we first note that (4.7) gives

0

0s(0. 9) = — ,ZJ. (—1)"B,
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where B, = —da,/d¢. From the equation preceding (4.7), we also have

1
T+ H2n + 1)

) A N 01}

Hence, 8, = 0 for all n = 1. The fact that 8, = B8, ,, n = 1, is proved in
exactly the same manner as before. Since 8, = ¢/6, the results in (4.3) are
now trivial.

The inequalities in (4.4) are verified in a similar fashion. That is, we first
write

B, 262" Vg + ...

0 oo
g, = — —D",,
0¢¢( q")) Sin 0 ngl ( ) Yn
where
B 1
(n + D)(2n + 1)!

+ DRl — DTG+ L+ @2n)2n — 1M,

Y, [202("_” + ...

and then show thaty, = 0and v, = v,+,.
To prove (4.5) and (4.6), we observe that coupling (4.7) and (4.8)
gives

o(0, ¢)
02 _ ¢2

(4.10)

0 < (—'"! - 2An—2),2
= > (n6*" Y + (n — 1) Vg
sinf ,—1 2n + D'(n + 1)

o+ 2072 D 4 g2y

Upon termwise differentiation, we obtain

d 0(0’ 4)) 0 § (_l)n'(“lx

do 0 — ¢*  sin 8

and

4 o8, ¢) RS -
i = -1
20 — o sinf Ez (=1

ne

where A, and ¢, are, respectively, the first and second partial derivatives
(with respect to ¢) of the quantity inside the curly brackets in (4.10). Using
the argument for a,, again, it can be shown that A ,¢, = 0,A, = A, and
€ €,+1 forn = 2, 3,.... This completes the proof of Lemma 7.

=
n =
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To prove Corollary 1, we need the values of MOQ(%T) and Ml,z(g);

see equation (2.39). From (2.37) with k = 0 and m = 2, and from (4.1), we
have

(0F — 6?50, ¢) = [1 + o8, $) 1 V7 — 1

1( 1)1_000[0 ) 2
pE— _____—0 —
A g )

1
- (a - 5)a((), ¢) + %8, $)Ry(0(0, $) )
1 ( 1 )1 — @ cotl 2 2
——la — = )]———(@ — ¢°).
rACREEY - E A
The second equality follows from (2.4). By using (2.34) and the fact that
$(0) = (1 — 6 cot 6)/46°,
it is also true that

(02 - ¢2)2Ao,2(¢, 0)
1 oo
= (a - 5)(02 — ¢ X ¢p,+3(0)(02 — ¢
p=0

+ 6’8, $)Ry(0(0, ) ).
Thus

(@.11) 89,0, ¢)
l oo
- (a - 5) 2 1500 — )
p=0

9, 2
o [7%2 ] Rttt ).

We now digress briefly to discuss the Bessel function

1 2m+v

2
m!T(m + v + 1)

O = 2 (1)

T . . . .
For0 =6 = 2 and » = 0, the terms in the series alternate in sign and are

monotonically decreasing. Hence
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o
IIA
S
A

0=J() = ——i,
(v +1)

Furthermore, it is well-known that

2 .
J,H(0) = \/;;—9 sin 0

DR

and
Zosinb =g
a 0 2
A combination of these results gives
3/2
4.12) 0 = ¢,0) = 7 ogagg.

1 A
2% V!F(V + —)
2

We now restrict 8 to the interval [O, g] and apply (4.12) and (4.2) to

1
(4.11). This, together with (2.5) witha = —a + 2 gives
(4.13) 18956, ¢)| = K 1’+ s IH 3!
. , = a— = —la — =| |la — |,
02 ! 2l 152 2 2
where
3/2 o 1
(4.14) K, = ”2—6 > (f) 1 — 0.00456094.
n=0 F(p + 3+ 5)(,u + 3)!
Upon differentiating (4.11) once, we have by Lemma 7
d
4.15 ’——A 0,
( ) o 020, &)
| b33
=K, |la — = a — - - =
2 17280 2 2
7t l 1 3 5'
+ a— - |la— <] |la— =],
82944 2 2 2
where
o0 2}‘
4.16) K, = 32/—4;- S (3) ad — 0.00025858,
p=1

(n + 3)!1“(” + 3+ %)
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and upon differentiating (4.11) twice, we get

5

2
(4.17)  |—=402(0, ¢)
b
1
(K3+ Kz) a—z‘
( t )’ | 3‘
3 oa — — o — —
24 - 360 4-(360) 2
o= L
o — — o — — oa — —
- (24) 36-48-360 2 2 2
: - 2]e-)) ’
+—4——— a— —||la—=]la—-| |la — =],
24y - 12 2 2 2 2
where
o 7\ -1
(418) Ky = — () He — 1 — 0.00001807.
4\/>#2

(p + 3)!F(,J. +3+ %)

Substituting (4.13), (4.15) and (4.17) in (2.39) yields

o+ a2 -]
a——| +——|a——-| |la — =
2 1152 2 2

|+ fa -2 -3
a — —| + a— —| |la — —

Mo‘z(g) -3+ 2a)2[K]

+ 73 + 201)[1<2

2 17280 2 2
7 l 1‘ 3 5”
=+ a— | |la— - ja— ¢
82944 2 2 2
(4.19) +(f)[(1<3+—1<2) a——’+( T+ T
2 T 2 24 - 360 4 - (360)
)|
X la —=| |a ==
2
77_3 775
(e i) -3 k-
- 12 - (24) 36 - 48 - 360
o =2 e =33
_— - = - = a— -]
METY (24) 2
Similarly, from (2.37) with k = 1 and m = 2, and from (4.1), we

have
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1+ 0@, ¢) "2 =1
= o(f. $)R (a(0, ) ).
The last equality follows again from (2.4). Thus

a9,
(4.20) 4,50, ¢) = 5‘1(_—‘2 \(o(60. $) ).

(6 — ¢1)A, 50, ¢)

from which we can calculate

dA, 50, ¢)/dp and  d*A, 58, ¢)/d¢*.

1
By Lemma 7 and (2.5) witha = —a — 2 we get

1
8120, 9| = i(" +1).

2
1 T 1
R LA ) P P
do 120, 9| = o5 2/ 224y 4
and
L0 = o+ )
_a !
de? Bia 360 2
Goeatall
(24)2 48 - 360 4

Therefore, according to (2.39),

3. (24)

(4.21) M,'z(g)

- 1(3 + 201)2(01 + l) + a3 + 2a)[ (a + l)
2 720 2

=il G gl +3)

1
R

+ —
2- (24)
(G * w50

- s + - -
(24) 48 - 360 4

@~ ill=3l]

+ —_
3- (24)
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Proof of Corollary 1. Take m = 2 in (3.14) and recall (3.18). This gives
the approximation in (1.5) with

| —a
(4.22) o, = 2 9““[1;0(0)30‘2(0, N)

r(2)r(a+ 1)

sin

a—1/2
( 20 ) Ry(0; N)],

sin 6

-+

+

where
1

b#) = 1 and b,(0) = (& — /32)/4(a + 5)(1 + cos 0).

With 6 restricted to [0, %] we have from (3.7)

o(G)rlers) a3
1 12 27 ata_ N2

4.23) |S.5(0, N)| =

)

i = 0, 1, the values of M'?Z(g) being given in (4.19) and (4.21). Further-

more, equation (2.20) gives

1 (4
(4.24) |Ry(6; N)| = —if

&
N2 Jo E{g2,0(¢)ﬁ‘o(¢)} do.

Using Lemma 5 and (2.23), it is easily shown from the equation following

(2.17) that for0 = ¢ = § = %

¢ _
g2 0(d) | = Z(cos ¢ — cos 9)* 12

2
lgh6(d) | = (a + %)%(cos ¢ — cos ())”‘_'/2

and

g7 o(d) | = (a + %)(a + 1)02(cos ¢ — cos 0)"‘_“2.

Thus, from (2.9), it follows that
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02 772 . 3 T
|R2(0; N)| = Ni{%c”(i) + (0‘ + E)Cz‘l(i)

+ (a + —;—)(a + l)CQ‘O(g)}

/]
X fo (cos ¢ — cos ) " 2dg.

The inequality in (2.25) then implies
C
(4.25) |Ry(0; N)| = ;V—go“h, 0=0=

where

2 3 T
(426) C, = Fl(a){T—6C2‘2(7—27) - (a + E)C“(E)

e e D))

I',(a) being given in (2.24). Note that the estimate in (4.25) is sharper than
that given in (2.17) when 6 is small. Coupling (4.23) and (4.25), we obtain
the desired estimate in (1.7) with

(4.27) E, = m[Mm(%) + T;alzl)M‘l(%)]

8la + -
2

+ Cy

a—1/2
V2 max (—i—)
I‘(l)F(a 4 l) 0=0=(n/2) \sin 0
2 2
This completes the proof of the corollary.

In the important special case a = B = 0, the second term inside the
square bracket in (4.27) obviously vanishes. In view of its definition (4.26),
the constant C, in the third term on the right-hand side of (4.27) is also
zero. Thus we have from (4.19)

(4.28) E, = Mo,z(g) = 0.1253....

This gives the result stated in (1.9).
For comparison, let us also compute a bound for the first error term
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O

a—1/2
+ ( 200) R(8; N)];

sin

(429) E\0; N) = 9““[50_,(0; N)

see (3.16). By (3.7) and (2.20), we have

F(l)l‘(a + %)92a+1M011(0),

1
2 T+ 1 N

(4.30) [Sy,(0: N)| =

and
(/]

0

1 d
(4.31) |R(6; N)| = X// Zp{glﬁ(qb)flﬂ(d))}\d‘ﬁ.

Using the same argument as for (4.25), we obtain

b}

(4.32) |R,(8; N)| = %0‘”‘*, 0s6=

[ ]

where

1
wm = ()als) e}

Coupling (4.30) and (4.32) gives

I+a
(4.34) |E\(: N)| = E,
with
@35 E - — 1 u (7—7)
' P + 1) M\

NG

[/} a—1/2
) ] max (_0) .
F(—)F(a N _) 0=6=(w/2) \sin
2 2

If « = 0, then the constant C, in (4.33) is zero, in which case (4.34)
becomes

7\0

Simple calculation shows
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M, (7—’) — 0.0869. ...
2RV}

Now set a« = 8 = 0 and m = 1 in (3.14). The resulting expression together
with (4.36) yields

/] 1/2 1
(4.37) P,(cos ) = ( . 0) JO{(n + 5)0} + o,

sin
where

0 T

(4.38) |o| = 0.1089———, 0 =60 = —;

n+ 1/2 2

compare with [13, p. 242].

5. Proof of corollary 2. We first observe that the error term §°*O(N~"™)
in (1.3) can be replaced by 8* " ™O(N ™) for 8 in the interval [0, 7 — ¢,
€ > 0. This assertion can be proved in the same manner as given in the

1
proof of Corollary 1. Next we choose m > 5(,8 —a)andm = 2 + a. In

view of (3.15), the /-th term under the summation sign in (1.3) is
0’O(N ! ~%). This together with the above refined estimate for the error
term gives the asymptotic approximation in Corollary 1 without the
condition « — B > —4; the remainder o, in (1.5) now, however, satisfies
only the order estimate

(5.1) 6, = PON 79,
instead of the numerical bound given in (1.7).

Proof of Corollary 2. Let 8, be the I-th zero of PL"‘*B)(cos 0). It is well-
known [1, p. 787] that

(52) lim N6, = j.,

H—00

where j,, is the /-th positive zero of the Bessel function J (x). Put

Ja
(53) 6, = 7\7’ + 8,y

and

ja/
5.4 t =",
(5.4) N

Equation (5.2) implies
(5.5) N6, = o(l), asn— oo
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Now we expand A4,(0) at § = ¢. Thus
A(0) = A1) + A0 — 1),
where £ is between 8 and r. From (5.3) and (5.4), we have
(5.6)  A,(8) = A,(1) + OB,
Replacing 8 by 8, in (1.5) yields
0 = JlJay + N8,

1 . «
+ /_V[Al(t) + 00,) 1y 41Uas + N8, ) + No,.
Taylor’s theorem then gives

. . l ”
0 = Joljas) + JeludN8ay + S TimDNS,)

1
7+ A0 + 00 ) a1 Uad) + T i(m)(N, ) }

+ N%,,

where 7, and 7, are between j,, and j,, + N8, Note that the first term
on the right-hand side of (5.7) is zero, and that by a recurrence relation,

Jot1Uap) = —JSolJap)-
Therefore, upon dividing by NJ,(j,,) on both sides of (5.7), we obtain

(58) 0 =28,,+ ON&:) — [A (1) + O(Sa,)]

%) - o)
+ [4,(1) + 0(5,) 10( =)+ ol

Now observe that in view of (5.5), the second term on the right-hand side
is 0(8, ), and that the fourth term is of the same order. Furthermore, by
(5.1), (5.2) and (5.3), the last term 1s 0(t /N3) Hence the main balance in
(5.8) suggests that §, , ~ Al(t)/N

t
(5.9) 8, = O(P).

Inserting (5.9) in (5.8), we have

1 1 1
510) 8, = —A,(t) + 10(—) - t20(——).
( ) a,l N2 l() N4 N3
The final result (1.11) now follows from (5.3) and (5.10).
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For a similar result concerning the zeros of the Legendre function

P, "(cos 0), see [10, p. 469, Ex. 12.5].

Acknowledgement. We would like to thank Professor L. Gatteschi for

informing us of the results in [7] and for several helpful discussions.

1.

2.

10.
11.

12.

13.

14.

REFERENCES

M. Abramowitz and 1. Stegun, Handbook of mathematical functions, N.B.S. Applied
Math. Ser. 55 (Washington, D.C., 1964).

R. Askey, Orthogonal polynomials and special functions, CBMS 21 (SIAM, Philadelphia,
1975).

The collected papers of Gabor Szegs, Vol. 2 (Birkhauser, Cambridge, MA, 1982).

. D. Elliott, Uniform asymptotic expansions of the Jacobi polynomials and an associated

Sfunction, Math. Comp. 25 (1971), 309-314.

. G. Gasper, Formulas of the Dirichlet-Mehler type, fractional calculus and its applications

457 (Springer-Verlag Lecture Notes in Mathematics), 207-215.

. L. Gatteschi, Limitazione degli errori nelle formule asintotiche per le funzioni speciall,

Rend. Semin. Mat. Univ. e Pol., Torino /6 (1956-1957), 83-94.
Una nuova rappresentazione asintotica dei polinomi di Jucobi, Rend. Semin. Mat.
Univ. e Pol., Torino 27 (1967-68), 165-184.

. . S. Gradshteyn and 1. M. Ryzhik, Tables of integrals, series and products (Academic

Press, New York, 1965).

. E. Hahn, Asymprotik bei Jacobi-Polynomen und Jacobi-Funktionen, Math. Zeit. 171

(1980), 201-226.

F. W.J. Olver, Asymptotics and special functions (Academic Press, New York, 1974).

G. Szegd, Uber einige asymptotische Entwicklungen der Legendreschen Funktionen, Proc.
Lond. Math. Soc. (2) 36 (1932), 427-450.

Asymptotische Entwicklungen der Jucobischen Polynome, Schr. der Konig. Gelehr.

Gesell. Naturwiss. K1. 70 (1933), 33-112.

Orthogonal polynomials, Colloquium Publications (American Mathematical
Society, Providence, R.1., 1967).

G. N. Watson, 4 treatise on the theory of Bessel functions (Cambridge University Press,
Cambridge, 1944).

Southern Methodist University,
Duallas, Texas;

University of Manitoba,
Winnipeg, Manitoba

https://doi.org/10.4153/CJM-1985-053-5 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1985-053-5

