
NUMERICAL INTEGRATION OF FUNCTIONS 
OF SEVERAL VARIABLES 

G. W. TYLER 

1. Introduction. Methods of mechanical quadrature of functions of more 
than one variable apparently have received little systematic investigation and 
the few available results are widely scattered in the literature. In this paper a 
systematic approach to this problem is given and a number of formulae are 
derived which may prove to be useful. 

It seems worthwhile to distinguish between two types of situations in which 
numerical integration may be employed advantageously. When the function to 
be integrated is defined analytically, its value at any point may be calculated 
to any desired accuracy and, in such instances, one can use methods of great 
strength (in the sense of high polynomial accuracy) at the cost of computing 
accurately a comparatively small number of values of the function, at points 
which may often be awkwardly located. Gauss's formula for integrating func
tions of one variable is an example of this sort. On the other hand, when the 
function is defined empirically and the values must be measured rather than 
calculated, the accurate location of points at which values are taken may become 
difficult and less meaningful and the observed values themselves may be subject 
to a substantial error of measurement. Circumstances of this sort call for a 
formula which is based on easily located points and which is as unresponsive to 
errors of measurement as can be arranged, even though its strength may fall 
somewhat below the greatest obtainable. Formulae of both kinds are developed 
in this paper. Since the approach employed here has been used in devising 
integration formulae for single integrals [12] it may be helpful to outline briefly 
the development of some of them. 

2. Single integrals. With proper choice of origin and scale, a definite 
integral over any finite range may be written in the form 

(1) / = ( / (*) dx. 
Jo 
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Jt is assumed that / (#) is, or may be replaced by, a polynomial of degree », 

(2) /(*) = t,AiX\ 

With this assumption 

(3) i=tAs-
Let an approximation to / be given by 

m 

(4) h = Y,R«ya (m < n), 

where the R's are constants (weights) to be determined and the ya = f(xa) dire 
calculated or observed values of the function. 

The difference, 

(5) E = h - I, 

will be called the polynomial error. 
Expanding the right side of (5) and equating to zero the coefficients of the 

A's, we are led to the system of equations 

m Ï 

(6) £ Ra xj = T ~ (t = 0, 1, . . . , n). 
«=n 1 -h i-

When the .v values are chosen equally spaced over the interval of integration, 
including the end points, and m = n, the system of equations (6) leads directly 
to the Newton-Cotes integration formula. The values of the Ra determined by 
the equations are the Cotes numbers. 

Clearly the arbitrary assignment of abscissa values always leads to a problem 
of the same type, whose solution depends on a system of linear equations. 

When the x values are not chosen arbitrarily but are selected to satisfy as 
many as possible of the set of equations (6), and perhaps other conditions as 
well, the equations are no longer linear and the solutions are more difficult to 
obtain. Some slight simplification may be accomplished by noticing that if a 
set of values xa (a = 0, 1, . . . , m) is a solution of (6), so also is the set (1 — xa). 
To take advantage of this symmetry, we can write 

(7) / = f F(x) dx = 2 f Q(x) dx, 

where Q(x) is the even part of F(x). Placing 

m 

h = E R~[F(x.) + F(-x.)] 
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and proceeding as before, we obtain the set of equations, analogous to (6), 

m i 

(8) £ i J " * " " = 2 n : T (* = 0,1 n). 

If we determine the Ra and xa so that the first 2m + 2 equations of (8) are 
satisfied, we obtain the Gauss formula, which has the highest possible poly
nomial accuracy. Some indication of the circumstances in which this formula 
might be deemed inappropriate is provided by the opinion of Gauss, who wrote 
that the x values should always be expressed in sixteen decimals to insure no 
error in the first 2m terms of (7). It is doubtful, therefore, that a formula of 
this kind would be useful with experimental data. 

Errors in the experimental determination of F(xa) would usually be expected, 
even if the xa could be located without error. Often it is reasonable to assume 
that these errors are independent and have constant variance. It then follows 
easily that a formula with equal weights is the least responsive to these errors. 
Tchebichef's formulae were constructed to satisfy this condition and in applica
tions, as with the Gauss formulae, it is necessary to determine function values at 
points that must be located with high accuracy. 

3» The integral over a rectangle of a function of two variables. The integral 
to be evaluated will be written 

J a s*b 

F(x, y) dx dy, 
-a *)—b 

and it will be assumed that 

In In 

(10) F(x, y ) = I E 4 „ *' y\ i+j< 2«. 

Let 

(11) / ^ ^ f i J . F ^ j . ) . 
a=l 

Substitution of the polynomial form of F(x, y) in both / and I\ yields the 
relation 

(12) h- I = 4fl6[i4oo(E K* ~ l ) + AioijtR***) + • • • 

/ m a2i b2J \ 
+ Au.,\'LiR*xa"y.» - p i + l ) ( 2 j + l ) ) + ••• 

Equating to zero the coefficients of A {j we are led to the system of equations 
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m a1 bj 

(13) g Ra Xa' ya< = ~{-qriKj+T) ' *'j b o t h e v e n ' 
= 0, otherwise. 

The problem of devising integration formulae thus becomes the problem of 
landing solutions to sets of equations drawn from (13). For example, for m = 4, 
a solution of the first three equations yields the obvious rule, analogous to the 
trapezoidal rule: 

(14) f f F(x,y)dxdy = ab[F(a,b) + F(a, -b) + F(-a,b) + F ( - a , - 6 ) ] . 
•/—a */—6 

This rule is exact when F(x, y) is linear. If F(x, y) is a polynomial of degree 
2 or 3, the error committed is easily calculated to be 

(15) / ! - / = £ ' = labUtoa2 + A02 b2). 

Even if F(x, y) is not of degree 3, the magnitude of the error introduced by 
those terms of degree one higher than that for which a formula is exact may 
occassionally be useful in selecting an appropriate formula. A value of E\ 
defined in this manner, is therefore attached to each integration formula. 

When m — 5, the first ten equations of (13) can be satisfied by the following 
values : 

Rx = ?j, R» — 6> ^3 — is» ^4 — ôf ^5 — a* 

xi — a, x2 = 0, Xa = — a, x4 — 0, xb ~ 0, 

y\ = 0, y2 = b, y3 = 0, y4 = - b, yh = 0. 

The resulting formula will be called the first five-point third degree accuracy 
formula: 

(16) f f F(x, y) dx dy = lab[2F(0, 0) + F(a, 0) + F(-a, 0) + F(0, b) 

+ F(0, -ft)] , 

E! = 4 aZ? (6̂ 4 40 a-4 ~ 5-4 22 a V + 6̂ 4 04 b4). 

Another set of solutions to the same equations, obtained by taking points at 
the centre and corners of the rectangle, yields the second five-point third degree 
accuracy formula: 

(17) r f F(x, y) dx dy = \ ab[&F(0, 0) + F(a, b) + F(a, -b) + F(-a, b) 

+ F(-a, -ft)]. 

£ ' = t. aft (3,4 4o a + 54 S2 aV + 3A Q4 ft4); 
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If an.area of integration can be broken down into a number of rectangles of 
equal dimensions, the first five-point formula can be applied to each rectangle 
and the results added, to furnish a simple rule, similar in nature to Simpson's 
rule. Each interior point will have a weight of 2, either because it is at the centre 
of a rectangle or because it is on the boundaries of two rectangles, while each 
point on the perimeter of the area will have unit weight. Thus, if there are 
p perimeter points and q interior points the integral over the total area is 
given by 

(18) J J X r , , ) dx dy - ! ^ a l area of rectangles [ s ( f u n c t i o n y a l u e s a t 

P + 2q 

perimeter points) + 22(function values at interior points)]. 

This rule gives near equal weighting to the function values which may, in some 
applications, be desirable. 

The second five-point formula, similarly used, leads to another formula of 
the same kind. The details need not be given here. 

A continuation of this approach to obtain formulae of higher polynomial 
accuracy becomes tedious. Some simplicity may be gained by taking advantage 
of symmetry. For a fifth degree function, 

I = 4ab(Aoo + lA2Q a2 + U02 b2 + j44o a + \An aV + UOA bA). 

which may be written as 

(19) / = é ab(A5M + 15N + 9P + 5Q) 

M = Am N = A2oa2 + Ao2b2, P = Ai0a* + Au b\ Q = A*ta*b\ 

We wish to find values of F(x,y), at a number of symmetrically and con
veniently located points, which properly weighted and summed, will be equal 
to the value of the integral. If we choose the centre of the rectangle, (0, 0), the 
centres of the four sides, (0 ± b) and ( ± a, 0), and the four corners, ( ± a, ±6) , 
a direct calculation shows that F(0, 0) = M, the sum of the values at the 
centres of the sides is 4ikf + 2N + 2P and the sum of the values at the four 
corners is 4(ilf +7V + P + Ç). If these three sets, properly weighted, are to 
furnish a value for the integral, we must have identically in Mf N, P , Ç, 

(20) 
45M" + 15N + 9P + 5Ç = aM + 0(4M + 2N+2P) + 4y(M + N + P + Q). 

Hence 
a + 4/3 + 47 = 45, 

2$ + 4 7 = 15, 

2p + 4T = 9, 

4T = 5. 
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Since this set of equations is inconsistent, it is impossible to obtain fifth degree 
accuracy using this set of nine points or, apparently, any other similarly selected 
set of nine points. 

If, in addition to the nine points considered above, we take the four points 
midway from the centre to the midpoints of the sides, a solution is obtained. 
The sum of the function values at these four points is 4ilf + %N + f P which, 
given a weight ô and added to the right side of (20), produces a consistent set 
of equations 

a + 4/3 + 4 7 + 4<5 = 45, 

2£ + 4 7 + §0 = 15, 

20 + 4 7 + id = 9, 

4 7 5. 

The solutions are 

= - 2 8 , 0 = 1 , 7 = 5/4, Ô = 16. 

The positions of the points and the corresponding weights are shown in 
Figure 1, following a scheme used by Bickley [2]. It is easily verified that the 
solutions obtained here satisfy the first twenty-one equations of (13) with 
m = 13. 

FIGURE 1 

Thirteen-Point Fifth Degree Accuracy Formula for Double Integrals 

(21) J° J F(x,y)dxdy = Àaô[- U2F, + éj^ F, + 5^ F,+ &'£?*'] 

where 
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Fi = F(0, 0) 

£ F2 = 7?(0, 6) + F(a, 0) + F(0, -b) + F{-a, 0) 

£ F3 = F(a, b) + F(a, -b) + F(-a, b) + F(-a, -b) 

I f t = F(0, Jo) + F($a, 0) + F(0, - # ) + F{-\a, 0) 

£ ' = ^ab(Awa + Aw b*) + nab(Ai2aV + Aua'b*). 

399 

The approach used in reaching the thirteen-point formula, (21), may be con
tinued without alteration to establish the following twenty-one-point, seventh 
degree accuracy formula. 

FIGURE 2 

Twenty-One-Point Seventh Degree Accuracy Formula for Double Integrals 

(22) J " j F(x,y)dxdy = matt838aF1+m'£Fi + 49'ElF, 

+ 405 £ Ft + 896 S Ft - 1 8 6 3 ^ Fe 

where Fi = F(0, 0) 

£ F2 = F(0, 6) + F(o, 0) + F(0, -b) + F(-a, 0) 

E ^ = F(o, ft) + F(a, -b) + F(-a, -b) + F(-a, b) 

l F 4 = F(0, lb) + F(b, 0) + F(0, -lb) + F(-la, 0) 

£ F8 = F(ia, \b) + F(ia , -hb) + F(-ia, - # ) + F ( - | a , # ) 

D F6 = F(0, lb) + Ffa, 0) + F(0, - & ) + F ( - j a , 0) 
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and 

E' = èÊsabiAsoa* + A0sbB) + §sab(AQ2a
Qb2 + A2(>azbb) + -mabAu^b4. 

If sets of symmetrically located points are used, with all members of a set 
retaining the same weight, some further simplification can be had by introducing 
the function 

H^y) = ï[F(x,y) + F(x, -y) + F{-x,y) + F ( - x , -y)] 

= A00 + A20X2 + Ao2y
2+ . . . +Au,2jx

2iy2j + 

Then 

J *a /*b r» a /» ft 

I F(x, y) dx dy — 4 I I <ï>(x, y) dx dy. 
_a J—b Jo «Jo 

The adoption of </>(x, 3/) leads to the system of equations 

m 

(23) £.R«*a!V' = 
2 Î T 2 ^ 

( 2 i + l ) ( 2 / + l ) ' 

for all i, j for which /• + j < 2w. For m = 1, 

D ! 2 1 2 2 1 7 2 

Thus we have the following four-point, third degree accuracy formula: 

(24) f f F(x9 y) dx dy = ab[F(a/\/3, b/y/Z) + F(a/V3, - 6 / V 3 ) 

+ F ( - a / V 3 , 6/V3) + F ( - a / V 3 , -6 /V3)] 

and 

£ ' = JJo6(il4oa4 + i4o4 64). 

This formula, which has the same polynomial accuracy as the five-point formulae 
developed earlier, has the merit that all function values are weighted equally. 
A formula constructed from this one by adding over a set of elemental rec
tangles would also have this property. 

For m = 2 there is no solution to the first six equations of (23). It is therefore 
impossible to obtain fifth degree accuracy using two sets of four points sym
metrically disposed in this manner. 

If we put m = 3, x% = 0, y2 = 0, we obtain the equations: 
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+ R2 +Rz = 1 , 

+ R2X2 = \a2
y 

+ Riyz = \b2, 

+ R2x2* = |a4, 

1 2 T 2 

= $ab y 

+ Rzy3
A = lb\ 

The following values constitute a solution to this set: 

Rl — 49» R2 — 7? - 2 0 

— A 3 — 49 
2 7 2 

Xl = 9^ 
2 7 5 

X2 = Thd 

2 7r 2 
yi =90 

2 7 , i 
JZ = Î5 0 

This leads to the eight-point formula (26) for fifth degree accuracy. The points 
and weights are shown in the following table: 

3 4 5 6 7 8 

9 9 40 40 40 40 

I a —% a VTg a — V JE a 0 0 

ïft -1& 0 0 V ^ 6 - V 5 f t 

Points 5 and 6 may be interpreted as four points which have become coincident 
in pairs, and hence the function at each of these points would have double the 
weight indicated by Ra in the solution of (25). This interpretation also holds 
for points 7 and 8. 

For (26) (see next page), 

E' = imi-abl- 53(^60a +AMb') + 70(A,2ab2 + Aua*bA)]. 

The above formula, written for integrating over a square of side 2 units was 
given by Burnside in 1908 [3]. He gave no details of its derivation but stated 
that it was constructed by a procedure closely similar to that which gives 
Gauss's two-point third degree accuracy and three-point fifth degree accuracy 
formulae for single integrals. Burnside illustrated the use of his formula by 
approximating the value of the two integrals: 

(25) 

Ri 

Rixi 

Riy? 

Rixi* 

RiXiy2 

Riyi 

a 1 2 

Ra 9 9 

Xa 

V7 
3 a 

V7 
3 f l 

yet 
V7 A 3 0 

V7 h 
- 3 0 
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FIGURE 3 

Eight-Point Fifth degree Accuracy Formula for Double Integral? 

GT © TS\ 

© © 

£>_ 
© 

_©J 
(26) ( ( F(x,y)dxdy 

'= £û&[9£ ^(± l a . ± I») + 4 ° E ^(dr V T U , 0) + 40E F(0, =fc VTB&)] 

where it is understood the summations extend over all distinct combinations 
of signs. 

The exact values of the integrals (i) and (ii) are 

(i) M l - 1/V3), (ii) T(1 - 1/V2), 

which, reduced to 4-figure decimals, are 

(i) 0.6639, (ii) 0.9202. 

Burnside gives the values of these integrals, as calculated from the formula 
(26) as: 

(i) 0.6641, (ii) 0.9262. 

He points out that in the second integral the conditions are unfavorable for 
applying the approximation formula since both first partial derivatives of the 
radical in this integral increase without limit as the point x = l,y = 1, is 
approached. 

The integrals (i) and (ii) were used also by Aitken and Frewin [1] to obtain 
a rough numerical check on some of the formulae for double integrals which 
they developed. 

If we return to (23) and put m = 4, 

a hf a h* x4 = 3?s 0, 
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the first ten equations yield the solutions: 

Xl yi V 1 1 4 - 3 V 5 8 3 n o o » f F F 178981 + 2769V583 
a ~ b ~ ~ 287 " ° - 3 8 0 5 5 5 ; *» - ~ 472230 

= 0.520593; 

178981 - 2769V583 ^ = ^=VOM_h3V583 = 0 8 0 5 9 8 0 ; 
a o £61 

xz Vi , / 6 

rrr7 
= 0.925820; Rt = i?4 = 

472230 

49 
405 

= 0.237432; 

= 0.120988. 

This leads to the twelve-point seventh degree accuracy formula (27). 

FIGURE 4 

Twelve-Point Seventh Degree Accuracy Formula for Double Integrals 

(27) f f F(x,y)dxdy = ab[Ri'£F(±x1,±yi)+Rs£lF(±x,,±yt) 

+ 2 i ? 3 Z F( ± *8, 0) + 2i?4]T F(0, ± y4)]. 

The remainder error is: 

E' = o 6 [ - 0.013184(^l8o a8 + ilos*8) + 0.020441 (46 2 a V + i42«.aV) 

- 0.010035 i4 44 a V ] . 

For the value of the integrals which Burnside used as a rough check for his 
formula, the above twelve-point formula gives (i) 0.6639 and (ii) 0.9161. The 
approximations are seen to be better than the approximations for these integrals 
from Burnside's formula, though the approximation for (ii) is still in error by 
4 units in the third significant figure. 
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4. Relative merits of the eight- and thirteen-point formulae and the twelve-
and twenty-one-point formulae. If F(x, y) is of the fifth degree, there are 
twenty-one coefficients (Aifj). This means that there are twenty-one disposable 
constants, which can be used, except in special cases which we shall not discusss 
here, to make F(x, y) pass through twenty-one points of, or satisfy a variety 
of other conditions with respect to, an experimentally obtained function. In 
statistical terms, this function has twenty-one degrees of freedom. It is evident 
then that the eight-point or the thirteen-point formula, with its respective 
number of measurements, in so far as the integration is concerned will dispose 
of these twenty-one degrees of freedom without error. In the problem of estima
ting the value of the double integral of a function taken over a single rectangle, 
the eight-point formula is 13/8 as efficient as the thirteen-point formula in 
controlling the polynomial error. If, however, we consider applying these 
formulae to a large number of equal-sized elemental rectangles, we see that this 
advantage of the eight-point formula is decreased, though apparently for all 
shapes of areas it will exist, at least to a small extent. The advantage of the 
eight-point formula decreases, of course, because the points located on the 
perimeter of the elemental rectangles may be coincident for two, three, or four 
of these rectangles. A situation favourable to the thirteen-point formula in 
this respect, occurs in the problem of estimating the integral over a rectangle, 
which, to increase the accuracy, has been subdivided into n2 smaller rectangles 
similar to the original. The eight-point formula would require Sn2 function 
evaluations, compared with Sn2 + 4n + 1 evaluations for the thirteen-point 
formula. It follows that for n = 5 an increase of about 10 per cent in the number 
of function value determinations would be required to apply the thirteen-point 
formula, but for n > 50, the corresponding increase would be less than 1 per 
cent. 

In addition to the matter discussed in the last paragraph, it is evident that 
application of the eight-point formula would result in weights (Ra) for each 
point which would be more nearly equal than the weights that would result 
from applying the thirteen-point formula. On the other hand, the location of 
the thirteen points could be described more simply and perhaps in some prob
lems actually located with less error than will be the case with the eight points. 

A very similar situation to that just discussed exists in regard to using the 
twelve- or twenty-one-point formulae. The twelve-point formula which disposes 
of the effects of thirty-six coefficients is highly efficient in controlling the poly
nomial error when applied to a single rectangle. One can readily envisage 
conditions under which it would seem advisable in the same problem to use a 
combination of different-sized rectangles and formulae of different degree 
accuracy. 

5. Triple integrals over rectangular regions. Formulae for triple integrals 
can be developed by a natural extension of the methods used in the previous 
section. Let 
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(28) I I F(xh X2, Xz) dxu dx2, dxz 
-ai J—at «/—as 

Continuing as we did for double integrals we obtain the system of equations 

m i j k 

(29) X Ra xj xj xza = 7T , \\?*+\\<k + x< , for i, j , k all even, 

= 0, for i, or j , or k odd. 

Grouping the points in sets of 8, one in each octant, we obtain a simpler system 
than (29). One or both of these systems can, perhaps be employed advantag
eously in deriving formulae for higher degree accuracy, or formulae for other 
special purposes. 

If we assume F(xi, x2, xz) is a third degree polynomial and integrate (28) 
directly we obtain : 

(30) 1 = 2 aia,2(i3[AQQQ + s (A 200 #1 + A 020 #2 + A 002 #3 )]• 

By considering the values of F(#if x2, #3) at the centre of each of the faces of 
the parallelepiped as shown in Figure 5, we find that the volume of the integra
tion space multiplied by the mean of these six values is identical with (30). 
Hence we have the following six-point formula for third degree accuracy: 

FIGURE 5 

Six-Point Third Degree Accuracy Formula for Triple Integrals 

I I F(xu X2, xz) dxi dx2 dxz 
-ax v - a , «/— a3 

= I ax a2 a8[ Z H ± ai, 0, 0) + £ F(0, ± a,, 0) + £ F(0, 0, ± a3)], 

£ ' = Â &1&2 «3 [6(^400 #1 + -4 040 #2 + ^ 0 0 4 ^ 3 ) 

— 5(^220 &1 #2 + ^ 4 2 0 2 ^ 1 ^ 3 + -<4 022 #2 #3 )]• 
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in a similar maimer, by considering the value of the function at the corners 
and centre of the parallelepiped, we obtain the following five-point formula for 
near third degree accuracy: 

F(xi, xt, x») tf.%-i dxt dx:t = £ o, a2 a3 [8F(0,0,0) 

+ F(aha2Az) + F ( - a i , a 2 , - a 3 ) + /^(ai,—a2,~o3) + F(—ai,-a2 ,a3)] . 

Using appropriate i?'s and coordinates as indicated by (31), it is found that 
the first twenty equations of (29) for m = 6 are satisfied. Using the Rs and 
coordinates as shown by (32), we find that nineteen of the first twenty equations 
of (29) for m = 5 are satisfied. The only term less than fourth degree which 
contributes an error when using (32) is the x\X2X$ term. If the coefficient 
A m of this term is available, then subtracting | ^ 4 m a i 2 a2

2 a3
2 from (32) will 

eliminate this error and enable us to make a full third degree precision estimate 
from these five points. 

We can obtain a nine-point third degree accuracy formula by considering 
the centre and all eight vertices of the parallelepiped as shown in Figure 6. 
This formula is written as (33) and while it does not control the polynomial 
error as efficiently as either of the two preceding formulae, it gives a different 
coverage of the integration space and in certain problems it can be employed 
advantageously. 

FIGURE 6 

Nine-Point Third Degree Accuracy Formula for Triple integrals 

(33) f " 1 I F(xi, xt, x3) dx\ dx2 dx* 

= fax a2 a« [ 16F(0,-0,0) + E F( db m, ± at, db a 3 ) ] , 

E' = ^aia2az [SÇA^ai* + A^a^ + 40o4a3
4) 

+ 5(i422o ai2a2
2 + ^202 a i W + A022 a2

2a3
2)]-
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If we seek greater accuracy and consider the twenty-one points which as 
shown in Figure 7 are located at 

(I) the centre of the parallelepiped, 
(ii) the six midpoints of the segments joining the centre of the parallelepiped 

to the centre of each face, 
(iii) the six centres of the faces, 
(iv) the eight vertices, 

we obtain formula (34) which has fifth degree accuracy. The details of the 
derivation will be omitted but proceeding as we did in developing the thirteen-
point.formula (21) we can derive (34) as the result of solving only four linear 
equations.. 

FIGURE 7 

Twenty-One-Point Fifth Degree Accuracy Formula for Triple Integrals 

/%ai na* /*a* 

(34) F(xu x2, xi) dxy dx2 dx, 

= è ai a, a, [ - 496 F\ + 128 £ F2 + 8 £ F, + o ^ F 4 ] 

where 
Ft = ^(0 ,0 ,0) , 

22 F2 = sum of values of the function at the 6 points located midway 
from the centre of the parallelepiped to the six faces, 

S Fz = sum of values of the function at the 6 centres of the faces, 
^ i ? 4 = sum of values of the function at the 8 vertices. 

A feature which limits the usefulness of this formula in applications where 
the measurement error is heavy is the large negative weight of F\. This can be 
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improved somewhat by adjusting the position of the six points represented by 
£ F2, but the negative weighting cannot be eliminated in this way and it is 
doubtful if a more useful formula will result from such an adjustment. The 
general ternary quintic has 56 terms each of which might contribute an error in 
estimating the value of the triple integral and thus formula (34), which utilizes 
only twenty-one points, has high efficiency for controlling the polynomial 
error. 

It is clear that rules can be developed, based on any one of the last four for
mulae, for estimating the triple integral of a function over a domain which has 
been subdivided into elemental parallelepipeds. In view of the equal weighting 
for the points and the general simplicity of (31), it appears that such a rule 
based on this formula would possess the greatest practical merits. 

Sadowsky [15] developed the following 42-point formula: 

Li S-i t£1
/i(*,3',*) = ^ [ 9 1 2 > 6 ~ 40l>i2+ 16l>24J, 

where ]£ /x6 denotes the sum of the six values of /x(#> yf z) determined at the 
centres of the six faces of the cube, 

X M12 denotes the sum of the values of y(x, y, z) at midpoints of the 
twelve edges of the cube, 

£ /x24 denotes the sum of the twenty-four values of n(x, y, z) at the four 
points on the diagonals of each face and at a distance of §V5 from the centre 
of the face. 

This formula has fifth degree accuracy and the points are all located on the 
surface of the cube. Sadowsky concludes that 42 is the smallest number of 
points that can be used to achieve this accuracy under the restraint that the 
points must lie on the surface. He also points out that the sixth degree function 
F(x, y, z) = (x2 — l)(y2 — l)(s2 — 1) vanishes at all points on the surface of 
the cube and hence it is impossible in general to attain as high as sixth degree 
accuracy under the above restraint. 

6. Generalization for first degree and third degree accuracy. The possibi
lities of writing formulae with a given degree accuracy for any number of vari
ables have not been explored extensively, but it is evident that some of the 
formulae of the preceding sections are special cases of more general formulae 
that can be written. Let us consider: 

(35) / = I . . . I F(xi, . . . , # » ) dxi . . . dxn 

where F{x\, . . . , xn) can be expressed in series form by 

N N 

(36) F(xh . . . , # » ) = XI • • • X) Aat...anxiai . . . xn
a,i 

https://doi.org/10.4153/CJM-1953-044-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1953-044-1


NUMERICAL INTEGRATION WITH SEVERAL VARIABLES 409 

for all ai for which 

Ê «< < N> 
t=i 

If F(xi, . . . , xn) is linear, all the coefficients, except the first (the constant), 
will be neutralized in the successive integrations and we have immediately 
the following formula for first degree accuracy : 

(37) J = 2 n f l a ^ ( 0 , 0 , . . . , 0 ) . 

In terms of «-dimensional geometry, the almost trivial result (37) simply 
asserts that the integral of any linear function taken over a rectangular domain 
is the product of the "volume" of the integration domain and the value of the 
function at the centre of this domain. 

If we assume F(xi, . . . , xn) is a third degree polynomial, then by direct 
integration of (35) we obtain 

n 

(38) / ' = 2n]j[ at W00...0 + 5 C42o...oai2 + Ao2...oa2
2 + . . . + i4oo...2 0 l -

It is evident that the expression in brackets in (38) is a weighted average 
of the value of the function at the centre of the integration space and at the 
"centres of the faces' ' of this space. Equation (39) gives the weighting which 
for all positive values of n yields (38) and is therefore a 2n + 1 point formula 
with third degree accuracy for integrating over a rectangular w-space. 

(39) / = | " n at [(6 - 2n)F(0, 0, . . . , 0) + F(al9 0, . . . , 0) 
o <=i 

+ F(-ah 0, . . . , 0) + F(0, a2> . . . 0) + . . . + F(0, 0, . . . , ~an)]. 

7. Orthogonal polynomial methods in evaluating multiple integrals. The 
methods of orthogonal polynomials are useful in estimating both the observa
tional error and the integral of functions of two or more variables. The poly
nomial 

Z =f(x,y) = f f fctfxY, a + 0 < N 

can be rearranged and written as 

(40) Z = £ £ Bafi £/(*) &'00, a + 0 < N 

where & (x) and £/ (y) are orthogonal polynomials of degree a and 0 in x and y 
respectively. In problems where the statistical error is relatively great, a realistic 
and effective approach is provided by fitting (40) as a regression surface to the 
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experimental or computed values, zip Jf (40) is fitted by least-squares to a set 
of values, ztj, the coefficient Bpq is given by 

(41) 5 M = -*—-* . 

The reduction in residual sum of squares attributable to Bpq is the product of 
Bpq and the numerator of this quantity as given by (41). 

The arithmetic necessary for these calculations can be greatly reduced by 
using tabulated values of the orthogonal polynomials provided the observations 
are made at equally spaced x and y values. Moreover, the value of the double-
in tegral over any rectangle can be estimated by easy calculations using tabulated 
values for integrals of the orthogonal polynomials. The network of equally-
spaced observation points can either include the boundary of the integration 
rectangle or correspond to points at the centres of elemental rectangles within 
the integration rectangle. 

The details of all these calculations along with an example are given by 
DcLury [4]. 

8, Double integrals over curvilinear bounded areas. In problems requiring 
integration over an irregularly bounded area, one can see possibilities of obtain
ing a more accurate and efficient approximation by the use of formulae which 
involve variable limits for the integrals. Though it is evident that the com
plexities increase rapidly as we allow the bounding surface and cylinder greater 
freedom, the following two formulae can be developed quite simply. 

Let 

J a /»6(1—£a /a9) 

F(x, y) dx dy. 
-a Jo 

Geometrically, I represents the volume under the surface F(xy y) and bounded 
by the parabolic cylinder y — fe(l — x2/a2) and the xy and x F(x,.y) planes. 
If we select the five points shown in Figure 8 and proceed in a manner closely 
analogous to the procedure for developing the thirteen-point rectangle formula 
(21), we find that we can achieve second degree accuracy for F(x, y) in terms 
of these points. 

Seeking greater freedom for F(x,y)f we can gain simplicity by considering 
the doubly symmetrical integral: 

na s*b(l—z* la'1') 

(44) F{x,y)dxdy. 
J-a J-b(l-x* la*) 

Taking advantage of the symmetrical location of the points we can group the 
thirteen points shown in Figure 9 into six groups and derive, as the result of 
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solving a set of six (we now see it could have been done with five) linear equations 
for the weights, the thirteen-point parabolic formula (45), which has fifth 
degree accuracy. 

FIGURE 8 

Five-Point Second Degree Accuracy Formula for Double Integrals over-
Parabolic Regions 

,a pb(\-x* la*) 
(43) F(x, y ) dx dy = 2T0 ab [ 4 F ( 0 , 0 ) + 4 F ( 0 , b) 

J-a */0 

+ 7F(-a, 0) + 7F(a, 0) + 48F(0, *&)], 

E' = - £iob (6Ana*b + 17A0*b*). 
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FIGURE 9 

Thirteen-Point Fifth Degree Accuracy Formula for Double Integrals over 
Parabolic Regions 

r»a /»&(!—za /aa) 

(45) F(x, y) dx dy = lab ^m[M4F(0, 0) + 248F(0, ± b) 
J—a */-&(l-:r'-»/aa) 
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£ ' = - fai [75 4̂ 60 a6 + gfc (-442 a V + -4 24 a V ) +m^Ao9b
t]. 

Attractive features of formula (45) are the simple position of the points and 
the near equality of weighting for all these points. 

13. B. P. Moors, Étude sur les formules (spécialement de Gauss) servant à calculer des valeurs 
approximative d'une intégrale définie, Verh. Akad. Wet. Amsterdam, 11.6 (1913). 

14. A. L. O'Toole, On the degree of approximation of certain quadrature formulas, Ann. Math. 
Stat., 4 (1933). 

15. Michael Sadowsky, A formula for approximate computation of a triple integral, Amer. 
Math. Monthly, 47 (1940). 

16. Gabor Szego, Orthogonal polynomials (New York, Amer. Math. Soc. Colloquium Publica
tion, vol. 23, 1939). 

17. M. P. Tchebichef, Sur les quadratures, J . Math, pures appl., 19 (1874). 
18. E. T. Whittaker and G. Robinson, The calculus of observations (London, 1937). 
19. E. T. Whittaker and G. N. Watson, Modem analysis (Cambridge, 1946). 

United States Air Force 
Washington 25, D.C. 

https://doi.org/10.4153/CJM-1953-044-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1953-044-1

