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Correspondence
Dear Editor,

Diagonal Problem Conjecture
Is it possible to prove that for integer values  and , the

following expression involving the Factorial and Gamma functions, viz.
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is identically zero?

For initial values of  ( ) it is a straightforward but
increasingly tedious exercise to show that the expression vanishes for
arbitrary -values, but it would be nice to see a general proof of the
conjecture.  For other randomly specified input values of  and , it is also a
straightforward matter to undertake a validation exercise using a spreadsheet
to appreciate that the expression does appear to vanish, at least within the
limits of accuracy associated with the evaluation of spreadsheet functions.

m m = 0,  1,  2

n
m n

The above conjecture arose out of work carried out by the author many
years ago, associated with the problem of determining the radiation pattern
due to an electric field distribution that varied cosinusoidally across a
circular aperture.  It is also of relevance to the development of coefficients
required in a Fourier-Bessel series expansion for the cosine function.  The
work involved matrix multiplication that resulted in a product matrix with
various alternate diagonal terms vanishing, specifically those in cells where
the  row intersected the  column – hence the description
“Diagonal Problem”.  In the event, only the above initial values for  were
required by the author because of the rapid decay of other, associated
multiplicative terms.
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Dear Editor,

Recently, while surfing the web, I came across the website [1] and
became intrigued by the following problem, number 425, on page 161:

There was a diagram consisting of a pentagon labelled
together with the five diagonals, and the problem was “A man started in a
car from the town , and wished to make a complete tour of these roads,
going along every one of them once, and once only. How many different
routes are there from which he can select? It is puzzling unless you can
devise some ingenious method. Every route must end at the town , from
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which you start, and you must go straight from town to town – never turning
off at crossroads.”

The answer on page 369 simply said: “The number of different routes is
264. It is quite a difficult puzzle, and consideration of space does not admit
of my showing the best method of making the count.”

This sounded like a challenge. Since the graph is a complete graph on
five vertices I decided to start by counting all the paths whose first visits to
each town occur in the order . Any of the 23 non-trivial permutations
of , ,  and  should then give a different valid path. Now the only
possible ways to start are , ,  and . In each
case, on removal of the used arcs and untangling the remainder to remove
crossings it is easy to list and count the possible continuations, getting 6, 4,
6 and 6, respectively. This gives a total of 22, and multiplying by 24 gives
528. I have no idea why Dudeney got his answer. The number of different
Eulerian cycles is indeed 264, but each should be counted twice, since it
passes through A on two occasions. It is also interesting that (the late)
Martin Gardner, although he corrected many of the errors in the original, has
missed this one.
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It was certainly a lot easier than the proof of Fermat's Last Theorem!
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Feedback
On 105.28: Peter Giblin writes: In his interesting Note Clive Johnson

establishes conditions for a sequence of the form ,

 where  and  is a given real initial term, to be
periodic with a given period . (Traditionally if  then  is
declared to be  and the next term  is . That is the real line is
‘compactified with a single point at infinity’.) In what follows I shall assume
the sequence is real, that is , , ,  and  are real numbers, but this is not
strictly necessary. Summarising his statements:

xm + 1 =
axm + b
cxm + d

m = 0,  1,  2, … , ad ≠ bc x0
n cxm + d = 0 xm + 1

∞ xm + 2 a / c

a b c d x0

The above sequence has period , that is  for all (real)
choices of initial term  and this does not hold for smaller values of

, if, and only if, the matrix  has the property that  is

a scalar matrix (the identity matrix multiplied by a real number), and
this is not true for any smaller value of . Furthermore this holds if,

n > 1 xn = x0
x0
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