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A rigidity theorem for Lagrangian deformations

Mauricio D. Garay

Abstract

We consider deformations of singular Lagrangian varieties in symplectic manifolds.
We prove that a Lagrangian deformation of a Lagrangian complete intersection is
analytically rigid provided that this is the case infinitesimally. This result is given as
a consequence of the coherence of the direct image sheaves of relative infinitesimal
Lagrangian deformations.

Introduction

We investigate local deformations of singular Lagrangian complete intersections in a symplectic
manifold. These Lagrange varieties appear in microlocal analysis as characteristic varieties of quan-
tum integrable systems (see, e.g., [CP94, CP99, DS99]). Deformations of the ideal generated by
micro-differential equations induce deformations of the corresponding Lagrangian varieties and, if
we regard as equivalent micro-differential ideals which are conjugated by a Fourier integral oper-
ator, then equivalent Lagrangian varieties are Lagrangian varieties which are isomorphic up to a
symplectic change of coordinates.

Following previous investigations of Pham (see, e.g., [Pha00]), Colin de Verdière observed that
in the semi-classical limit, the map from the versal deformation space of the micro-differential
ideal to that of its characteristic variety is an isomorphism [Col03] (see also [Gar05b]). He used
this correspondence to prove a formal microlocal versal deformation theorem for one-dimensional
microdifferential equations. In the case when the characteristic variety is a monomial deformation
of a quasi-homogeneous Lagrangian curve singularity, Colin de Verdière proved that the equivalence
could be obtained by convergent series. Then, he posed the problem of the existence of a Lagrangian
versal deformation for general Lagrangian curve germs. In [Gar04], we showed that this result was
a consequence of a slight modification of Brieskorn’s coherence theorem [Bri70], similar results were
obtained in [Lan95, KL93].

In this paper, we investigate the higher-dimensional problem. We will use the case of plane
curves as a guiding example. Our main result is that infinitesimally Lagrangian versal deformations
are rigid, i.e., such a Lagrangian deformation admits only trivial deformations (given by a change
of coordinates which preserves the symplectic form). This result is weaker than the statement
‘infinitesimal Lagrangian versality’ implies versality. Nevertheless, it is very likely that a more
refined analysis in the spirit of [Pou74] actually leads to this result. Moreover, our result is sufficient
to prove a Mather type result for stable integrable systems [Gar05a].

As a simple application of the rigidity theorem, we consider the Lagrangian variety germ (L, 0)
given by the equations piqi = 0, i = 1, . . . , n. In that case, the rigidity theorem implies that the
n-parameter deformation piqi = εi is rigid. That infinitesimal rigidity implies rigidity in this example
was stated in [NP91] without proof.
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A rigidity theorem for Lagrangian deformations

Our strategy can be summarized as follows. If the deformation module of some deformation
theory is of finite type and if it is compatible with base changes then infinitesimal versal deformations
are rigid. If, moreover the sum of deformations is defined then infinitesimally versal deformation are
indeed versal. This paper is only a concrete illustration of these facts; it is organized as follows.

We start the first section by adapting to the relative case the deformation theory considered by
Sevenheck and van Straten for Lagrangian varieties [SvS03, Sev03]. The resulting Lagrangian versal
deformation space was, in fact, already described by Du’c Nguyen and Pham in [NP91]. Then we
state the main algebraic result namely the finiteness of the deformation module. We postpone
the proof of this statement to § 4 since this is only a variant of the proof given by Sevenheck
and van Straten in the absolute case [SvS03]. This result was used in our joint paper [GS03] with
van Straten.

In § 2, we state the rigidity theorem. We consider only a naive viewpoint of versality namely
versality over a smooth base. In § 3, the proof of the rigidity theorem is given. In § 4, we state and
prove the coherence of the direct image sheaves of the relative Lagrange complex.

The results of this paper can easily be adapted for real analytic Lagrangian varieties. The formal
aspect of the theory of Lagrangian deformations is treated in Sevenheck’s thesis [Sev03]. Deforma-
tions of compact complex Lagrangian submanifolds of Kähler manifolds were considered in [Voi92].
An earlier version of this paper was pre-published in [Gar02].

1. Lagrangian deformations

1.1 Deformations of real compact Lagrangian manifolds

Let us consider the vector space R
2n = {(x, y)} together with the symplectic structure

ω =
n∑

i=1

dxi ∧ dyi.

Recall that a Lagrangian manifold in R
2n is an n-dimensional submanifold of R

2n on which the
symplectic form ω vanishes.

To understand the construction of the Lagrange complex, it is useful to investigate the deforma-
tions of a smooth compact Lagrangian submanifold L ⊂ R

2n. For such a manifold, the Darboux–
Weinstein theorem asserts that there exists a symplectomorphism

ϕ : R
2n −→ T ∗L

which maps a tubular neighbourhood of L ⊂ R
2n to a tubular neighbourhood of the zero section in

the cotangent bundle T ∗L to L (see [Wei73]).

Via the map ϕ, a small one parameter deformation (Lt) of L is mapped to the family of graphs
of a one parameter family of maps

αt : L −→ T ∗L,

that is, to a family of differential one forms.

It is readily verified that Lt is Lagrangian if the one-form αt is closed and that Lt is Hamiltonian
isotopic to L0 = L if αt is exact.

Consequently, the space of C∞-small deformations of L over some base Λ modulo Hamiltonian
isotopies is parameterized by the maps from Λ to the first de Rham cohomology group H1(L,R) of
L sending 0 ∈ Λ to 0 ∈ H1(L,R).
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1.2 The relative Lagrange complex
We consider now the complex holomorphic situation, that is, a complex manifold M of dimension
2n together with a holomorphic symplectic two-form ω ∈ Ω2

M (M).
The Poisson bracket {f, g} of two holomorphic functions f, g ∈ OM (U) is defined by the formula

{f, g}ωn = df ∧ dg ∧ ωn−1.

Recall that a Lagrangian submanifold of M is an n-dimensional holomorphic manifold on which the
symplectic form vanishes. By Lagrangian variety L ⊂M , we mean a reduced complex space of pure
dimension n defined by an ideal sheaf IL which is closed under the Poisson bracket. This means
that

{f, g} ∈ IL(U) whenever f, g ∈ IL(U)

for any open subset U ⊂M . Over the smooth locus of L, it is readily seen that both definitions agree.
We consider now the situation with parameters. Let Λ be a complex manifold (the parameter

space) with a marked point, denoted by 0, on it. The Poisson bracket on M lifts to an OΛ-linear
Poisson bracket on Λ ×M . We shall say that a variety

L ⊂ (Λ ×M)

is a Lagrange variety if its projects one-to-one to a Lagrange variety of M . Let Z ⊂ (Λ ×M) be a
reduced complex subspace with ideal sheaf I. The sequence

Z
i ��

ϕ

��
Λ ×M

p �� Λ

where i is the inclusion and p is the projection, is called a Lagrangian deformation of ϕ−1(0) if
ϕ = p ◦ i is a flat deformation and if the fibres of ϕ are reduced Lagrangian varieties.

For brevity, we will simply write ϕ : Z −→ Λ for a given Lagrangian deformation.
For a given f = f1 ∧ · · · ∧ fk ∈ ∧k I/I2, we denote by f j ∈ ∧k−1 I/I2 the element

f j = (−1)jf1 ∧ · · · ∧ f̂j ∧ · · · ∧ fk.

The element (f i)j ∈ ∧k−2 I/I2 is denoted by f i,j.

Definition. The relative Lagrange complex, denoted (C•
Z/Λ, δ), of the Lagrangian deformation

ϕ : Z −→ Λ

is the complex of sheaves on Z defined by

Ck
Z/Λ = HomOZ

( k∧
I/I2,OZ

)

and the kth differential δ : Ck
Z/Λ −→ Ck+1

Z/Λ is given by

δ[ϕ](f) =
∑

1�i�n

{fi, ϕ(f i)} −
∑

1�i<j�n

ϕ({fi, fj} ∧ f i,j).

Analogous definitions can be given for germs of Lagrangian deformations.

Notation. If L is a Lagrange variety then the Lagrange complex of L, denoted by C•
L (which is

defined in [SvS03]) is the relative Lagrange complex of the constant deformation ϕ : L −→ {0}
(here Z = L, Λ = {0}).
Remark. The differentials of the complex C•

Z/Λ are ϕ−1OΛ-linear; therefore its cohomology spaces
are ϕ−1OΛ-modules.
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A rigidity theorem for Lagrangian deformations

Example 1. Denote by Xf the Hamilton vector field of a function f ∈ OZ . Assume that the fibres
of ϕ are smooth. Then the evaluation map

Ω1
Z −→ C1

Z/Λ, α �→ [f �→ α.Xf ]

induces an isomorphism between the relative Lagrange complex C•
Z/Λ and the relative de Rham

complex Ω•
Z/Λ.

Example 2. Consider a map germ ϕ : (C2, 0) −→ (C, 0) with an isolated critical point at 0. Then
the stalk at the origin of the Lagrange complex has only two terms both isomorphic to OC2,0 and
the differential is given by h �→ {h, ϕ}. Therefore, the map OC2,0 −→ Ω2

C2,0, m �→ mω maps the
module H1(C•

Z/Λ,0) to its Brieskorn lattice Ω2
C2,0/dϕ ∧ dOC2,0. (Here and in the following, given a

sheaf F we denote by F0 its fibre at 0.)

Example 3. Take n = 2 and assume that the ideal of (L, 0) is generated by two commuting function
germs f1, f2. Then the complex has three terms respectively isomorphic to OL,0, O2

L,0, OL,0. The
differentials are respectively given by δh = ({h, f1}, {h, f2}) and δ(m1,m2) = {m1, f2} + {f1,m2}.

1.3 Equivalence of Lagrangian deformations

Definition. A Lagrangian deformation germ ϕ′ : (Z ′, 0) −→ (Λ′, 0) is called L-induced (respec-
tively, L-equivalent) from (respectively, to) ϕ : (Z, 0) −→ (Λ, 0) if there exists a commutative
diagram

(Z ′, 0) i′ ��

��

(Λ′ ×M ′, 0)

g

��

ϕ′
�� (Λ′, 0)

��
(Z, 0) i �� (Λ ×M, 0)

ϕ �� (Λ, 0)

where i′, i denote the inclusions and g is a Poisson mapping germ (respectively, a biholomorphic
Poisson mapping germ).

Definition. A Lagrangian deformation germ ϕ : (Z, 0) −→ (Λ, 0) is called rigid if any deformation
germ ϕ′ : (Z ′, 0) −→ (Λ × C, 0) such that the restriction of ϕ′ above Λ × {0} equals ϕ, is induced
from ϕ.

A deformation germ

ϕ : (Z, 0) −→ (Λ, 0),

of a Lagrangian variety germ (L, 0) is called L-versal if any deformation of (L, 0) over any smooth
basis is induced from ϕ.

It is readily verified that the first cohomology space of the complex C•
L,0 is equal to the C-vector

space of first-order Lagrangian deformations of (L, 0) modulo infinitesimally trivial deformations,
where the coordinate changes have to be symplectic.

The ideal of Z at the origin is generated by holomorphic function germs

F1, . . . , Fp : (Ck × C
2n, 0) −→ (C, 0), (Λ ×M, 0) ≈ (Ck × C

2n, 0).

We sometimes use the notation F = (F1, . . . , Fp) for the deformation germ ϕ : (Z, 0) −→ (Λ, 0).
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1.4 The Lagrangian Kodaira–Spencer map

We keep the same notations but we assume now that Z is a complete intersection. In this case, we
get isomorphisms

Ck
Z/Λ,0 −→

k∧
OZ,0, ϕ �−→

∑
i1<···<ik

ϕ(Fi1 ∧ · · · ∧ Fik)ei1 ∧ · · · ∧ eik ,

where {e1, . . . , en} is the canonical basis of the vector space C
n, that is, e1 = (1, 0, . . . , 0),

e2 = (0, 1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1).
We define a Kodaira–Spencer mapping (or rather the stalk at the origin of a Kodaira–Spencer

mapping) by

θF : T0Λ −→ H1(C•
Z/Λ,0)

v �−→ [(DF.v)]
, (Λ, 0) ≈ (Ck, 0).

Here T0Λ denotes the tangent space to Λ at the origin.
For instance, choose local coordinates λ1, . . . , λk at the origin in Λ. Then the image of the vector

∂λi
∈ T0Λ is given by

θF (∂λi
) = [(∂λi

F1, . . . , ∂λi
Fn)].

This Kodaira–Spencer map is well-defined, indeed differentiating the following equality along v

{Fj , Fk} =
n∑

i=1

aiFi

we get that

{dFj .v, Fk} + {Fj , dFk.v} =
n∑

i=1

(dai.v)Fi +
n∑

i=1

ai(dFi.v).

Thus, the cocycle DF.v ∈ C1
Z/Λ,0 is a coboundary.

Definition. The map θF : T0Λ −→ H1(C•
Z/Λ,0) defined above is called the relative Lagrangian

Kodaira–Spencer map of F .

As Z is a complete intersection, the restriction to λ = 0 gives a surjective mapping from Ck
Z/Λ

to Ck
L. Thus, we get an absolute Kodaira–Spencer mapping :

θ̄F : T0Λ −→ H1(C•
L,0)

v �−→ [(DF.v)|λ=0]

and the following commutative diagram.

H1(C•
Z/Λ,0)

r

��
T0Λ

θF

������������ θ̄F �� H1(C•
L,0)

Here r is the restriction to λ = 0. To get a clear picture of this diagram, let us denote by M the
maximal ideal of the local ring OΛ,0 and by MH1(C•

Z/Λ,0) the image of the multiplication mapping

M⊗OΛ,0
H1(C•

Z/Λ,0) −→ H1(C•
Z/Λ,0).

Proposition 1. The kernel of the map r defined above is equal to MH1(C•
Z/Λ,0).
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Proof. The vector space MH1(C•
Z/Λ,0) is obviously contained in the kernel of r. We show that the

induced map

r̄ : H1(C•
Z/Λ,0)/MH1(C•

Z/Λ,0) −→ H1(C•
L,0)

is injective. Let us denote by

ϕp : Zp −→ Λp, p = 0, . . . , k

the restriction of ϕ : Z −→ Λ above the C-vector subspace

Λp = {λ ∈ Λ : λ1 = · · · = λp = 0}, Λ0 = Λ,

where λ1, . . . , λk denote local coordinates at the origin in Λ. We have exact sequences of complexes

0 −→ C•
Zp/Λp,0 −→ C•

Zp/Λp,0 −→ C•
Zp+1/Λp+1,0 −→ 0

where 0 � p < k.
These exact sequences induce long exact sequences in cohomology.

· · · −→ Hk(C•
Zp/Λp,0) −→ Hk(C•

Zp+1/Λp+1,0) −→ Hk+1(C•
Zp/Λp,0) −→ · · · .

It is readily seen that the OΛp,0-module H0(C•
Zp/Λp,0) can be identified with the module ϕ−1

p (OΛp,0).
Thus, in the exact sequence the map

H0(C•
Zp/Λp,0) −→ H0(C•

Zp+1/Λp+1,0)

is surjective and, therefore, the exact sequence splits. This shows that the induced maps

H1(C•
Zp/Λp,0)

λp+1H1(C•
Zp/Λp,0)

−→ H1(C•
Zp+1/Λp+1,0)

are injective. Finally, the injectivity of these maps implies in turn that the map r̄ is injective. This
proves the proposition.

Remark 1. If the absolute Kodaira–Spencer mapping θ̄F is surjective, then the proposition implies
the exact sequence

0 −→ MH1(C•
Z/Λ,0)

i−→ H1(C•
Z/Λ,0)

r−→ H1(C•
L,0) −→ 0

where i denotes the inclusion.

1.5 The finiteness theorem
Following [SvS03], we introduce a class of singularities which plays the role of isolated singularities
in symplectic geometry. On the total space Z of the deformation

ϕ : Z −→ Λ

of a Lagrangian variety L ⊂M a stratification is defined as follows. Let f1, . . . , fk be generators of
the ideal of Z at a point x. Denote by Vx the C-vector space generated by Hamilton vectorfields
of f1, . . . , fk evaluated at x. For each j, the stratum Zj is defined by the condition

x ∈ Zj ⇐⇒ dimVx = j.

We have Z =
⋃n

j=0 Zj where 2n = dim(M).
The following notion was introduced in [SvS03] in the absolute case where it is called

‘condition (P)’.

Definition. A Lagrangian deformation ϕ : Z −→ Λ is called pyramidal if for any k the variety Zk

is of relative dimension at most k.
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Proposition 2. The germ of a pyramidal deformation ϕ : Z −→ Λ at a point x ∈ Zk is L-equivalent
to a deformation germ of the type

ϕ′ : (Z ′ × C
k, 0) −→ (Λ, 0), Z ′ ⊂ C

2n−2k, C
k ⊂ C

2k

which is constant on the second factor. Moreover, this decomposition induces a quasi-isomorphism
between the complexes C•

Z/Λ,x and C•
Z′/Λ,0.

The proof of this proposition is straightforward, it is based on a simple symplectic reduction
argument (in the absolute case see, e.g., [SvS03]).

Theorem 1 [SvS03]. If (L, 0) is the germ of a pyramidal Lagrangian variety then the cohomology
spaces Hk(C•

L,0) are finite-dimensional vector spaces.

On the basis of examples, we conjecture that the converse to this theorem holds.

Conjecture. If H1(C•
L,0) is a finite-dimensional vector space and if (L, 0) is a complete intersection

then (L, 0) is pyramidal.

We will prove the following generalisation of the previous theorem.

Theorem 2. If ϕ : (Z, 0) −→ (Λ, 0) is the germ of a pyramidal Lagrangian deformation then the
cohomology spaces Hk(C•

Z/Λ,0) are OΛ,0-modules of finite type.

In the case dimL = 1, the theorem is a slight generalisation of a result due to Brieskorn ([Bri70,
Satz 1.1], see also [Gre75] for a more general statement).

The proof of this theorem repeats that of Sevenheck and van Straten in the absolute case.
We postpone it until § 4. This result was used in [GS03] in order to prove that H1(C•

Z/Λ,0) is
actually a free OΛ,0 module provided that ϕ is an infinitesimally versal Lagrangian deformation.

2. The rigidity theorem

Theorem 3. Let F : (Ck × C
2n, 0) −→ (Cn, 0) be a Lagrangian deformation of a Lagrangian

complete intersection germ (L, 0) ⊂ (C2n, 0). Assume that:

(1) (L, 0) is pyramidal;

(2) the absolute Kodaira–Spencer map

θ̄F : T0C
k −→ H1(C•

L,0)

associated to F is surjective.

Then, the Lagrangian deformation F is rigid.

Example 4. Consider the germ at the origin of the Lagrangian variety

L = {(q, p) ∈ C
2n : q1p1 = q2p2 = · · · = qnpn = 0}

and let F = (F1, . . . , Fn) be the n-parameter deformation defined by

Fi = qipi + λi.

The Lagrangian Kodaira–Spencer mapping maps ∂λ1 , . . . , ∂λn to the cohomology classes

[(1, 0, . . . , 0)], . . . , [(0, . . . , 0, 1)].

A straightforward computation shows that they generate H1(C•
L,0).

Thus, the Lagrangian deformation F is rigid. That infinitesimal Lagrangian versality implies
Lagrangian rigidity in this example was assumed without proof in [NP91, § 1.2] (compare [Rus64,
Vey78]).
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Corollary 1. A Lagrangian deformation F : (Ck × C
2, 0) −→ (C, 0) of a Lagrangian curve germ

(L, 0) ⊂ (C2, 0) with an isolated singular point is L-versal provided that the absolute Kodaira–
Spencer map associated to F is surjective.

Proof. We follow standard arguments due to Martinet for the case of singularity theory of differen-
tiable maps [Mar82].

Put f = F (0, ·) and let G be an arbitrary s-parametric Lagrangian deformation of f = F (0, ·).
We have to prove that G is L-induced from F . To do this, we define the sum of F and G by the
formula

(F ⊕G)(α, λ, x) = F (λ, x) +G(α, x) − f.

The restriction of this deformation to λ = 0 is equal to G. Consequently, it is sufficient to prove
that F ⊕ G is L-induced from F . Denote by Fj the restriction of F ⊕ G to the vector space
{α | αk = 0 ∀k � j}. We have F1 = F and Fs+1 = F ⊕G.

The rigidity theorem implies that Fj is L-induced from Fj−1. By induction, we get that Fj is
L-induced from Fj−k. In particular, Fs = F ⊕G is L-induced from F1 = F .

Remark 2. In the case n > 1, we cannot use Martinet’s argument since F ⊕G is not, in general, a
Lagrangian deformation.

Remark 3. For Lagrangian curves, there is a complete description of the L-versal deformation.
Let F = f +

∑k
i=1 λimi be a k-parameter deformation of a reduced germ {f = 0}. Denote by

e1, . . . , eµ the restrictions of the mi to λ = 0. Then F is L-versal provided that the function germs
e1, . . . , eµ ∈ OC2,0 project to a basis [e1], . . . , [eµ] of the C-vector space H1(C•

L,0). If f is quasi-
homogeneous, then according to Brieskorn [Bri70], there is a canonical isomorphism between the
Milnor algebra and the fibre at the origin of the Brieskorn lattice of f . As the latter is isomorphic
to the Lagrangian versal deformation space (cf. Example 2), we get an isomorphism

H1(C•
L,0) −→ OC2,0/Jf, [m] �→ m̄.

Here Jf denotes the Jacobian ideal of f generated by the partial derivatives of f . In this case, we
recover the theorem of Colin de Verdière [Col03] similar (and somehow much more refined) results
on volume forms are to be found in [Lan95, KL93] and reference therein.

Unlike the case of quasi-homogeneous singularities a set of germs m1, . . . ,mµ projecting to a
basis of the Milnor algebra does not project to a basis of H1(C•

L,0) ≈ OL,0/{OL,0, f}. However, for
a generic symplectic structure, this is indeed the case [VG82].

3. Proof of the rigidity theorem

3.1 Infinitesimal formulation of the problem
Let

G : (C × C
k × C

2n, 0) −→ (Cn, 0), (t, λ, x) �→ G(t, λ, x)

be a deformation of

F : (Ck × C
2n, 0) −→ (Cn, 0), (λ, x) �→ F (λ, x).

Assertion. The deformation G is L-induced from F provided that there exist function germs
h ∈ O2n+k+1, b1, . . . , bk ∈ Ok+1 and a matrix B ∈ gl(n,O2n+k+1) solving the equation

{h,G} +BG+
k∑

i=1

bi∂λi
G = −∂tG. (1)
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Proof. We search for a Poisson mapping germ

ϕ : (C × C
k × C

2n, 0) −→ (C2n, 0), (t, λ, x) −→ ϕ(t, λ, x)

and a matrix A ∈ GL(n,O2n+k+1) such that the following equalities hold{
F = Aτ (Gτ ◦ ϕτ ),
(A0, ϕ0) = (I, Id).

(2)

We have used the standard notations I ∈ GL(n,O2n+k+1) for the identity matrix, Id for the identity
mapping in C

2n, Aτ for A(τ, ·, ·) and so on.
Differentiating the first equation of the system (2) with respect to τ at τ = t, we get the equation

At
d

dτ |τ=t
(Gt ◦ ϕτ ) +

(
d

dτ |τ=t
Aτ

)
(Gt ◦ ϕt) +At

(
d

dτ |τ=t
Gτ

)
◦ ϕt = 0. (3)

Define the time-dependent vector field germ vt and the matrix B ∈ gl(n,O2n+k+1) by the formulae

vt(ϕt(λ, x)) =
d

dτ |τ=t
ϕτ (λ, x),

(AtBt) ◦ ϕt =
d

dτ |τ=t
Aτ .

Multiplying (3) on the right by ϕ−1
t and on the left by A−1

t , we get the equation

LvtGt +BtGt + ∂tGt = 0. (4)

Standard theorems on differential equations imply that (ϕτ , Aτ ) satisfying the system (2) can be
found provided that there exists (vt, Bt) satisfying (4). Up to here our arguments have been standard
and hold for most of the versal deformation theorems. We now come to the specificity of our situation.
The vector field v(t, ·) = vt comes from a Poisson mapping germ, therefore it is of the type

v =
2n∑
i=1

ai∂xi +
k∑

i=1

bi∂λi
, ai ∈ O2n+k+1, bi ∈ Ok+1

where the vector field w =
∑2n

i=1 ai∂xi is the Hamiltonian field of some function germ h ∈ O2n+k+1.
Consequently, (4) can be written in the form

{h,G} +BG+
k∑

i=1

bi∂λi
G = −∂tG. (5)

This proves our assertion.

3.2 Solving the infinitesimal equation
We interpret Equation (1) in cohomological terms.

Let ϕ : Z −→ Λ and ϕ′ : Z ′ −→ Λ′ be representatives for the germs F and G. We have the
following commutative diagram.

T0Λ′ θG ��

π

��

H1(C•
Z′/Λ′,0)

r1

��
T0Λ

θF ��

j

��

θ̄F

������������
H1(C•

Z/Λ,0)

r2

��
H1(C•

L,0)
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The maps θG and θF are relative Kodaira–Spencer maps, while θ̄F is the absolute map. The maps
π, j denote, respectively, the canonical projection and the inclusion induced by the product structure
(Λ′, 0) ≈ (Λ × C, 0). The map r1 is the restriction to t = 0 and the map r2 is the restriction to
λ = 0. In this setting, (1) can be rewritten as

k∑
i=1

biθG(∂λi
) = −θG(∂t), b1, . . . , bk ∈ OΛ′,0. (6)

(We have used the notation θG(∂λi
) rather than [∂λi

G] to underline in which space we take the
cohomology class.)

Equation (6) can be solved provided that the cohomology class θG(∂t) belongs to the OΛ′,0-
module generated by the θG(∂λi

).
As θ̄F is surjective, we have an exact sequence (Remark 1, § 1.4)

0 −→ MH1(C•
Z′/Λ′,0)

i−→ H1(C•
Z′/Λ′,0)

r−→ H1(C•
L,0) −→ 0,

where M denotes the maximal ideal of the local ring OΛ′,0.
The finiteness theorem (Theorem 2, § 1.5) asserts that the OΛ′,0-module H1(C•

Z′/Λ′,0) is of finite
type. Therefore, as the vectors

θ̄F (∂λ1), . . . , θ̄F (∂λk
)

generate the vector space H1(C•
L,0), the Nakayama lemma implies that the elements

θG(∂λ1), . . . , θG(∂λk
)

generate the OΛ′,0-module H1(C•
Z′/Λ′,0). This concludes the proof of Theorem 3.

4. The coherence theorem

For the proof of the rigidity theorem to be complete, we need to prove the finiteness of the module
of relative infinitesimal Lagrangian deformations.

4.1 Coherence of the higher direct image sheaves of the Lagrange complex
We denote by Dr ⊂ C

k+2n the polycylinder of polyradius r ∈ C
k+2n centered at the origin.

Definition. A standard representative ϕ : Z −→ Λ of a deformation germ F : (Ck × C
2n, 0) −→

(Cp, 0) is a Stein representative of the germ together with a stratification of the fibres of ϕ such
that:

(1) ϕ is the restriction to Z = Y ∩ Ds of a deformation of the type ϕ′ : Y −→ Λ, where Y is a
subvariety of Dr, r > s;

(2) there exists a fundamental system (Λt) of neighbourhoods of the origin in C
k with Λ1 = Λ

such that for any t ∈ ]0, 1[, the fibres of ϕ′ above Λt are transverse to the boundary of D̄ts

(as stratified varieties).

There is a priori no reason for such a representative to exist.

Proposition 3. Any pyramidal Lagrangian deformation germ admits a standard representative.

Proof. First consider the case of a constant deformation ϕ : L �→ {0}. The stratification defined
in § 1.5 is obviously a Whitney stratification. In a Whitney stratification the transversality to a
stratum (here the origin) implies the transversality to any adjacent strata in a small neighbourhood
of it [Whi64, Tei81]. The existence of a standard representative follows.
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Consider now a general deformation F = (F1, . . . , Fp) of a Lagrangian germ (L, 0). Choose a
standard representative ϕ : L �→ {0}, L ⊂ Ds of the constant deformation. That ϕ is a standard
representative implies that for λ = 0, the vector space generated by hamiltonian vector fields of the
Fi(λ,−) at any point is transverse to the boundary of the polydisksDts, t ∈ ]0, 1]. The transversality
lemma implies that this remains true for λ ∈ C

k sufficiently close to the origin. This proves the
proposition.

Theorem 4. Let ϕ : Z −→ Λ be a standard representative of a pyramidal Lagrangian deforma-
tion. Then, the direct image sheaves R

pϕ∗C•
Z/Λ are coherent sheaves of OΛ modules and there is a

canonical isomorphism

(Rpϕ∗C•
Z/Λ)0 ≈ Hp(C•

Z/Λ,0).

4.2 Criteria for the existence of a shrinking

Let ϕ : Z −→ Λ be a standard representative of a holomorphic map germ and denote by K• a
complex of coherent sheaves with a ϕ−1OΛ linear differential. We use the notation of the above
definition.

Definition [vSt]. A transversal vector field to (ϕ,K•) is a C∞ vector field θ defined in Dts \ {0},
t > 1 satisfying the following conditions:

(1) for any t ∈ ]0, 1], θ is transversal to the boundary of Dts above Λt;

(2) the integral curves of θ are contained in the fibres of ϕ;

(3) the restriction of the cohomology sheaves Hp(K•) to the integral curves of θ are constant
sheaves.

The following theorem is a consequence of the Kiehl–Verdier theorem [KV71, Dou74] (see
also [FK71]).

Theorem 5 [vSt]. The existence of a transversal vector field to (ϕ,K•) implies that the hyper-
cohomology sheaves R

pf∗K• are coherent and that there is a canonical isomorphism

(Rpϕ∗K)0 ≈ Hp(K•
0).

Remark 4. This theorem is proved only in the case dimS = 1 and X is smooth in [vSt]. These
assumptions are nevertheless not used in the proof.

4.3 Proof of the coherence theorem

We construct a transversal vector field θ to (ϕ, C•
Z/Λ). The fact that ϕ is a standard representative

implies that at any point x ∈ ∂D̄ts there exists a holomorphic function h ∈ Ix such that the
Hamilton vector field X of h is transverse to ∂D̄ts and points inward Dts, provided that ϕ(x) ∈ Λt.

Proposition 2 implies that the cohomology sheaves Hp(C•
Z/Λ) are constant along the integral

lines of X. Consequently, for t ∈ ]0, 1], we can find a covering (Vk) of Ds \{0} such that there exists
a Hamiltonian vector field Xk in Vk transversal to (ϕ, C•

Z/Λ).

Take a partition of the unity (ψk, Vk) of Ds \ {0} and define the C∞ vector-field

θ =
s∑

k=1

ψkXk.

This vector field is transversal to (ϕ, C•
Z/Λ). This concludes the proof of Theorem 4.
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Dou74 A. Douady, Le théorème des images directes de Grauert (d’après Kiehl-Verdier), Astérisque 16
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(1971), 24–50.

Lan95 S. K. Lando, Deformations of differential forms, Trudy Mat. Inst. Steklov 209 (1995), 167–199.
Mar82 J. Martinet, Singularities of smooth functions and maps, London Mathematical Society Lecture

Note Series, vol. 58 (Cambridge University Press, Cambridge, 1982).
NP91 H. D. Nguyen and F. Pham, Germes de configurations legendriennes stables et fonctions d’Airy–
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